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Semi-classical Asymptotics for the
Schrödinger Operator with Oscillating
Decaying Potential

Mouez Dimassi

Abstract. We study the distribution of the discrete spectrum of the Schrödinger operator perturbed
by a fast oscillating decaying potential depending on a small parameter h.

1 Introduction

_is note is devoted to the study of the discrete spectrum of the operator

H(h) ∶= −∆y + V(hy, y),

where ∆y is the usual Laplacian with respect to y ∈ Rn and h > 0. _e function
(x , y) ↦ V(x , y) is smooth, real-valued, and Γ- periodic on y. Suppose in addition
that V is bounded with all its derivatives and satisûes

(1.1) lim
∣x ∣→+∞

sup
y∈Rn/Γ

∣V(x , y)∣ = 0.

_e operator H ∶= −∆ in L2(Rn) with domain H2(Rn) is self-adjoint; its discrete
spectrum is empty, while the essential one coincides with [0,+∞[. Under the above
hypothesis, the operatorH(h) admits aunique self-adjoint realization in L2(Rn)with
domain H2(Rn). Moreover, the essential spectrum of H(h) and H are the same. In
]−∞, 0[ we have a discrete spectrum caused by the potential V .

_ere are many works on the location of the absolutely continuous spectrum of
the Schrödinger operator with oscillating decaying potential (see [1,2,7–9,23,24, 33]
and the references given there).

_e asymptotic behaviour of the discrete spectrum of H(1) = −∆ + V(y, y) near
the origin was studied in [25].

In the one-dimensional case, the existence and the asymptotic behaviour of the
eigenvalues of the operator Q(h) = −∂2

x + V0(x) + V(x , xh ), tending to the border
of the essential spectrum as h ↘ 0, were established in [5] for V0 = 0, and in [15]
for periodic potential V0 (see also [4, 5, 14, 16, 17]). Our problem here is diòerent. In
fact, the scaling of H(h) is that of semiclassical analysis. In particular, the number
of discrete eigenvalues grows as h ↘ 0 and satisûes aWeyl type asymptotics. To our
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Semiclassical Asymptotics 735

best knowledge, there has been no work so far treating the semiclassical asymptotics
of the Schrödinger operator with oscillating decaying potential.

In this paper, for f ∈ C∞0 (]−∞, 0[;R), we give a complete asymptotic expansion
of the trace of f (H(h)) in powers of h. We also establish a Weyl-type asymptotics
formula with optimal remainder estimate. Our results depend on the Floquet eigen-
values of a periodic Schrödinger operator depending on the variable “x” (see (2.1)).
_e proof is similar in spirit to the one in [11] and based on the eòectiveHamiltonian
method (see Subsection 2.2).

_e paper is organized as follows: In the next section, we formulate our main re-
sults and draw conclusions and comments on it. We give an outline of the proofs in
Subsection 2.2. We introduce a class of symbols and the corresponding h-Weyl opera-
tors (see Subsection 3.2). In Subsections 3.1 and 3.3we recall the eòectiveHamiltonian
method. _e proofs of themain results are given in Section 4.

Notation We employ the following standard notations. Given a complex function
fh depending on a small positive parameter h, the relation fh = O(hN) means that
there exists CN , hN > 0 such that ∣ fh ∣ ≤ CNhN for all h ∈ ]0, hN[. _e relation fh =
O(h∞) means that, for all N ∈ N = {0, 1, 2, . . .}, we have fh = O(hN). We write
fh ∼ ∑∞

j=0 a jh j if, for each N ∈ N, we have fh −∑N
j=0 a jh j = O(hN+1).

Let H be a Hilbert space. _e scalar product in H will be denoted by ⟨ ⋅ , ⋅ ⟩. _e
set of linear bounded operators from H1 to H2 is denoted by L(H1 ,H2) and L(H1)
in the case where H1 = H2.

2 Preliminaries and Results

Let Γ =⊕n
i=1 Ze i be a lattice generated by the basis e1 , e2 , . . . , en ∈ Rn . _e reciprocal

lattice Γ∗ is deûned as the lattice generated by the dual basis {e∗1 , . . . , e∗n} determined
by e j ⋅ e∗i = 2πδ i j , i , j = 1, . . . , n. Let E and E∗ be fundamental domains for Γ and Γ∗,
respectively. If we identify opposite edges of E (resp. E∗), then it becomes a �at torus
denoted by T = Rn/Γ (resp. T∗ = Rn/Γ∗).

Le V be as above. For (x , ξ) ûxed in R2n , we deûne

(2.1) P(x , ξ) ∶= (Dy + ξ)2 + V(x , y)∶ L2(T)Ð→ L2(T)

as unbounded operator with domain H2(T). _eHamiltonian P(x , ξ) is semiboun-
ded and self-adjoint. Since the resolvent of (Dy + ξ)2 is compact, the resolvent of
P(x , ξ) is also compact, and therefore P(x , ξ) has a complete set of (normalized)
eigenfunctions Φn( ⋅ , x , ξ) ∈ H2(T), n ∈ N, called Bloch functions. _e corre-
sponding eigenvalues accumulate at inûnity, and we enumerate them according to
their multiplicities,

(2.2) λ1(x , ξ) ≤ λ2(x , ξ) ≤ ⋅ ⋅ ⋅ .

Since e−iy⋅γ∗P(x , ξ)e iy⋅γ∗ = P(x , ξ+γ∗), it follows that ξ ↦ λm(x , ξ) is Γ∗−periodic.
_e function ξ ↦ λm(x , ξ) is called the band function. Standard perturbation theory
shows that λm(x , ξ) is real continuous function and analytic in a neighborhood of

https://doi.org/10.4153/CMB-2016-022-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-022-8


736 M. Dimassi

any ξ0 such that λm(x , ξ0) is simple, i.e.,

(2.3) λm−1(x , ξ0) < λm(x , ξ0) < λm+1(x , ξ0).
We are now in a position to state our main results.

_eorem 2.1 Assume (1.1), and let f ∈ C∞0 (]−∞, 0[;R). _e operator f (H(h)) is
of trace class, and there exists a sequence of real numbers (a j) j∈N such that

(2.4) tr [ f (H(h))] ∼
∞

∑
j=0
a jh j−n , h ↘ 0,

with

(2.5) a0 = (2π)−n∑
k≥1
∬

Rn
x×E∗

f ( λk(x , ξ))dxdξ.

Let [a, b] ⊂ ]−∞, 0[ be an h-independent sub-interval, and let N([a, b]; h) denote
the number of eigenvalues of H(h) in [a, b] (counted with their multiplicity).

Corollary 2.2 Under the assumption of_eorem 2.1, we have

(2.6) lim
h↘0

[(2πh)nN([a, b]; h)] =∑
k≥1

vol{(x , ξ) ∈ Rn × E∗; λk(x , ξ) ∈ [a, b]} .

Under an additional assumption, we shall improve the above corollary. Fix b < 0,
and let

Σb =
∞

⋃
j=1

{(x , ξ) ∈ Rn × E∗; λ j(x , ξ) = b} .

Wemake the following assumption :
H : for all (x0 , ξ0) ∈ Σb , λ j(x0 , ξ0) satisûes (2.3) and ∇x ,ξλ j(x0 , ξ0) /= 0.

_eorem 2.3 Under the condition stated above, we have

(2πh)nN(] −∞, b]; h) =∑
j≥1

vol{(x , ξ) ∈ Rn × E∗; λ j(x , ξ) ≤ b} +O(h), (h ↘ 0).

Notice that ifV is positive, then the set of discrete spectrum is empty. In particular,
the leading terms of the above asymptotics are all zero. _e following result can be
useful.

_eorem 2.4 We suppose that there exists x0 ∈ Rn such that ∫E V(x0 , y)dy < 0.
_en λ1(x0 , 0) < 0. In particular, for b small enough, the right-hand sides of (2.5) and
(2.6) are strictly positive.

Remark 2.5
(i) Notice that only a ûnite number of terms in the above sums are non-zero, since

limm→∞ λm(x , ξ) = +∞. On the other hand, since supy∈T ∣V(x , y)∣ → 0 as ∣x∣ tends
to inûnity, it follows that lim∣x ∣→∞ λm(x , ξ) ≥ 0. _us,we can replaceRn ×E∗ in (2.5)
by K × E∗, where K is a compact set in Rn .
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(ii) Here is another way of stating (2.5). Let ρ(t, x) be the integrated density of
states corresponding to the operator −∆y + V(x , y) (where x is a parameter), i.e.,

ρ(t, x) ∶= (2π)−n ∑
m≥1
∫
{ξ∈E∗ ; λm(x ,ξ)≤t}

dξ.

Using integration by parts in (2.5), we obtain

a0 = −∫
Rn

x
∫
R
f ′(t)ρ(t, x)dtdx .

_e following result will be useful in the study of the spectral shi� function and
can be proved in much the same way as _eorem 2.1.

_eorem 2.6 We assume here that {x ∈ Rn ,V(x , y) /= 0} ⊂ K , for some compact
K ⊂ Rn independent of y ∈ T. For f ∈ C∞0 (R;R), the operator ( f (H(h)) − f (H0))
is of trace class, and there exists a sequence of real numbers (b j) j∈N such that

tr [ f (H(h)) − f (H0)] ∼
∞

∑
j=0
b jh j−n , h ↘ 0,

with

b0 = ∫
Rn

x
∫
R
f ′(t)[ ρ0(t) − ρ(t, x)]dtdx .

Here ρ0(t) = cn(2π)−n tn/2
+

is the integrated density of states corresponding to−∆,where
cn is the volume of the unit ball in Rn and t+ = (∣t∣ + t)/2.

2.1 Comments

(a) Our results remain valid for the periodic Schrödinger operatorwith oscillating
potential. In fact, let y ↦ V0(y) be a real-valued Γ-periodic function, and consider
the operator

P(h) ∶= P + V(hy, y), P = −∆y + V0(y).
_e operator P with domain H2(Rn) is self-adjoint; its spectrum is the union of ûnite
or inûnite sequence of intervals [αn , βn] called band that are separated by gaps. Un-
der the assumption (1.1) the essential spectra of P(h) and P are the same. InR∖σ(P)
we have a discrete spectrum caused by the potential V . Let [a, b] be a closed interval
such that [a, b] ∩ σ(P) = ∅. Replacing H(h) by P(h),_eorems 2.1–2.3 and Corol-
lary 2.2 hold provided that we replace λk(x , ξ) by µk(x , ξ), where now µk(x , ξ) are
the eigenvalues of the periodic hamiltonian

P1(x , ξ) = (Dy + ξ)2 + V0(y) + V(x , y)∶ L2(T)Ð→ L2(T).

(b) Fix n ≥ 3, and assume for simplicity that x ↦ supy∈T ∣V(x , y)∣n/2 ∈ L1(Rn)
and that V is negative. By the Cwikel–Lieb–Rozenblum bound (see, for instance,
[22,28]) it is known that

N(]−∞, 0[; h) ≤ Lnh−n ∫
Rn

sup
y∈T

∣V(x , y)∣n/2dx ,
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where the constant Ln depends only on n. Using the above inequality we can prove
that (2.6) remains true for b = 0. _is and more precise results on the discrete spec-
trum of the perturbed periodic Schrödinger operator near the edges of gaps will be
considered in a forthcoming paper with M. Assal.

2.2 Outline of the Proofs

By the change of variable x = hz, the operator H(h) is unitarily equivalent to

(2.7) H̃(h) = −h2∆z + V( z, z
h
) .

In the case where V(x , y) = V(x) is independent of the periodic variable y, the
operator H̃(h) is still the semiclassical Schrödinger one, and all our results are well
known in this case (see [13,27] and the references given there).

However, there are two spatial scales in the potential V(hx , x), namely x and
y = hx, which are completely diòerent when h tends to zero. So H(h) cannot be
identiûed with the semiclassical Schrödinger operator method, which allows us to
reduce the spectral study of H(h) to the one of a system of h-pseudodiòerential op-
erators E−+(z, h), acting on L2(T∗;CN) (see Proposition 3.2). _us, we establish a
trace formula involving the eòective Hamiltonian E−+(z, h) (see (4.6)). Now, using
some standard results on h-pseudodiòerential calculus, we prove our results.

3 Effective Hamiltonian Method

3.1 Grushin Problem: Brief Description

In this paragraph we review some of the standard facts on the Grushin problem. Let
H1 ,H2 and H3 be three Hilbert spaces, and let P ∈ L(H1 ,H3). Assume that there
exists R+ ∈ L(H1 ,H2) and R− ∈ L(H2 ,H3) such that the operator

P(z) = (P − z R−
R+ 0 ) ∶H1 ×H2 Ð→ H3 ×H2

is bijective for z ∈ Ω. Here, Ω is an open bounded set in C. Let

E(z) = ( E(z) E+(z)
E−(z) E−+(z)

)

be its inverse. We refer to the problem P(z) as a Grushin problem and the operator
E−+(z) is called eòective Hamiltonian. _e following properties are consequence of
the identities E ○P = I and P ○ E = I:

(P − z) is invertible if and only if E−+(z) is invertible,(3.1)
dimker(P − z) = dimker(E−+(z)),(3.2)

(P − z)−1 = E(z) − E+(z)E−1
−+

(z)E−(z),(3.3)

E−1
−+

(z) = R+(z − P)−1R− .(3.4)
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On the other hand, since z → (P − z) is holomorphic, it follows that the operators
E(z), E±(z), E−+(z) are also holomorphic in z ∈ Ω. Moreover, we have

(3.5) ∂zE−+(z) = E−(z)E+(z).
_is identity comes from the fact that R± are independent of z.

3.2 Classes of Symbols and Notations

For N ∈ N, we denote by S(R2n ;MN(C)) the space of P ∈ C∞(R2n
x ,ξ ;MN(C)) such

that for all α and β in Nn there exists Cα ,β > 0 such that

(3.6) ∥∂αx ∂
β
ξP(x , ξ)∥MN(C) ≤ Cα ,β ,

whereMN(C) is the set of N × N-matrices.
If P depends on a semiclassical parameter h ∈]0, h0] and possibly on other param-

eters as well, we require (3.6) to hold uniformly with respect to these parameters. For
h-dependent symbols, we say that P(x , ξ; h) has an asymptotic expansion in powers
of h, and we write

P(x , ξ; h) ∼
∞

∑
j=0

Pj(x , ξ)h j

if for every m ∈ N,

h−(m+1)(P −
m
∑
j=0

Pjh j) ∈ S(R2n ;MN(C)) .

For P ∈ S(R2n ;MN(C)), the h-Weyl operator P = Pw(x , hDx ; h) is deûned by

Pw(x , hDx ; h)u(x) = (2πh)−n ∫
Rn ∫Rn

e
i
h (x−y)⋅ξP( x + y

2
, ξ; h)u(y) dy dξ.

Here, Dx = 1
i

∂
∂x .Assume now that P(x , ξ; h) is Γ∗-periodic in x. _en Pw(x , hDx ; h)

iswell deûned and bounded from L2(T∗) into L2(T∗). In particular,we have a global
h-pseudodiòerential calculus on the torus in analogy to the one inEuclidean space. In
an appendix,we recall somewell-known results on the h-pseudodiòerential calculus.

3.3 Reduction to a Semiclassical Problem

In this subsection, we recall some results on the eòectiveHamiltonian method of the
perturbed periodic Schrödinger operator. For the convenience of the reader we re-
peat the relevant material from [18] without proofs, thus making our exposition self-
contained. We will only point out themain ideas of the proofs.

In the sequel we ûx a compact interval I = [a, b] ⊂ R, and we denote by TΓ the
distribution in S′(R2n) deûned by TΓ(x , y) = ∑β∈Γ δ(x − hy − hβ). For m ∈ N, we
introduce the following Hilbert space with its natural norm

Lm ∶= {u(x)TΓ(x , y) ; ∂αxu ∈ L2(Rn), ∀α, ∣α∣ ≤ m} .

Using that

[(hDx + Dy)2 + V(x , y)](u(x)TΓ(x , y)) = [(−h2∆x + V(x , x
h
))u(x)]TΓ(x , y)
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and (2.7), it follows easily that the operator H(h) acting on L2(Rn) with domain
H2(Rn) is unitary equivalent to

(3.7) P(h) ∶= (Dy + hDx)
2 + V(x , y)∶L0 Ð→ L0

with domain L2 . _e advantage of using (3.7) lies in the fact that P(h) is the semi-
classical Schrödinger operator with respect to x with symbol P(x , ξ) = (Dy + ξ)2 +
V(x , y).
First, we work on the symbolic level. Using the Floquet theory, we construct the

following Grushin problem for the symbol P(x , ξ).

Proposition 3.1 ([18, Proposition 2.1]) _ere exist N ∈ N, a complex neighborhoodΩ
of I, and a bounded operator r+ inL(L2(T);CN) such that for all z ∈ Ω and 0 < h < h0
small enough, the operator

P(x , ξ, z) ∶= (P(x , ξ) − z r∗
+

r+ 0 ) ∶H2(T) ×CN Ð→ L2(T) ×CN ,

is bijective with bounded two-sided inverse

E(x , ξ, z) ∶= ( e(x , ξ, z) e+(x , ξ, z)
e−(x , ξ, z) e−+(x , ξ, z)

) .

Here, e−+ ∈ S(R2d
x ,ξ ;MN(C)) is Γ∗-periodic in ξ.

We now turn to the quantization of P(x , ξ, z) and E(x , ξ, z). According to Propo-
sitions A.1 and A.2, we have

Pw(x , hDx , z) ○ Ew(x , hDx , z) = I + hRw(x , hDx , z; h),

with ∥Rw∥ = O(1). By Proposition A.4, the right-hand side of the above equality is
invertible for h small enough. Consequently, we have the following proposition.

Proposition 3.2 ([18,_eorem 3.7, Remark 3.9]) _ere exist N ∈ N, a complex neigh-
borhood Ω of I, and a bounded operator R+ in L(L0; L2(T∗;CN)) such that for all
z ∈ Ω and 0 < h < h0 small enough, the operator

P(z, h) ∶= (P(h) − z R∗
+

R+ 0 ) ∶L2 × L2(T∗;CN)Ð→ L0 × L2(T∗;CN)

is bijective with bounded two-sided inverse

E(z, h) ∶= ( E(z, h) E+(z, h)
E−(z, h) E−+(z, h)

) .

Here, E−+ ∶= Ew
−+

(x , hDx , z; h) is an h-pseudodiòerential operator with symbol Γ∗-pe-
riodic in x and

E−+(x , ξ, z; h) ∼∑
l≥0
E l ,−+(x , ξ, z) h l ,

where E0,−+(x , ξ, z) = e−+(ξ,−x , z) is given in Proposition 3.1.
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For simplicity of notationwe ignore the dependence of E , E± , E−+ on (z, h). From
(2.1), (2.2), (3.2), (3.1), (3.3), (3.4), (3.5), and the above propositions, it follows that

( z − P(h))−1 = −E + E+E−1
−+
E− ,(3.8)

E−1
−+

= R+( z − P(h))−1R∗
+
,(3.9)

and
∂zE−+ = E−E+ ,(3.10)

det ( e−+(x , ξ, z)) = 0 iò ∃k ∈ N such that z = λk(x; ξ),

∥(e−+(x , ξ, z))−1∥L(MN(C)) ≤
C
∣Iz∣ ,(3.11)

dimker(P(x , ξ) − z) = dimker(e−+(x , ξ, z)).

Remark 3.3 Let z0 ∈ R, d = dimker(e−+(x , ξ, z)) for a ûxed (x , ξ). By ordi-
nary perturbation theory (seeKato [21])we can reorder the eigenvalues (λ j(z))1≤ j≤N
of e−+(x , ξ, z) to be holomorphic in a neighborhood of z0 ∈ R and λ1(z0) = ⋅ ⋅ ⋅ =
λd(z0) = 0. Using (3.11) we see that ∣λ j(z)∣ ≥ C j ∣Iz∣, so λ′j(z0) /= 0 for all 1 ≤ j ≤ N .
Hence, z ↦ det e−+(x , ξ, z) has a root z0 ofmultiplicity d.

4 Proof of the Results

4.1 Proof of Theorem 2.1

Fix a < b < 0 such that supp f ⊂ ]a, b[ =∶ I. Let φ(x) ∈ C∞(Rn
x ; [0, 1]) be equal to

one for ∣x∣ > 2R and φ(x) = 0 for ∣x∣ < R. We ûx R large enough such that

(4.1) sup
(x ,y)∈R2n

∣φ(x)V(x , y)∣ ≤ ∣b∣
2

.

Let ê−+(x , ξ, z) be the eòectiveHamiltonian given by Proposition 3.1 associated with

P̂(x , ξ) = (Dy + ξ)2 + φ(x)V(x , y),
and put

Ê−+(x , ξ, z; h) = ê−+(ξ,−x , z) + E−+(x , ξ, z; h) − E0
−+

(x , ξ, z).
= ê−+(ξ,−x , z) +∑

j≥1
h jE j,−+(x , ξ, z).

(4.2)

By (4.1), we have

⟨(P̂(x , ξ) − z)u, u⟩ ≥ ∣b∣
2
∥u∥2 , ∀u ∈ C∞0 (T∗;Cn),

uniformly on z ∈ [a, b]. Combining this with (3.10), we deduce that

∣det ê−+(x , ξ, z)∣ ≥
1
C

uniformly on (x , ξ, z) ∈ Rn ×T∗ × [a, b],

which together with (4.2) yield, for h small enough,

(4.3) ∣det Ê−+(x , ξ, z; h)∣ ≥
1

2C
uniformly on (x , ξ, z) ∈ T∗ ×Rn × [a, b].
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On the other hand, from the properties of φ, we have

E−+(x , ξ, z; h) = Ê−+(x , ξ, z; h) for large ξ.

It follows from (4.3) and Proposition A.4 that for h small enough, (Ê−+)−1 is well
deûned and holomorphic for z near [a, b] and

∥(Ê−+)−1∥L(L2(T∗ ;CN)) = O(1).

Let f̃ ∈ C∞0 ((a, b) + i[−1, 1]) be an almost analytic extension of f , i.e., f̃ = f on R
and ∂z f̃ vanishes on R to inûnite order, i.e., ∂z f̃ (z) = ON(∣Iz∣N) for all N ∈ N. _en
the functional calculus due to Helòer-Sjöstrand (see e.g., [13, Chapter 8]) yields

f (P) = − 1
π ∫ ∂z f̃ (z)(z − P)−1L(dz).

Here L(dz) = dxdy is the Lebesgue measure on the complex plane C ∼ R2
x ,y . _e

identity
E−1
−+

= Ê−1
−+
− E−1

−+
(E−+ − Ê−+)Ê−1

−+
,

combinedwith (3.8) and the fact that Ê−1
−+
, E , E+ , E− are holomorphic in z near [a, b],

give

(4.4) f (P) = − 1
π ∫ ∂z f̃ (z)(E+E−1

−+
(Ê−+ − E−+)Ê−1

−+
E−)L(dz).

In the above equality we have used the fact that ∫ ∂z f̃ (z)K(z)L(dz) = 0 provided
that K(z) is holomorphic in a neighborhood of supp f̃ .
By Proposition A.3, (E−+ − Ê−+) is of trace class and we can take the trace and

permute integration and the operator tr in (4.4). _e identity ∂zE−+ = E−E+ shows
that for Iz /= 0,

(4.5) tr(E+E−1
−+

(Ê−+ − E−+)Ê−1
−+
E−) = tr(E−1

−+
(Ê−+ − E−+)Ê−1

−+
∂zE−+) .

Let χ ∈ C∞0 (Rn
ξ ) be equal to 1 in a neighborhood of

Πξ( supp(E0
−+

(x , ξ, z) − ê−+(ξ,−x , z))) ,

and denote by χ̂ = χw(hDx) the corresponding operator on L2(T∗;CN). Since

Πξ( supp(E0,−+(x , ξ, z) − ê−+(ξ,−x , z))) ∩ supp(1 − χ) = ∅,

it follows from Proposition A.5 that

∥(Ê−+ − E−+)Ê−1
−+

∂zE−+(1 − χ̂)∥tr = O(h∞).

On the other hand, (3.9) yields ∥E−1
−+

∥ = O(∣Iz∣−1). Hence

∥E−1
−+

(Ê−+ − E−+)Ê−1
−+

∂zE−+(1 − χ̂)∥tr = O(h∞∣Iz∣−1).

Combining this equality with (4.4) and (4.5) we obtain

tr [ f (P)] = − 1
π

tr [ ∫ ∂z f̃ (z)E−1
−+

(Ê−+ − E−+)Ê−1
−+

∂zE−+ χ̂L(dz)] +O(h∞).

https://doi.org/10.4153/CMB-2016-022-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-022-8


Semiclassical Asymptotics 743

Splitting the integral into two terms and using the fact that Ê−1
−+

∂z Ê−+ is holomorphic
in z, we get

(4.6) tr [ f (P)] = − 1
π

tr [ ∫ ∂z f̃ (z)E−1
−+

∂zE−+ χ̂L(dz)] +O(h∞).

_e proof of the following lemma is similar to the one in [11].

Lemma 4.1 _ere exists r(x , ξ; h) ∈ S(R2n ,MN(C)) such that

r(x , ξ; h) ∼∑
j≥0

h jr j(x , ξ)

and

Opwh (r(x , ξ; h)) = −
1
π ∫∣Iz∣≥hδ

∂z f̃ (z)(E−+)−1∂zE−+L(dz).

Moreover, r j is Γ∗-periodic in x for all j ≥ 0 with:

r0(x , ξ) = −
1
π ∫ ∂z f̃ (z)(E0,−+(x , ξ, z))−1∂zE0,−+(x , ξ, z)L(dz).

If we restrict the integral in the right-hand side of (4.6) to the domain ∣Iz∣ ≤ hδ ,
then we get a term O(h∞) in trace norm. Here we have used the fact that ∂z f̃ (z) =
ON(∣Iz∣N) for all N ∈ N. If we restrict our attention to the domain ∣Iz∣ ≥ hδ , then by
Lemma 4.1 and Proposition A.3 we get (2.4). To ûnish the proof let us compute a0.
We have

a0 =∬
E∗×Rn

t̂r[r0(x , ξ)]dxdξ =∬
E∗×Rn

t̂r[r0(x , ξ)]dxdξ

=∬
E∗×Rn

(− 1
π ∫ ∂z f̃ (z)t̂r[(E0,−+(x , ξ, z))−1∂zE0,−+(x , ξ, z)]L(dz))dxdξ.

Here t̂r denotes the trace in the set of square matrices. _anks to Liouville’s formula
(i.e., t̂r(∂zA(z)A−1(z)) = ∂z det A(z)

det A(z) in the sense ofmatrices), we get

a0 =∬
E∗×Rn

(− 1
π ∫ ∂z f̃ (z)

∂z det E0
−+

(x , ξ, z)
det E0

−+
(x , ξ, z) L(dz))dxdξ.

To prove (2.5) we use Remark 3.3 and the following lemma.

Lemma 4.2 Let g be an analytic function. Let (zk)k≥1 be the roots (counted with
their multiplicity) of g in supp( f̃ ). We have:

−1
π ∫ ∂z f̃ (z)

g′(z)
g(z) L(dz) =∑

k≥1
f (zk).

Proof _is follows from the formula 1
π ∂z(

1
z−z0 ) = δ(⋅ − z0) and the fact that

g′(z)
g(z) =∑

k≥1

1
z − zk

+ k(z),

where k is holomorphic for z in a small neighborhood of supp f̃ .
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4.2 Proof of Corollary 2.2

For every small є > 0, choose fє , fє ∈ C∞0 (R; [0, 1]) with

1[a+є ,b−є] ≤ fє ≤ 1[a ,b] ≤ fє ≤ 1[a−є ,b+є] .

It then suõces to observe that

tr [ fє(H(h))] ≤ N([a, b]; h) ≤ tr [ fє(H(h))] ,

which yields

lim
є↘0

lim
h↘0

((2πh)n tr [ fє(H(h))]) ≤ lim
h↘0

(2πh)nN([a, b]; h)

≤ lim
є↘0

lim
h↘0

((2πh)n tr [ fє(H(h))]) ,

and to apply _eorem 2.1.

4.3 Proof of Theorem 2.3

To prove this theorem one needs amore precise trace formula than _eorem 2.1. Let
θ ∈ C∞0 (R), and put

θ̆h(τ) ∶=
1

2πh ∫ e i tτ/hθ(t)dt.

Analysis similar to that in the proof of (4.6) shows that

(4.7) tr [ f (H(h))θ̆h(t −H(h))] =

tr [ − 1
π ∫ ∂z f̃ (z)θ̆h(t − z)(E−+)−1∂zE−+ χ̂ L(dz)] +O(h∞),

In the ûrst equality we have used the fact that f̃ (z)θ̆h2(t − z) is an almost analytic
extension of f (x)θ̆h(t − x), since z ↦ θ̆h(t − z) is analytic. Here, the support of f̃
is in a small neighborhood of z = b. Trace formulas involving eòectiveHamiltonians
like (4.7) were studied in [11].
According to the deûnition of Σb and (3.10) we have

Σb = {(x , ξ) ∈ R2n ; e−+(x , ξ, b) = 0}.

Fix (x0 , ξ0) ∈ Σb . Under the assumption of_eorem 2.3 we can choose

e−+(x , ξ, z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ j i (x , ξ) − z 0 ⋅ ⋅ ⋅ 0
0 ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ g(x , ξ, z) ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 ⋅ ⋅ ⋅ ⋅ ⋅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where det(g(x , ξ, z)) /= 0 for all (x , ξ, z) in in a small neighborhoodW of (x0 , ξ0 , b).
_e assumption H implies that the principal symbol e−+(ξ,−x , b) of E−+(b) is

micro-hyperbolic at every point (x , ξ) ∈ Σb .
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_us, applying [11,_eorem 1.8] to the le�-hand side of (4.7), we obtain

(4.8) tr [ f (H(h))θ̆h(t −H(h))] ∼
∞

∑
j=0
β jh j−n , (h ↘ 0).

Now _eorem 2.3 follows from _eorem 2.1 and (4.8) by tauberian arguments (see
[27,_eorem V-13]).

4.4 Proof of Theorem 2.4

According to (2.1) and (2.2), λ1(x0 , 0) is the ûrst eigenvalue of the operator P(x0 , 0) ∶
−∆ +V(x , y) ∶ L2(T)→ L2(T). Let ψ0(y) = 1 be the constant function on the torus.
By themin-max principle, we have

λ1(x0 , 0) = infψ∈H2(T)⟨P(x0 , 0)ψ,ψ⟩ ≤ ⟨P(x0 , 0)ψ0 ,ψ0⟩ = ∫
E
V(x0 , y)dy,

which yields _eorem 2.4.

A Appendix

In this appendix, we recall some well-known results on the h-pseudodiòerential cal-
culus. For the proofs we refer to [13].
By X we denote either R2n or T∗ ×Rn . We recall that

S(T∗ ×Rn ;MN(C)) = {P ∈ S(R2n ;MN(C)); Γ∗ − periodic in x}.

Put Y = ΠxX (i.e., Y = Rn (resp. T∗) for X = R2n (resp. T∗ ×Rn)).

Proposition A.1 (Composition formula) Let a i ∈ S(X;MN(C)), i = 1, 2. _en
bw(y, hDy ; h) = aw1 (y, hDy) ○ aw2 (y, hDy) is an h-pseudo-diòerential operator, and

b(y, η; h) ∼
∞

∑
j=0
b j(y, η)h j , in S(X;MN(C)).

Proposition A.2 (L2− boundedness) Let a = a(x , ξ; h) ∈ S(X;MN(C)). _en
aw(x , hDx ; h) is bounded : L2(Y ;CN) → L2(Y ;CN), and there is a constant C inde-
pendent of h such that

∥aw(x , hDx ; h)∥ ≤ C .

Proposition A.3 (trace) Let a = a(x , ξ; h) ∈ S(X;MN(C)). We assume that
∂αx ∂

β
ξ a ∈ L1(X), for all ∣α∣ + ∣β∣ ≤ 2n + 2. _en aw(x , hDx ; h) is trace class opera-

tor and

tr(aw(x , hDx ; h)) =
1

(2πh)n ∬Y
t̂r( a(x , ξ; h))dxdξ,

∥aw(x , hDx ; h)∥tr ≤ Cnh−n ∑
∣α∣+∣β∣≤2n+1

∬
Y
∥∂αx ∂

β
ξ a(x , ξ)∥MN(C)dxdξ.
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Proposition A.4 (invertibility) Let a = a(x , ξ; h) ∈ S(X;MN(C)). We assume that
there exists C > 0 (independent of h) such that

∣det a(x , ξ; h)∣ ≥ C .

_en, for h small enough, the operator aw(x , hDx ; h)∶ L2(Y) → L2(Y) is invertible
with uniformly bounded inverse.

Proposition A.5 Let Q1 ,Q2 ,Q3 ∈ S(X;MN(C)). We assume that

ΠξQ1 ∶= {ξ ∈ Rn ;Q(x , ξ) /= 0}
is compact and ΠξQ1 ∩ΠξQ3 = ∅. _en

∥Qw
1 (x , hDx) ○ Qw

2 (x , hDx) ○ Qw
3 (x , hDx)∥tr = O(h∞).
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