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Abstract

We study the problem of extending a state on an abelian C*-subalgebra to a tracial state on the ambient
C*-algebra. We propose an approach that is well suited to the case of regular inclusions, in which there
is a large supply of normalizers of the subalgebra. Conditional expectations onto the subalgebra give
natural extensions of a state to the ambient C*-algebra; we prove that these extensions are tracial states
if and only if certain invariance properties of both the state and conditional expectations are satisfied. In
the example of a groupoid C*-algebra, these invariance properties correspond to invariance of associated
measures on the unit space under the action of bisections. Using our framework, we are able to completely
describe the tracial state space of a Cuntz—Krieger graph algebra. Along the way we introduce certain
operations called graph tightenings, which both streamline our description and provide connections to
related finiteness questions in graph C*-algebras. Our investigation has close connections with the so-
called unique state extension property and its variants.
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1. Introduction

A trace on a complex algebra A is a linear functional ¢ : A — C satisfying ¢(xy) =
¢(yx) for all x,y € A. If A is a C*-algebra, and the trace ¢ is also a state, it is simply
called a tracial state. Such objects play a fundamental role in Elliott’s classification
program, as well as in the study of K-theory for C*-algebras [4, 5, 25, 31]; thus,
considerable effort has been devoted to constructing them on various classes of C*-
algebras [11, 27, 28]. In this paper we study tracial states on C*-algebras A by
reconstructing them from their restrictions to regular abelian subalgebras B C A.
Recall that an inclusion B C A is regular if the normalizer of B in A generates A as
a C*-algebra. Regularity is an essential feature of Cartan inclusions [23] and their
generalizations [20]; the concept first proved to be fruitful in the work of Feldman and
Moore [6] in the von Neumann algebra setting.

The material is organized as follows. In Section 2 we focus on identifying those
states ¢ € S (B) which extend to tracial states on larger subalgebras of A. Throughout
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the paper we assume the existence of a conditional expectation E : A — B, and the
extensions we consider are those of the form ¢ o E. The natural conditions employed
in our analysis are invariance (for ¢) and normalization (for E). The main result is
Theorem 2.7, which provides the natural framework for extending a state ¢ to a tracial
state on a subalgebra of the form C*(B U Ny), where N is a set of normalizers for B.

Section 3 specializes our investigation to the case of étale groupoid C*-algebras,
where the natural abelian C*-algebra to consider is Co(G®)—the C*-algebra of
continuous functions that vanish at co on the unit space G9. In this framework,
the invariance conditions treated in Section 2 become measure theoretical in nature,
described as a balancing feature. Theorem 3.5 and Corollary 3.9 show how balanced
measures naturally induce traces on groupoid C*-algebras.

In Section 4 we explore the link between the invariance and normalization
conditions from Section 2 and certain state extension properties, which simplify our
earlier analysis by placing the emphasis solely on the state ¢ € S(B), as illustrated in
Corollary 4.3. Furthermore, when the so-called extension property holds, the tracial
state space of A can be completely described by its restrictions to B, as seen in
Corollary 4.6.

The paper concludes with Section 5, where the case of graph C*-algebras is fully
investigated, using results proved from Sections 2 and 4. Given some directed graph
E, our main goal is the complete parametrization of the tracial state space of the
associated C*-algebra C*(E), solely in graph-theoretical language. Earlier work in this
direction [8, 18, 27, 28] identified the notion of graph traces as a major ingredient.
Following a lengthy review (which ends with Lemma 5.12), we apply the results
from Section 2 to construct traces on C*(E) out of states defined on one of the two
natural abelian subalgebras: D(E) the diagonal (see Corollary 5.16) or M(E) the
abelian core (see Corollary 5.14). By combining this with Theorem 5.26, we provide a
constructive alternative approach to that of [28]. As graph traces alone are insufficient
for parametrizing the entire tracial state space of C*(E), it is necessary to augment them
using what we term cyclical tags, and the main result concerning these objects is stated
in Theorem 5.33. In order to tie up these results with those from Section 4, we need
to decide when the inclusion M(E) c C*(E) satisfies the hypotheses of Corollary 4.6.
In Theorem 5.35 we are able to do this in purely graph-theoretical terms (on the graph
E) by singling out the tightness condition. Our main goal of completely parametrizing
all tracial states on C*(E) is achieved in Theorem 5.41, using a graph operation which
we call tightening. Motivated by the observation that graph traces parametrize the
gauge-invariant traces, the section concludes with Theorem 5.42, which provides a
graph-theoretic characterization of the automatic gauge invariance for tracial states on
C*(E).

2. Invariant states on abelian C*-subalgebras

Following [13] and [24], given a C*-algebra inclusion B C A, an element n € A is
said to normalize B if nBn* U n* Bn C B. The collection of such normalizers is denoted
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by Na(B), or simply N(B) when there is no danger of confusion. Clearly, N(B) is
closed under products and adjoints, and contains B. A C*-inclusion B C A is said to
be regular if N(B) generates A as a C*-algebra. (Equivalently, if the span of N(B) is
dense in A.)

Most of the C*-algebra inclusions B C A we are going to deal with in this paper are
nondegenerate, in the sense that B contains an approximate unit for A. (Of course, if
A is unital, then nondegeneracy of B is equivalent to the fact that B contains the unit
of A.) Note that, if B C A is a nondegenerate C*-subalgebra, then n*n, nn* € B for any
n € N(B).

Derinition 2.1. Assume that B C A is nondegenerate and let ¢ be a state on B C A.
(1) Given n € N(B), we say that ¢ is n-invariant if

Vb € B : ¢p(nbn*) = ¢(n*nb). 2.1
(2) Given Ny C N(B), we say that ¢ is Ny-invariant if ¢ is n-invariant for all n € Nj.
(3) Lastly, if ¢ is N(B)-invariant, then we simply say that ¢ is fully invariant.
The collection of fully invariant states on B C A is denoted by S™(B).

Remarks. The restriction 7|z of any tracial state 7 € T(A) is clearly a fully invariant
state on B, so we have an affine w*-continuous map

T(A) 3 1+ 7|5 € S™(B). (2.2)
This paper aims at understanding when the map (2.2) is either surjective, or injective,
or both.

The most important features of normalizers and invariant states are collected in
Proposition 2.3 below. Both in its proof and elsewhere in the paper, we are going to
employ the following facts, which can easily be obtained using continuous functional
calculus.

Facts 2.2. Assume that x is an element in some C*-algebra A.

(i) For any function f € C([0, o)), the elements f(xx*), f(x*x) € A, given by
continuous functional calculus, satisfy the equality

xf(x"x) = f(xx™)x. (2.3)
(i) When specializing to the kth root functions f(¢) = t'/¥, we also have the equalities
klim(xx*)l/kx = klim x(x* )k = x.

(iii) If we fix a double sequence (f )iz=1 Of polynomials in one variable, such that
Vke N : }1_)1{)10 t f,f (1) = 1'%, uniformly on compact K C [0, o)
(this is possible by the Stone—Weierstrass theorem), then
fim Jim 5 (670 = Jim im x2* 3 {70 =

lim lim f,f (xxMxx*x = klirn {]im xx* flg(xx*)x = x. 2.4)

k—00 {—00
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ProrosiTion 2.3. Let B C A be a nondegenerate abelian C*-subalgebra of a C*-algebra

A. Then:

(i) nB=Bnforallne N(B);

(1) all states ¢ € S (B) are B-invariant;

(iii) if ¢ € S(B) is n-invariant for some n € N(B), then ¢ is also n*-invariant;

(iv) if ¢ € S(B) is both ny-invariant and ny-invariant, for some ny,n, € N(B), then ¢
is also nyny-invariant;

(v) if Ngo C N(B) is a sub-x-semigroup, generated as a *-semigroup by some subset
W c N(B), and ¢ € S(B) is W-invariant, then ¢ is Ny-invariant;

(vi) a state ¢ € S(B) is fully invariant if and only if

¥n € N(B) : ¢(nn*) = ¢p(n*n). (2.5)

Proor. (i) It suffices to show that for any n € N(B) and any b € B, we have nb € Bn
and bn € nB. If we fix n and b, then using the f,f from Fact 2.2, combined with the
commutativity of B,

nb = klim }im f,f(nn*)nn*nb = klim }im fkf(nn*)nbn*n. (2.6)

Since n normalizes B, we know that nbn* € B, so the elements bi = f,f (nn*)nbn* all
belong to B, and then (2.6), which now simply states that nb = limy_,, lim;_,, b,fn,

clearly proves that nb € Bn. The fact that bn € nB is proved in exactly the same way.
(i1) This is obvious, since B is abelian.
(iii) Take a sequence {b;} C B such that bn = limy nb;. Then

¢(n*bn) = h}fn d(n"nby) = h/fn d(nbyn*) = ¢p(bnn*) = p(nn*b).

(iv) Suppose that b € B. Take a sequence {c;} C B such that (njn)n; = limy nacy.
Then

d(ninybnyny) = p(nininybns) = lilgn d(nycibny) = lilgn d(nynacib)
= ¢(nynininyb),

so that ¢ is nyn,-invariant.

Part (v) follows immediately from (iii) and (iv).

(vi) The ‘if* implication (for which it suffices to prove (2.1) only for positive b)
follows from the observation, that for any n € N(B) and any b € B*, the element
x = nb'/? is again in N(B), so applying condition (2.5) to x will clearly imply that

p(nbn*) = ¢(b'>n*nb''*) = ¢p(n*nb).
Conversely, if ¢ is fully invariant, then

Vn e N(B) : ¢(nn*) = liin d(nuyn™) = liin o(n"nuy) = ¢(n*n),

where (1,) C B is an approximate identity for A. O
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Besides the notion of invariance for states on a C*-subalgebra, we will also use the

following two additional variants.

DermiTion 2.4. Given a state ¢ € S(A), we say that an element x € A centralizes s if
Y(xa) = Y(ax) for all a € A. It is easy to see that the set

Zy ={x € A : x centralizes i/}

is a C*-subalgebra of A. (Obviously, ¢ is always tracial when restricted to Z,. In
particular, y is tracial on A if and only if its centralizer Z, contains a set that generates
A as a C*-algebra.)

DeriniTioN 2.5. If B € A is a C*-subalgebra and n € N(B), we will say that a map
© : A — Bis normalized by n if ®(nan™) = n®(a)n* for all a € A.

LeEmmA 2.6. Let B C A be a nondegenerate abelian C*-subalgebra with a conditional
expectation E : A — B, which is normalized by some n € N(B). For a state ¢ € S (B),
the following are equivalent:

(i) ¢ is an n-invariant state on B;
(i) ¢oE € S(A)isa state on A, which is centralized by n.

Proor. The implication (ii) = (i) is pretty obvious, and holds even without the
assumption that E is normalized by n. Indeed, if b € B, then nbn* = E(nbn*) and
bn*n = E(bn*n), so if ¢ o E is centralized by n, then

¢(nbn”) = (¢ o E)(n(bn")) = (¢ o E)(bn")n) = ¢(bn"n) = ¢(n"nb).

For the proof of (i) = (ii), we fix a € A and we show that ¢(E(an)) = ¢(E(na)). Fix
polynomials ( f,f ) as in Fact 2.2(iii). Since E is a conditional expectation, it follows that

B(an) = lim lim E(an L mn*n) = lim lim E(an L n)n*n.
By the n-invariance of ¢,
¢(B(an)) = lim lim $(E(anf{(n*n)n"n)
= lim lim ¢(nE(an L n n)n®).
Because E is normalized by n, with the help of (2.3) our computation continues as
$(E(an)) = lim lim $(E(nanfi (0" n)n’))
= lim lim ¢(E(na FL(nn*ynn®)). 2.7)
Since E is a conditional expectation onto an abelian C*-subalgebra,
E(na f,f (nnMnn*) = E(na) fk[ (nn™)nn"
= f,f(nn*)nn*E(na) = E(f,f(nn* nn*na),
so when we return to (2.7) and we also use (2.4), we finally get

#(E(an)) = leI?O }Lrg d(E( f,f (nn*)nn*na)) = ¢(E(na)). O

https://doi.org/10.1017/51446788716000501 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788716000501

[6] Traces arising from regular inclusions 195

TueEOREM 2.7. Let B C A be a nondegenerate abelian C*-subalgebra with a conditional
expectation B : A — B, which is normalized by some set Ny C N(B). For a state
¢ € S(B), the following are equivalent:

(i) ¢ is Ny-invariant;
(i) ¢ o E is centralized by all elements of the C*-subalgebra C*(B U Ny) C A;
(iii) the restriction (¢ o E)lc+uny) s a tracial state on C*(B U Np).

Proor. (i) = (ii). Assume that ¢ is Ny-invariant. By Lemma 2.6, we clearly have the
inclusion Ny C Zy.g, so (using the fact that Z.g is a C*-subalgebra of A) in order to
prove statement (ii), it suffices to show that ¢ o E is also centralized by B, which is
pretty clear, since B is abelian.

The implication (ii) = (iii) is trivial, since any state becomes tracial when restricted
to its centralizer.

(iii) = (i). Assume that (¢ o E)|c-(pun,) is a tracial state. In particular, Ny centralizes
this restriction, so by Lemma 2.6 (applied to C*(B U Ny) in place of A), it again follows
that ¢ is Ny-invariant. O

3. Invariant states in the étale groupoid framework

The invariance conditions from Section 2 can be neatly described in the context of
étale groupoid C*-algebras, which we briefly recall here. A groupoid is a set G along
with a subset G® c G x G of composable pairs and two functions: a composition
G? 3 (a,B) — ap € G and an involution G > y — y~! € G (the inversion), such that
the following hold:

() y(®mQ) = (yn){ whenever (y,n), (n,{) € G?;
() (y,y'H eGP forally e G, and y ' (yn) = nand (yn)n~' =y for (y,n) € GP.

Elements satisfying u = u?> € G are called units of G and the set of all such units is
denoted by G ¢ G and called the unit space of G. There are maps r,s: G — G©
defined by

) =yy, sy=yly

that are called, respectively, the range and source maps. If A, B C G, then
AB={ye G:da € A,p <€ Bsuch that af = y}.

It is not difficult to show that (@, 8) € G® if and only if s(a) = r(B). For a given unit
u € GY, there is an associated group G(u) = {y € G : r(y) = s(y) = u}; this is called
the isotropy or stabilizer group of u. The union of all isotropy groups in G forms
a subgroupoid of G called Iso(G), the isotropy bundle of G. A groupoid is called
principal (or an equivalence relation) if Iso(G) = G'; that is, if no unit has nontrivial
stabilizer group.

Throughout this present paper a groupoid G will be called étale if it is endowed
with a locally compact and second countable topology so that:

https://doi.org/10.1017/51446788716000501 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788716000501

196 D. Crytser and G. Nagy (7]

(a) the composition and inversion operations are continuous (the domain of o is
equipped with the relative product topology); and, furthermore,
(b) the range and source maps are local homeomorphisms.

By condition (b), for each y € G, there exists an open set y € X C G such that the maps

s(X) <S|—X X "|_x) r(X) are homeomorphisms onto open sets in G; such an X is called
a bisection. Note that in the étale case, the unit space G¥ is in fact clopen in G, and
all range and source fibers 7~ (u), s~' (1), u € G are discrete in the relative topology;
hence, compact subsets of G intersect any given range (or source) fiber at most finitely
many times.

In order to define a C*-algebra from an étale groupoid G, it is necessary to specify
a #-algebra structure on C.(G). This is given by

Fxom= > fl@gd),
(@, BEGP ap=y
F=1G.
(Compactness of supports ensures that the sum involved in the definition of the product
gives a well-defined element of C.(G).) As G is open in G, we have an inclusion
C.(GY) c C.(G), which turns C.(G?) into a x-subalgebra. However, the x-algebra
operations on CL._(G(O)) inherited from C.(G) coincide with the usual (pointwise)
operations: h* = h and h x k = hk for all h,k € C.(G?). In fact, something similar

can be said concerning the left and right C.(G)-module structures of C.(G): for all
f €CAG), h e C(G),

(f X b)(y) = f(Yh(s(y)),
(hx )(y) =h(r(y) f(y).

Following Renault [23], for an étale groupoid G, the full C*-norm on C.(G) is given

as
m nondegenerate || . || 1—b0unded}

x-representation of C.(G)

1711 = sup{ =l :

and the full groupoid C*-algebra C*(G) is defined to be the completion of C.(G) in
the full C*-norm. When restricted to C.(G?), the full C*-norm agrees with the usual
sup-norm || - ||, 50, by completion, the embedding C.(G?) c C.(G) gives rise to a
nondegenerate inclusion Co(G?) ¢ C*(G). At the same time, one can also consider
the restriction map, which ends up being a contractive map (C.(G), ||-|)) > f+—
flgo € (Co(GP), |l - |lo), s0, by completion, one obtains a contractive linear map
E: C*(G) — Co(GY), which is in fact a conditional expectation. We refer to E as the
natural expectation. Using the KSGNS construction associated with E [15], we obtain
a #-representation 7z : C*(G) — L(L*(C*(G), E)), where L>(C*(G), E) is the Hilbert
Co(G®)-module obtained by completing C*(G) in the norm given by the inner product
{alb)c, oy = E(a”b). With this representation in mind, the quotient C*(G)/ker n is the
so-called reduced groupoid C*-algebra, denoted by C;_,(G). An alternative description
of the ideal ker mg is to employ the usual GNS representations m,, .g associated
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with the states ev, o E € S(C*(G)) that are obtained by composing E with evaluation
maps ev, : Co(G?) > h+— h(u) € C, u € G?. With these (honest) representations
in mind, we have ker g = (,cgo ker 7, .g. As was the case with the full groupoid
C*-algebra, after composing with the quotient map meq : C*(G) — C;,(G), we still
have an embedding C.(G) C C},,(G), so we can also view C’,(G) as the completion

of the convolution *-algebra Crng) with respect to a (smaller) C*-norm, denoted by
Il - lea- As before, when restricted to C.(G?), the norm || - ||eq agrees with || - |o,
s0 Co(G?) still embeds in C7,,(G) and, furthermore, since the natural expectation E
vanishes on ker i, we will have a reduced version of natural expectation, denoted by
Ered : Cy(G) = Co(G?), which satisfies Ereq © req = E.

As pointed out for instance in [24], a large supply of normalizers for Co(G?)
are those elements of the groupoid C*-algebra represented by functions f € C.(G)
supported in bisections. We shall refer to such elements as elementary normalizers of
Co(G?). Note that the collection Nejer( Co(G?) of elementary normalizers, along with
0, is a *-subsemigroup of N(Co(G")) and, furthermore, Nyjem(Co(G?)) generate the
ambient algebra—C*(G) or C}_;(G)—as a C*-algebra. Using the embedding of C.(G)

in the groupoid (full or reduced) C*-algebra, we interpret Neem(Co(G?)) as a subset
in C.(G), namely

Neen(Co G = | ] CaX) cCG). G.1)
X bisection

Remarks. In order to avoid any unnecessary notational complications or duplications,
the results and definitions in the remainder of this section are stated only using
the reduced C*-algebra C; ,(G) as the ambient C*-algebra. However, with only a
few explicitly noted exceptions, by composing with the quotient *-homomorphism
Tred - C7(G) — C7,(G), the same results will hold if we use the full C*-algebra C*(G)
instead; we leave it to the reader to write down the missing statements corresponding
to the full case (by simply erasing the subscript ‘red’ from the statements).

The étale groupoid framework is particularly convenient because one of the
hypotheses in Lemma 2.6 above is automatically satisfied.

ProposiTioN 3.1. The natural conditional expectation Byeq : C%(G) = Co(G?) is
normalized by all elementary normalizers. In particular, for a state ¢ on Co(G?),
the following are equivalent:

(i) ¢ is an Neem(Co(G))-invariant state on Co(G©);
(if) ¢ o Ereq is a tracial state on C,_,(G).

Proor. Assume that n € C.(X) for some bisection X C G. In order to prove the first
assertion, we must show that E,.q(n X f X n*) = n X E..q(f) X n* for all f € C.(G). Fix
fas well as x € G©. Then

NP f(s(y) if Iy e X N r(u) 0 s~ (supp f),
0 otherwise.

]Ered(n X f X n*)(u) = {

It is straightforward to verify that this is the same as (n X Eeq(f) X n*)().
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The second statement is a direct consequence of Theorem 2.7, combined with the
fact that Nejem (Co(G™)) generates C*_(G) as a C*-algebra. o

red
We want to characterize the Nejem(Co(G'?))-invariant states on Co(G®)—hereafter
referred to as elementary invariant states—completely in measure-theoretical terms on
G. We introduce the following terminology in parallel with Definition 2.1.

DeriniTion 3.2. Let G be an étale topological groupoid with unit space G, and let
be a positive Radon measure on G,

(1) Given an open bisection X C G, we say that u is X-balanced if u(XBX™') =
u(s(X) N B) for any Borel set B c G©.

(2) If X is a family of open bisections, then we say that u is X-balanced if u is
X-balanced for all X € X.

(3) If p is X-balanced for every open bisection X, then we say that u is totally
balanced.

Nortations. Given a proper continuous function between locally compact spaces
h:X — Y, and a Radon measure ¢ on X, we denote its h-pushforward by A.u. This is
a Radon measure on Y, given by (h.u)(A) = u(h~'(A)), for any Borel set A C Y. Note
that the pushforward construction is covariant: (g o f).u = g.(fipd).

By Riesz’s theorem, we have a bijective correspondence

Prob(X) 5 it —> ¢, € S (Co(X)) (3.2)

between the space of Radon probability measures on X and the state space of Co(X),
defined as follows. For each u € Prob(X), the associated state ¢, € §(Co(X)) is

6,1 = fX FOdu(). € ColX).

On the level of positive linear functionals, the pushforward construction corresponds
to composition:

(hp)(f)=¢(foh), feCo(¥Y),h:X 7Y

Lemma 3.3. With G as above, let X C G be an open bisection. For a finite Radon
measure j1 on G, the following are equivalent:

@ oo = (s o ()™ Dululen)s

(i) w(s(B)) = u(r(B)) for all Borel subsets B C X;
(1) u(s(K)) = u(r(K)) for all compact subsets K C X;
(iv) wis X-balanced.

(In condition (i), we use the restriction notation for measures: if u is a finite Radon
measure on GO—thought of as a function u : Bor(G?) — [0, 00)—and D c G© is
some open subset, then ul|p is the Radon measure on D obtained by restricting u to
Bor(D).)
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Proor. The equivalence (i) & (ii) is trivial, because the maps s(X) <S|—X X rl—x> r(X) are
homeomorphisms onto open sets.
The equivalence (ii) < (iv) follows from the observation that, for any Borel set
B c G, the set B = X N s~!(B) c X is Borel and, furthermore, the sets that appear in
the definition of X-invariance are precisely XBX~! = r(B’) and s(X) N B = s(B').
Lastly, the equivalence (ii) & (iii) follows from regularity and finiteness of u. O

We are interested in balanced measures, because they are tied up with elementary
invariance.

LemMa 3.4. Let G be an étale groupoid with unit space G©, let u be a Radon
probability measure on G, and let ¢, be the state on the C*-subalgebra Co(G?) C
C:.4(G) given by (3.2). For an open bisection X C G, the following conditions are
equivalent:

(i) wis X-balanced;

(i) ¢y is Co(X)-invariant. (As in (3.1), C(X) C chcd(c)(Co(G(O))).)

Proor. The entire argument will be based on the following claim.
Cram. For any n € C.(X) and any b € C.(G?), one has the equalities
¢u(n*xnxb) = f
s(

Pu(nxbxn’) = f(x)l(n o (rlx) @b o s 0 (rlx) ™ )(w) d(lix) (), (3.4)

X)I(n o (slx)™ (@) *b(u) d(ulsx) (W), (3.3)

Pu(nxbxn”) =f )I(HO(Slx)fl)(u)Izb(u) d(s o (rlx) ™) (l00) (@) (3.5)
X

s(
The equality (3.3) follows from the definition of the convolution multiplication and

x-involution, which yield

In((slx) ™' )P, u € s(X),

(n* xn)(u) = {0’ 0 g s,

so we can multiply the functions n*n and b to obtain

n((s1x) ™ @)Pb(), u € s(X)

(n* X nxb)(u) = {0’ u ¢ s(X).

Likewise, the equality in (3.4) follows from

()~ @) - b(s((rlx) ™' W), u € r(X),

(nxbxn")(u)= {0’ 0 g (X,

which implies that the support of n X b x n* is contained in X(supp h)X~' c r(X).
Lastly, the equality between the right-hand sides of (3.4) and (3.5) follows immediately
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by applying the definition of the pushforward,

fd(s o (rlx)™) (o) = (f o s o (rlx) ) d(ulyx),

S(X) r(X)

to functions f € C.(s(X)) of the form f(u) = |n o ((slx)™")(w)[>b(u).
Having proved the claim, the implication (i) = (ii) follows from Lemma 3.3, which

yields

VneCuX), beCA(GY): ¢ (n* xnxb)=¢,(nxbxn). (3.6)
By density, (3.6) holds for all n € Cc(X), b € Co(G'?"); thus, ¢, is n-invariant for all
ne Cu(X).

As for the implication (ii) = (i), all we have to observe is that, if ¢, is C.(X)-
invariant, then (3.6) is valid, which, by the identities (3.3) and (3.5), simply states that
the equality

Fd(s o (rlx)™uulix) = f S dlsx) (3.7
$(X) s(X)
holds for all functions of the form

fw) =1(no (slx) HwPbw), neCuX), beCAG?).

Since (using a partition of unity argument) the functions of the above form linearly
span all functions in C.(s(X)), the equality (3.7) simply states that

(s 0 (rl) ™t = plscos
s0, by Lemma 3.3(i), it follows that u is indeed X-balanced. O

Combining Proposition 3.1 with Lemma 3.4, we now reach the following
conclusion.

TuroreMm 3.5. Let G be an étale groupoid with unit space G, let u be a probability
Radon measure on G, and let ¢, be the state on the C*-subalgebra Co(G) C
C..4(G) given by (3.2). The following conditions are equivalent:

(1)  wis totally balanced;

(ii) ¢, is elementary invariant;

(iii) ¢, is fully invariant;

(iv) ¢y 0 Ereq is a tracial state on C|_(G).

In concrete situations, one would like to check condition (i) from the above
theorem in an ‘economical’ way. To be more precise, assuming that a given measure
1 € Prob(G?) is X-balanced, for some collection of bisections X, we seek a natural
subalgebra on which ¢, o Erq is tracial (as in Theorem 2.7), and furthermore find
criteria on X which ensure that our subalgebra is in fact all of C7_,(G). Parts of the
lemma below mimic corresponding statements from Proposition 2.3. (Each one of the
statements (i)—(iii) has an implicit statement built in: the new sets, such as X", X~!,
and X;X,, are always bisections.)
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ProposiTioN 3.6. Let G be an étale groupoid with unit space G and let u be a Radon
probability measure on G,

(1) If w is X-balanced for some bisection X, then u is X'-balanced for any open
subset X' C X.

(i) Ifu is X-balanced for some bisection X, then u is X' -balanced.

(i) If w is both X,- and X,-balanced, for two bisections Xi, X,, then u is X;X;-
balanced.

(iv) Assume that X is an open set, written as a union X = Jje; X; of bisections,
such that sy, rlx : X = G© are injective. Then X is a bisection and, if u is
Xj-balanced for all j € J, then p is X-balanced.

Proor. Statements (i) and (ii) are trivial from Lemma 3.3.
Before we prove (iii), we need some clarifications. First of all, the set X;X; is
obtained as the image of the open set

X; 0 X5 = {(@,B) € Xi X X5 : s(@) = r(B)} = X; X Xo NG? c GP

under the composition map m : G® — G. Secondly, by the bisection property,
. ) P p . .
the restrictions of the coordinate maps X — X; X X5 N X, give rise to two

homeomorphisms p;(X; o X5) 2 X 0X, 2, p2(X1 o X3) onto open subsets of X
and X,, respectively, and furthermore the compositions s o p; and r o p, agree on X o
X», and the resulting map, denoted here by 7 : X; o X, —c G, is a homeomorphism
onto an open subset D ¢ G, (This open set is simply D = #(X; o X,) = s(X;) N r(X>).
By construction, X1 X, = @ & s(X1) N r(Xz) = @.) Furthermore, again by the bisection
property, mlx,ox, : X1 © Xo = XX is also a homeomorphism onto an open set, so
composing its inverse with the coordinate maps, we obtain two homeomorphisms g; =
Pi o (mlx,ox,) ™ 1 X1 X2 = X;, k = 1,2, which satisfy s|y,x, = s 0 ¢; and rly,x, = 7 © ¢a.
Using all these three homeomorphisms, the fact that X, X, is a bisection is obvious.

s| r
Not only are the maps s(X;X>) — X1 X 2, r(X1X>) homeomorphisms, but so

isthe map roq, = sogq; =to(mlyox,) ' : X1 X2 — D.
After all these preparations, statement (iii) follows from the observation that the X -
and X,-balancing features imply that, for any Borel set B ¢ X X>,

u(s(B)) = u(s(q2(B))) = pu(r(q2(B)))
= u(s(q1(B))) = u(r(q1(B))) = pu(r(B)),

so the desired conclusion follows from Lemma 3.3.
(iv) Since we have the equalities s(X) = Uje; s(X;) and r(X) = Uje; s(X)), it

follows that s(X) and r(X) are open. The fact that both s(X) <S‘—X X rl—x> r(X) are
homeomorphisms follows by their assumed injectivity and local compactness.
Finally, to prove that u is X-balanced, we apply criterion (iii) from Lemma 3.3.
Start with some compact set K C X and, using compactness, write it as a finite disjoint
union K = |J;_, Bj,, where B; C X, k=1,...,n, are Borel sets. Using the fact that
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u is X;-balanced for all j, we know that u(s(B;,)) = u(r(B;,)) for all k, so using that s
and r are homeomorphisms, we also have s(K) = (J;_, s(B},) and r(K) = ;_, r(B},)
(disjoint unions of Borel sets in s(X) and r(X), respectively), so

n

sk = | 5(8,)) = 3 uts(,)
k=1

k=1

n n

= Y (B = | (B 1)) = w0, 0

k=1 k=1

Using the above result, combined with Lemma 3.4, we immediately obtain the
following measure-theoretic groupoid analogue of Theorem 2.7.

THeOREM 3.7. Assume that ‘W is a collection of bisections in the étale groupoid G,
and let X be the inverse semigroup generated by ‘W. For a measure y € Prob(G"),
the following are equivalent:

(1) wis W-balanced;
(i) wis X-balanced;
(iii) the state ¢,, o Ereq is tracial when restricted to the subalgebra

(@ u | cew) = smam( o™ v | cux)

Wew XeX

Remark 3.8. A sufficient condition for a collection X of bisections of G to satisfy the
equality

span(CoG™) U | €)= €@
XeX

is that X covers G \ G, This follows using a standard partition of unity argument,
which implies the equality C.(G) = span(Co(G?) U [y x Cc(X)). As a consequence,
the desired ‘economical’ criterion for traciality of ¢, o Erq is as follows.

CoroLLARY 3.9. Assume that G, W, and X are as in Theorem 3.7. If u € Prob(G(O)) is
“W-balanced, and X covers G \ GO, then ¢y © Breq is tracial on C7_,(G).

4. Tracial states via extension properties

So far, assuming that a nondegenerate abelian C*-subalgebra B C A is the range of
a conditional expectation E : A — B, we have examined certain conditions for both a
state ¢ € S(B) and for E that ensure that ¢ o E is a trace. In the groupoid framework,
the natural conditional expectation E exhibited nice behavior (elementary invariance),
so the focus was solely placed on ¢. In this section we provide another framework,
in which again the conditional expectation in question will also be normalized by all
n € N(B). (As a side issue, one should also be concerned with the uniqueness of
conditional expectation.)
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A natural class of subalgebras to which this analysis can be carried on nicely are
Renault’s Cartan subalgebras (see [24]; see also the comment following Corollary 4.3
below). As it turns out, very little from the Cartan subalgebra machinery is needed for
our purposes: the almost extension property [17], which requires that the set

Pi(BTA) ={weB:whasa unique extension to a state on A}

is weak-+ dense in B—the Gelfand spectrum of B. (A slight strengthening of the above
condition will be introduced in the comment following Lemma 4.2 below.)

The utility of the almost extension property is exhibited by Lemma 4.2 below, in
preparation of which we need the following simple fact.

Fact 4.1. Let w be a state on B C A with extension 6 € S (A), sothat g = w. If x,y € A
and satisfy either

(1) y'ye Band w(y'y) =0;or
(2) xx* € Band w(xx*) =0,

then 6(xy) = 0.
In particular, if b € B satisfies 0 < b <1 (in the unitized C*-algebra B™) and
w(b) = 1, then
VYa € A : 0(a) = 6(ab) = O(ba) = 6(bab).

Proor. Apply the Cauchy—Schwarz inequality for the sesquilinear form:
{ald’)y = 6(a*a’).
The second statement follows from the first one applied withy = 1 — b. O

Lemma 4.2 (compare to [13, Lemma 6]). Let B C A be a nondegenerate abelian C*-
subalgebra with the almost extension property, and let B : A — B be a conditional
expectation. Then E is normalized by all n € N(B).

RemMarks. As noted in [17], the almost extension property implies that at most one
conditional expectation E : A — B can exist. In the case such an expectation does
exist and the almost extension property holds, we say that the inclusion B C A has the
conditional almost extension property.

Proor or LEmma 4.2. Fix some normalizer n € N(B); let us prove that
E(nan™) = nE(a)n” 4.1)
for all a € A. Fix polynomials ( flf) as in Fact 2.2(ii1), so
E(nan") = lim lim E(nn'n L nyafi(n*nyn*nn®). 4.2)
Likewise, and using also the fact that E is a conditional expectation, we also have
nE(a)n* = ]}LTO 21_)11; nn'n f,f (n"n)E(a) f,f (n*n)n*nn*

= lim lim nE(n*nff (n*n)af{(n*n)n*n)n*. 4.3)

k—00 {—00
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Inspecting (4.2) and (4.3), we now see that it suffices to prove (4.1) for elements of the
form a = n*an; in other words, instead of (4.1), it suffices to prove that

Ya € A : E(nn*ann™) = nE(n*an)n”.
As both sides of this equation belong to B, we only need to show that
w(Enn*ann®)) = wmE® an)n™) (*)

forall w € P (BT A).
Suppose that w(nn*) = 0. In this case, we have by Fact 4.1 that both sides of (*) are
zero. Suppose that w(nn*) > 0 and define two states ¢, and 6, on A by

(w o E)(nn*ann®) w(nE(n*an)n®)

Yola) = and  6,(a) =

bl

w(nn*)? w(nn*)?

so (*) is equivalent to the equality ¥, = 6,, (of states on A). Note that, if b € B, then
Y, (b) = 6,(b) = w(b), so that both states ¢, and 6, are extensions of w € P1(B T A),
so, by uniqueness, we have ¢, = ,,, and (*) is established. |

In the context of the conditional almost extension property, Theorem 2.7 has the
following consequences.

CoroLLARY 4.3. Let B C A be a nondegenerate abelian C*-subalgebra with the
conditional almost extension property, let E: A — B be its (unique) conditional
expectation, and let ¢ be a state on B.

(a) For a subset Ny C N(B), the following are equivalent:

(1) ¢ is Ny-invariant;
(i) ¢ o E is centralized by all elements of C*(B U Ny) C A;
(iii)  the restriction (¢ o E)|c-(suny) is a tracial state on C*(B U Ny).

(b) In particular, if B is regular, then ¢ o E is a trace on A if and only ¢ is fully
invariant.

(Of course, statement (b) can be slightly relaxed, by requiring that ¢ is only Ny-
invariant for a subset Ny C N(B) which together with B generates A as a C*-algebra.)

RemMarks. A natural class exhibiting the conditional almost extension property are
Cartan subalgebras, as defined by Renault in [24]. They are regular nondegenerate
inclusions B C A, in which:

e  Bis maximal abelian (masa) in A; and
e there exists a faithful conditional expectation E : A — B (which is necessarily
unique).

As pointed out for instance in [3], Cartan subalgebras do have the conditional
almost extension property, but there are many examples of regular nondegenerate
abelian C*-subalgebra inclusions B C A with the conditional almost extension property
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which are non-Cartan. In fact, for étale groupoids, the equivalent condition to the
almost extension property is topological principalness: the set of units u € G©
with trivial isotropy G(u) is dense in G, For topologically principal groupoids,
both inclusions Co(G?) c C ,(G) and Co(G'?) c C*(G) have the conditional almost
extension property. However, since the (full) conditional expectation E : C*(G) —
Co(G©) is not faithful in general, Co(G?) is generally not Cartan in C*(G). On
the other hand, since the (reduced) expectation E,eq : C;,(G) — Co(G©) is faithful,
Co(G?) is Cartan in C7,,(G).

Up to this point, we have seen that for regular nondegenerate abelian C*-
subalgebras B c A with the conditional almost extension property, Corollary 4.3(b)
provides us with an injective w*-continuous affine map

S™(B)> ¢+ poE e T(A), (4.4)

which is a right inverse of the restriction map (2.2); in particular, it follows that for
such inclusions, the map (2.2) is surjective.

Question. If B C A is a regular nondegenerate abelian C*-subalgebra with the
conditional almost extension property, under what additional circumstances is the map
(4.4) also surjective? (If this is the case, this would imply that the restriction map (2.2)
is in fact an affine w*-homeomorphism.)

As the example below suggests, even in the case of Cartan inclusions, the map (4.4)
may fail to be surjective.

ExampLe 4.4. Let B = C(D) C A = C(D) =, Z = C*(C(D), u), where « is a rotation of
D by an irrational multiple of 7 and u is the unitary that implements the automorphism
in the crossed product. Then B is a Cartan subalgebra, as can be directly verified. The
conditional expectation is given on the dense set of Laurent polynomials in u by

]E(Z fnu”) s

(Itis obvious that E(u") = O for all n # 0.) As 0 is a fixed point under the rotation @, we
have that (evy(-)1,id) is a covariant representation of (C(D), @) in C*(Z) = C(T); thus,
it induces a *-homomorphism p : A — C(T). Any state ¢ on C(T) defines a state i o p
on A, which is clearly tracial since C(T) is abelian and p is a *-homomorphism. A
tracial state of this form factors through E if and only if it maps {#"},x0 to 0, so taking
for instance i = ev, to be a point evaluation at z € T, then clearly (ev, o p)(u) = z # 0,
so the trace T = ev, o p € T(A) does not belong to the range of the map (4.4).

REMARK 4.5. In connection with the above example, the reason that the map ¢ — ¢ o E
fails to be surjective is the fact that the state evy on C(D) does not have a unique
extension to a state on C(D) = Z. Such an obstruction can be avoided if we consider
inclusions with the (honest) extension property, which are those nondegenerate abelian
C*-subalgebra inclusions B C A for which every pure state on B has a unique extension
to a state on A. As shown in [12] and [1], the extension property implies the following:
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B is maximal abelian;

there exists a unique conditional expectation E : A — B;

ker E = [A, B] (the closed linear span of the set of elements of the form ab — ba,
acA,beB).

From the last two properties it follows immediately that any tracial state 7 € T(A)
vanishes on ker E. Thus, any tracial state factors through E, and is completely
determined by its restriction to B. Since restrictions of the form Tl g TE T(A) are
always fully invariant, Corollary 4.3 has the following immediate consequence.

CoroLLARY 4.6. If B C A is a regular abelian C*-subalgebra inclusion with the
extension property, and E : A — B is its associated conditional expectation, then the
map

S™(B)>5 ¢ +—> ¢ oE € T(A)

is an affine w*-homeomorphism with inverse T — T|p.

ExawmpLE 4.7. For an étale groupoid G, the inclusions of Co(G?) into either the full or
reduced C*-algebra of G have the extension property if and only if G is principal: all
units in G have trivial isotropy group. In the case when G is a principal groupoid, the
above combined with Theorem 3.5 (in both its reduced and full versions) establishes
a bijection between the set of totally balanced measures on G and the tracial state
spaces of both C*(G) and C;_,(G). In particular, if I' is a discrete group acting freely
on X, then the tracial state spaces of both crossed-product C*-algebras Co(X) = I" and
Co(X) »eq I are naturally identified with the I'-invariant Radon probability measures
on X.

The condition that the groupoid be principal (or, for crossed products, that the
action be free) cannot be relaxed, especially in the nonamenable case, as the following
example shows. Let F,—the free group on two generators—act by translation on its
Alexandrov compactification F, U {co} (by keeping co fixed), so that the associated
action of F> on ¢y(F,)”—the unitization of co(F2)—is given by a,(f + c1) = 4,(f) +
c1, where A is the left-shift action on co(F5).

Cram. co(F,)™ > F> has a unique tracial state.

Note that any tracial state on this crossed product is determined by its value on
elements of the form fu,, where f € co(F2)™ and {ug}eer, are unitary generators.
The key step in proving the claim is then showing that for any tracial state 7 on
co(F2)™ >peq Fa,

ViecoF)™, g#e:1(fuy,)=0. (4.5)

Applying [19, Proposition 7.7.9] to the inclusion C1 C ¢y(F,)~, it follows that the C*-
subalgebra C*({ug}ger,) C co(F2)™ req F2 is isomorphic to C},(F2), so using Powers’
theorem [21] it follows that C*({ug}eer,) has a unique tracial state. In particular, any
tracial state on co(F»)™ »q F2 must vanish on any u, with g # e. Since any f € co(F2)~
can be written as f = f° + c1, where f° € co(F,) and ¢ € C, it suffices to prove (4.5) for
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functions f € cy(F,); in fact, by density, it suffices to prove (4.5) for f = ¢, for some
h € F,. But, for functions of this form,

T(fug) = T(f2ug) = T(fug f) = 7(fA(flug) = 0,

where the last equation follows from a,(0n) = 0o,. Thus, a tracial state 7 on
co(F2)™ »eq F is determined by its value on elements of the form f = fu,, f € co(F,)™.
If f € co(F2) and g € Fy, then 7(f) = 7(ug fuy) = 7(a,(f)). Thus, 7, viewed as coming
from a measure on the discrete space F,, must be invariant under left shift. As F;
is infinite, it must be the case that 7 vanishes on any f € cyo(F,). So, a tracial state
on co(F2)™ xeq F7 is determined by its value on Cu,, and must therefore be given by
T(2g feltg) = fe(o0), so the claim follows.

By contrast, the full crossed product co(F;)~ = F, has many tracial states, since it
has the full C*-algebra C*(F,) as a quotient, and in turn it will also have C(T?) as a
quotient.

5. Graph C#*-algebras

In this section we provide a method for parametrizing tracial state spaces on graph
Cr-algebras. Our approach complements the treatment in [29] by giving an explicit
parametrization of the tracial state space of a graph C*-algebra.

We caution the reader that this section is quite long, mostly because of the extensive
review of graph terminology. (Prior to Definition 5.2, we borrowed our material from
[22]; the remainder of the review, ending with Lemma 5.12, is borrowed from [16]
and [2].) Once two important abelian C* subalgebras are identified (the diagonal and
the abelian core), our analysis will be based on applying the results from Sections 2
and 4.

A directed graph E = (E°,E', r, 5) consists of two countable sets E*, E! as well
as range and source maps 7, s : E! — E°. A vertex is regular if ¥~(v) is finite and
nonempty. A vertex which is not regular is called singular; a singular vertex is either
a source (r~'(v) = @) or an infinite receiver (r~!(v) infinite).

A finite path in E is a sequence A = e ... e, of edges satisfying s(ey) = r(ex+1) for
k=1,...,n—1. (Note that we are using the right-to-left convention.) The length
A =ej...e, is defined to be |1 = n, and the set of paths of length n in E is denoted
by E"; the collection | J;_, E" of all finite paths in E is denoted by E*. (The vertices
E? are included in E* as the paths of length zero.) An infinite path in E is an infinite
sequence eje; . .. of edges in E satisfying s(e;) = r(ex+1) for all k; the set of these paths
is denoted by E®. If 1 =e¢;...¢, is a finite path, then we define its range r(1) to be
r(ep) and its source s(A1) to be s(e,). The range of an infinite path is defined in the same
way. In order to avoid any confusion, for any vertex v € E° and any n € N U {co}, the
set {1 € E" : r(1) = v,|A| = n} will be denoted by r"(v).

If A is a finite path and v is a finite (or infinite) path with s(1) = r(v), then we
can concatenate the paths to form Av. Whenever a (finite or infinite) path o can be
decomposed as o = Av, we write A < ¢ (or o > 1) and we denote v by o © A. A cycle
is a finite path A of positive length with (1) = s(2).
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Givenacycle A =e;...e, € E*, an entry to 1 is an edge f € E', with r(f) = r(ex)
and f # e, for some k. If no entry to A exists, we say that A is entry-less. It fairly easy
to see that every entry-less cycle A can be written uniquely as a repeated concatenation
A =" of a simple entry-less cycle v, that is, the number of vertices in v equals |v].

An infinite path x is called periodic if there exist a, A € E*, with s(a) = r(1) = s(1),
such that x = @A™ (that is, x is obtained by following @ and then repeating the
cycle A forever). If x = @A®, and A has minimal length among any cycle in such a
decomposition, then the period of x is defined to be | 4] and is denoted by per(x).

Derinition 5.1. If B is a C*-algebra, then a Cuntz—Krieger E-family in B is a set
{S¢, Pyleert vepo, where the S, are partial isometries with mutually orthogonal range
projections and the P, are mutually orthogonal projections which also satisfy:

(1) SZSe = Ps(e);
(11) SeSZ < Pr(e)’
(iii) if v is regular, then P, = 3}, =, S.S .

The C*-subalgebra of B generated by {S., P,}ecp! vepo 18 denoted by C*(S, P). The
graph algebra C*(E) is the universal C*-algebra generated by a Cuntz—Krieger E-
family, C*(E) = C*(s, p), where {s., p,} are the universal generators. For any Cuntz—
Krieger E-family {S., P,}.cg! vego, there is a unique *-homomorphism ng p : C*(E) —
C*(S, P) satistying g p(s.) = S, and 7g p(p,) = P,.

For an E-family {S, P} and a finite path A =¢;...e¢, in E*, there is an associated
partial isometry S, =S,,S.,...Se, in C*(S, P). (If |2] =0, so A reduces to a vertex
v e EO then S, = P,.) When specializing to C*(E), we have partial isometries denoted
by s, 1€ E".

By construction, all s, € C*(E), A € E* are partial isometries: the source projection
of 5,18 575, = ps); the range projection s s, will be denoted from now on by p,.

As it turns out, one has the equality
C*(E) = span{s,sy : @, € E*, s() = 5(B)}. (5.1)

The products sas/’; listed on the right-hand side of (5.1) are referred to as the spanning
monomials, and the set of all these elements is denoted by G(E). The equality (5.1)
is due to the fact that G(E) U {0} is a =-semigroup, which is a consequence of the
following product rule:

sas:‘,(ﬁ6 " ifA<p,
(s(,s;)(sﬁsj) =4 Sa0ep) sy 1B <A, (5.2)
0 otherwise.

Since all projections p,, v € E® are mutually orthogonal, for any finite set V c E°,
the sum g, = 3,y p, will be again a projection and, furthermore, the net (g, )vep,, (£
forms an approximate unit for C*(E), hereafter referred to as the canonical
approximate unit. The x-subalgebra (Jyep, (r0) ¢, C"(E)q,, will be denoted by C*(E)gp.
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Passing from a graph to a subgraph does not always produce a meaningful link
between the associated C*-algebras. The best-suited objects that allow such links are
those identified as follows: given some graph E, a subset H C E? is called:

e hereditary if r(e) € H implies that s(e) € H;
e saturated if whenever v € E° is regular and {s(e) : e € r~'(v)} C H, it follows that
veH.

Any subset H C Eo_is contained in a minimal saturated set H called its saturation,
which is the union H = U}:O:o H,, where Hy = H and, for k > 1,

H.=H_,U{veE:v regular and s(r'(v)) € Hi_y ).

Clearly, the saturation of an hereditary set is again hereditary. The main point about
considering such sets is the fact (see [22]) that, whenever H c E° is saturated and
hereditary, and we form the subgraph

E\H=(E°\H,s"(E°\ H),r,5),

then we have a natural surjective *-homomorphism py : C*(E) — C*(E \ H), defined
on the generators as

() p, ifveE'\H, ) s, ifs(e)e E°\H,
= s)=
PH Py 0 otherwise, PH S 0 otherwise.

(A subgraph of this form will be called canonical.) The ideal ker py is simply the
closed two-sided ideal generated by {p, },cx; alternatively, it is also described as

kerpy = span{s,s; : @,B € E”, s(a) = s(B) € H}.

The gauge action on C*(E) is the point-norm continuous group homomorphism
y : T3 z+ vy. € Aut(C*(E)), given on the generators by y.(p,) = p,, v € E® and
¥-(s¢) = zS., e € E'. On the spanning monomials listed above, the automorphisms .,
z €T, actas y.(s,s%) = 74P, s[’;. The gauge-invariant uniqueness theorem of an Huef
and Raeburn (see [9]) states that, given some C*-algebra A equipped with a group
homomorphism 6 : T 3 z +— 6, € Aut(A), and a gauge invariant s-homomorphism
m: C*"(E) —» A (that is, such that 6,(7(x)) = n(y,(x)) for all x € C*(E), z € T), the
condition that r is injective is equivalent to the condition that 7(p,) # O for all v € E°.

There are two distinguished abelian C*-subalgebras of C*(E) which we use to define
states on C*(E), the first of which is defined as follows.

DeriniTion 5.2. Let E be a directed graph. Then the diagonal O c C*(E) is the C*-
subalgebra of C*(E) generated by the set Gp(E) = {p,}ecr-. (We sometimes use the
notation D(E) when specifying the graph is necessary.)

REmARK 5.3. As it turns out, Gp(E) U {0} is an abelian semigroup of projections; more
specifically, by (5.2), the product rule for Gp(E) is

p, ifp<a,
PaPp = PgPo = \Pg fa<pB, (5.3)
0  otherwise.
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Using the semigroup property, it follows that we can in fact present D(E) =
span Gp(E). We can also write D(E) = [},cpo D(E)p,]”, with each summand
presented as

D(E)p, =span{p, :a € E*,p, < p,} =span{p, : @ € E*, r(@) = v}.

As it turns out, each corner D(E)p, is in fact a unital abelian AF-subalgebra, with unit
p,» so D itself is an abelian AF-algebra, which contains the canonical approximate
unit (g, )vep;, (£9)-

As explained for instance in [16], the Gelfand spectrum ZT(F) of the diagonal C*-
subalgebra D(E) can be identified with the set

E=® = E® U {x € E* : s(x) is singular}

with evaluation maps defined by ev?(p,) = 1if @ < x and 0 otherwise. In other words,
for each a € E*, when we view p, € D(E) as a continuous function on ZT(F) ~ E=°,
this function will be the indicator function of the compact—open set Z(a) = {x € E=* :
a < x}. Furthermore, the sets Z(a), @ € E* form a basis for the topology, so clearly
ZT(F) is totally disconnected. When identifying D(E) ~ CO(ZT(F)), the algebraic sum
(without closure) D(E)an = > yepo D(E)p, gets naturally identified with CC(ZT(F)), the
algebra of continuous functions with compact support.

Remark 5.4. Cylinder sets can be used to analyze path (in)comparability. To be more
precise, given two paths «, 8 € E*, the following statements hold.

(D (Comparability rule) The inequality o < 8 is equivalent to the reverse inclusion
Z(@) D Z(PB).
(II) (Orthogonality rule) Conditions (i)—(iv) below are equivalent:

(1) s;sﬁ =0;

(i)  the projections p, and pp are orthogonal, that is, p,, P = 0;
(iii) « and B are incomparable, that is, @ £ 8 and 8 £ «;

iv) Z@)nZPB) = 2.

ReMARK 5.5. Among all paths x € E<*, the ones of interest to us will be those that
represent isolated points in the spectrum D(E). On the one hand, if E has sources
(that is, vertices v € E° with r~!(v) = @), then all finite paths that start at sources
are determined by isolated points in D(E). On the other hand, the infinite paths
x =ejey -+ € E* that produce isolated points in D(E) are precisely those with the
property that there exists k such that r~!(r(e,)) = {e,,} for all n > k. If this is the case, if
we form @ = eje; ... -1, then {x} = Z(@). Among those paths, the periodic ones will
play an important role in our discussion.

DerinITION 5.6. A finite path @ = eje; ... e, € E* (possibly of length zero) is called a
ray if there is a simple entry-less cycle v such that s(a) = s(v) and, furthermore, no
edge e, from «a appears in v. (Note: in [16], rays were called distinguished paths.) In
this case, the cycle v (which is uniquely determined by «) is referred to as the seed
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of @. We caution the reader that zero-length rays are permitted: they are what we will
call cyclic vertices. For reasons explained in the second paragraph below, the (possibly
empty) set of all rays in E will be denoted by E,.

By definition, any two distinct rays «; # ap are incomparable, so by the
orthogonality rule (Remark 5.4), they satisfy s}, s,, = 55,5, = 0.

Clearly, rays parametrize the set E; of infinite periodic paths that yield isolated
points in D(E): any such path can be uniquely presented as x = av™, with a the ray
and v the seed of @, and its period (as a function from N to E!) is per(x) = |v|. When it
would be necessary to emphasize the sole dependence on «, we also denote the infinite
path @v* simply by &,. When we collect the corresponding points in D(E), we obtain

a countable open set Z,, = {ev? : x € EX} ¢ D(E).

Remark 5.7. Associated with the space E<* we have the path representation mp,y, :
C*(E) — B({*(E=*)) given on generators by (see [22] for details)

69}67 r(x) = S(e),
0 otherwise,

6)(7 r(x) = V,

”path(se)(sx = { ﬂ'path(pv)dx = {

0  otherwise.
In general, mm is not faithful; however, it is always faithful on the diagonal
subalgebra D(E). This embedding gives us a explicit form of the identification
Zj(f) = E=* as follows: for x € E=®, the associated character on 9D(E) is simply
erD(a) = <6x|77path(a)6x>'

For future use, we denote the subalgebras mp,(D(E)) and mpan(C*(E)) of
B({*(E=*)) by Dyun(E) and Apun(E), respectively.

Notation. As shown in [16, Proposition 3.1], a spanning monomial b = Sa8p € C(E)
is normal (that is, it satisfies the equality bb* = b*b) if and only if one of the following
holds:

(@) a=p,s0b=s,5,€Gp(E);
(b) a<pBandBoaisanentry-less cycle;
(¢) B <aandaopfis an entry-less cycle.

The set of all such monomials is denoted by G p((E).

DerinitioN 5.8. The abelian core M(E) is the C*-subalgebra of C*(E) generated by
Gm(E).

Nortations. If b € Gpm(E) \ Gp(E) (that is, b is of either type (b) or (c) above), then
b is a normal partial isometry, so its adjoint b* also acts as its pseudo-inverse. For
this reason, we will denote b* simply by h~'. More generally, we will allow arbitrary
negative integer exponents, by letting 5" be an alternative notation for »*". We will
also allow zero exponents, by agreeing that b° = bb* = b*b, a monomial which in
fact belongs to Gp(E). (Equivalently, for any b € Gpm(E) \ Gp(E), the C*-subalgebra
C*(b) c C*(E) generated by b is a unital abelian C*-algebra, and b is a unitary element
in C*(b).)
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RemMark 5.9. In general, for a monomial b € Gp((E) \ Gp(E), there might be multiple
ways to present it as sas;,, with @ and B as in (b) or (c) above, but, after careful
inspection, one can show that b can be uniquely presented as b = s, 57's?, = (s,5,55)",
where « € E* is a ray with seed v and m is some nonzero integer, so if we let

by = $45,5,
(recall that v is uniquely determined by «), then we can present
GM(E) \ Gp(E) = {b) : a ray, m nonzero integer}.

Clearly, using our exponent conventions, Gp(E) \ Gp(E) is closed under taking
adjoints, because (b))* = b,". As it turns out, G ((E) U {0} is an abelian *-semigroup;
besides the product rules (5.3) for Gp(E), the remaining rules which involve the
monomials in Gp(E) \ Gp(E) are

b’ = p, for all rays a,

bt ifB<é&,,
b"p,=pb" =3¢ 5.4
aPp = Ppoa {O otherwise, (54)
bm1+ﬂ’lz f — ,
R S (5.5)
e 2o 0 otherwise.

By the above *-semigroup property, M(E) c C*(E) is an abelian C*-subalgebra
which contains D(E), and it can also be described as M(E) = span G p(E).
Furthermore, the images of D(E) and M(E) under the path representation agree;
that is, mpah(M(E)) = Dpan(E). In general, M(E) is much larger than D(E); in fact,
M(E) = D(EY, the commutant of D(E) in C*(E).

As was the case with the diagonal, we have M(E) = [} ,cpo M(E)p,]~, with the
summand M(E)p, now presented as

span({b) :meZ,a € E;,,r(a) =v}U{p, : @ € E*, r(a) =v}),
so, upon identifying M(E) =~ Co(m)), the (non-norm-closed) algebraic sum
M(E)tn = X epo M(E)p, is naturally identified with C.(M(E)), the algebra of

continuous functions with compact support.

DeriniTioN 5.10 (twisted path representation). With the notation as above, define the
twisted representation © : C*(E) — C(T, Apan(E)) by

0(a)(2) = mpan(y:(a)), z€T,aeC(E).
For any pair (z, x) € T X E=%, we define the state w_, on C*(E) by

W x(a) = (6:|0(a)(2)6.).
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REMARK 5.11. As mp,q is injective on D(E), the gauge-invariant uniqueness theorem
implies that @ is injective. (The gauge action on the codomain is by translation:
(A(F)(w) = f(z"'w).) In particular, ® yields an injection of M(E) into C(T, Dyain(E)).
Therefore, the spectrum of M(E) can be recovered as a quotient of the spectrum of
C(T, Dpan(E)) (that is, T x E=%), by the natural equivalence relation implemented by
0. Specifically, if (z, x) € T x E<%, then the restriction Wz x| mce) 1S a pure state on
M(E). The equivalence relation ~ on T x E=® is simply given by

(21, x1) ~ (22, X2) © Wz 1 IME) = Wy | ME)-

Since the restrictions of these states on the diagonal act as w, |pi) = ev?, it is fairly
obvious that (z;, x;) ~ (22, x) implies that x; = x,. The precise description of the
equivalence classes (z, x). = {(z1,x1) € T X E=% : (21, x1) ~ (z, x)} goes as follows.

(z,X). = ZUper(x)X{x} if)CEEIo:,
T T x (x) if x € ES° \ E%.

(For any integer n > 1, the symbol U,, denotes the group of nth roots of unity.)

Lemma 5.12. Let E be a directed graph.

(1) When we equip the quotient space T X E=%/~ with the quotient topology, the
map (z, X)~ ¥ W, xmce) is a homeomorphism onto the spectrum of M(E).

(i) Forevery ray a, if we regard p,, as a continuous function on m), then p,, is the
characteristic function of a compact-open subset T, which is homeomorphic
to T. Specifically, if v is the seed of a, and x = av™ € E;, is the associated
periodic path, then T, = {(z, xX)~};eT and the map T /U, 3 zUp +— (z,x). € Ty is
a homeomorphism. Alternatively, T, is naturally identified with the spectrum—
computed in the unital C*-algebra C*(b,)—of the normal partial isometry b, =
Sq Sy S

(iii) The compact—open sets (T,)oer: are mutually disjoint. When we consider
Qp = Uger:, To» and fix a positive Radon measure p1 on m ) with corresponding
positive linear functional ¢,, on M(E)g, = CC(/W(E)), then

fg fdu= " #(fp,)

a€E;,

for all f € M(E)gn = C.(M(E)).

Proor. Parts (i) and (ii) are established in [16] and [2]. For part (iii), we only need
to justify the first statement, because the rest follows from the Lebesgue dominated
convergence theorem. This follows immediately from the observation that any two
distinct rays aj, @, are incomparable, so by (5.2) the projections p, and p,, are
orthogonal; thus, the sets {To}oray form a countable disjoint compact—open cover
of Q. |
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Remark 5.13. Both D(E) and M(E) are abelian regular C*-subalgebras in C*(E),
since all generators p,, v € E* and s,, e € E! normalize both of them. It is shown
in [16] that M(E) is in fact a Cartan subalgebra of C*(E), with its (unique) conditional
expectation acting on generators as

s(,s; if s(,s; e Gpm(E),

. (5.6)
0 otherwise.

EM(S(IS;;) = {

Within this framework, Theorem 2.7 has the following consequence.

CoRrOLLARY 5.14. For a state ¢ on M(E), the following conditions are equivalent.

() ¢ is s,-invariant for all e € E".
(11) ¢ is fully invariant.
(iii)) The composition ¢ o By is a tracial state on C*(E).

Remark 5.15. In general, D(E) is not Cartan, and there may exist more than one
conditional expectation onto it. One expectation—hereafter referred to as the Haar
expectation—always exists, defined as

Ep(a) = fT Y:Em(a)) dm(z) = fT Em(y:(a)) dm(z).

(Here m denotes the normalized Lebesgue measure on T; the second equality follows
from (5.6), which clearly implies that E, is gauge invariant.) The Haar expectation
acts on the spanning monomials as

P, ifa=p5,

. 5.7
0  otherwise.

Ep(sash) = {

Since the integration map ﬁr v.(a) dm(z) is always a faithful positive map, it follows
that Eq is faithful.

Using formulas (5.7), it is easy to see that Ey is also normalized by all p,, v € E°,
and s, s, e € E', so we also have the following analogue of Corollary 5.14.

CoROLLARY 5.16. For a state  on D(E), the following conditions are equivalent.

(i) ¢ is s -invariant for all e € E'.
(11) ¢ is fully invariant.
(iii) The composition ¥ o By is a tracial state on C*(E).

Remark 5.17. Either using Corollary 5.16 or directly from the definition, it follows
that any fully invariant state  on D(E) satisfies

Va € E* 1 y(p,) = ¥(pyq)-

In particular, a fully invariant state on D(E) is completely determined by its values on
the projections p,, v € EC.
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Dermnition 5.18. Let E be a directed graph. A graph trace on E is a function
g : E° = [0, o) such that:

(A) for any v € EO’ g(V) 2 Ze:r(e):v g(s(e)),
(8) for any regular v, we have equality in (a).

Note that, for any graph trace g, its null space N, = {v € E° : g(v) = 0} is a saturated
hereditary set.

Depending on the quantity ||g|l; = X,cro g(v), a graph trace g is declared finite, if
llglli < oo, or infinite, otherwise.

We denote the set of all graph traces on E by T'(E), and the set of finite graph traces
on E by Tg,(E). Lastly, we define the set T\ (E) = {g € T(E) : ||gll; = 1}, the elements
of which are termed normalized graph traces.

TrEOREM 5.19. A map g : E° — [0, o) is a graph trace on E if and only if every finite
tuple £ = (&§;, )., C R X E” satisfies

D 6Dy 20= ) Eig(s(4) = 0. (5.8)

iel i€l

Proor. To prove the ‘if’ implication, assume that g satisfies condition (5.8); let us
verify conditions (a) and (B) from Definition 5.18. To check condition (a), start
off by fixing some v € E® and notice that, since for every finite set F C r~'(v), we
have p, > > .cr p, (by the Cuntz—Krieger relations), then, by (5.8), it follows that
g(v) = X.cr g(s(e)); this clearly implies the inequality g(v) > }.c,-1(,) &(s(e)). In
order to check (B), simply notice that, if v is regular (so r~!(v) is both finite and
nonempty), then, by the Cuntz—Krieger relations, we have an equality p, = X .c,-1(,) Pe>
so applying (5.8) both ways (writing the equality as two inequalities), we clearly get
g(v) = Zeer*l(v) g(s(e))

To prove the ‘only if’ implication, we fix a graph trace g and we prove the
implication (5.8). As a matter of terminology, if a tuple = satisfies the inequality

D &py 20, (5.9)
icl
we will call E admissible. Our proof will use induction on the number (E) =
U]+ Xies 1 il.
If () = 1, then |I| = 1; thus, [ is a singleton {ip} and 4;, is a path of length 0, that is,
a vertex v € E%; in this case, (5.8) is the same as the implication ‘¢p, > 0 = £g(v) > 0,
which is trivial, since g takes nonnegative values.
Assume that (5.8) holds whenever (£) < N for some N > 1; we show that (5.8)
holds when (=) = N. Fix an admissible tuple & with (E) = N (so (5.9) is satisfied); let
us prove the inequality

> £g(s(4)) 2 0. (5.10)

i€l
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If we consider the set W = {r(4;) : i € I}, then we can split (disjointly) I = J,ew I,
where I, = {i : 7(1;) = v}, and we will have

D g = ) ) Eirls(ap),

iel vew iel,

with each tuple =, = (&, 4;)ie;, admissible. (This is obtained by multiplying the
inequality (5.9) by p,; since all calculations take place in the abelian C*-subalgebra
D(E), the product p,(> ;e &ip W) = Yiel, &P o is indeed positive.) In the case when W
has at least two vertices, we have (E,) < () for all v € W, so the inductive hypothesis
can be used, and the desired conclusion follows.

Based on the above argument, for the remainder of the proof we can assume that
W is a singleton, so we have a vertex v € E°, such that #(1;) = v for all i € I. Split
I=1°UTI*, where I°={ieI:]|4|=0}and I* = {i €I :|4;| > 0}. Since W is a singleton,
the set I° consists of all / for which 4; = v. The case when It = @ is trivial, because
that would mean that all A; will be equal to v, so for the remainder of the proof we are
going to assume that I* # @. With this set-up, the hypothesis (5.9) reads

(Y &)+ > em, 20 (5.11)
iel® iel*
and the desired conclusion (5.10) reads
(D &)+ > st 20 (5.12)
iel® iel*

(In the case when I° = @, we let Y;cp0 & = 0.)

Since I* is nonempty (and finite), we can find a finite nonempty set F C E!
which allows us to split I* as a disjoint union of nonempty sets I* = |J,cr I., where
I, ={iel: A >e}. Using the Cuntz—Krieger relations, it follows that the element
q = Yecr 5.5, € D is a projection satisfying g < p,, so the difference ¢’ = p, — g is
also a (possibly zero) projection. In either case, it follows that ¢’s /ll_sfli =0 for all
i € I'*, so when we multiply (5.11) by ¢/,

e (5.13)

Likewise, multiplying (5.11) by each s, s,

(D &)sess+ Y emusi 20

iel® i€l,

so if we multiply on the left by s, and on the right by s,,

(Z f,-)ps(e) + > 5 0eShoe 2 0. (5.14)

i€l i€l,
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For each e € F, we can form the tuple Z, = &, ;li)ieloule by letting
iz s(te) ifiel,
" aee ifjel,

and then (5.14) shows that all =, are admissible. Since we obviously have (E,) < (B),
by the inductive hypothesis we obtain (X cp £,)g(s(e)) + X, £ig(s(A;©€) 20,
which, combined with the obvious equality s(4; © e) = s(4;), yields

(D &)etsten + Y igtsan = 0. (5.15)

iel® icl,

When we sum all these inequalities (over e € E),

(X)X ststen) + 3. éigtsan 0. (5.16)
ielt

iel® ecF

Comparing this inequality with the desired conclusion (5.12), we see that it suffices to

show that
(; fi)g(V) > (; fz)(; g(s(e))). (5.17)

The case when I° = @ is trivial, since both sides will equal zero, so for the remainder,
we can assume that I # @. In the case when g’ =0, that is, when p, = 3 cr 5,5,
it follows that v is regular and F = r~'(v), so by condition (ii) in the graph trace
definition, it follows that g(v) = > ,cr g(s(e)) and again (5.17) becomes an equality.
Lastly, in the case when ¢’ # 0, we use condition (i) in the graph trace definition,
which yields g(v) = 3 .cr g(s(e)); this means that the desired inequality would follow
once we prove that }};c & > 0, an inequality which is now (under the assumption that
¢’ is a nonzero projection) a consequence of (5.13). O

In preparation for Proposition 5.22 below, which contains two easy applications of
Theorem 5.19, we introduce the following terminology.

DerNiTIoN 5.20. A vertex v € EC is said to be essentially left infinite if there exists an
infinite set X C E* of mutually incomparable paths such that s(a) = v for all @ € X.

RemMark 5.21. One particular class of essentially left infinite vertices are those that emit
entries into cycles, that is, vertices v that have some path @ = eje; . .. ¢, of positive
length, with s(a) = v, such that e, is an entry to a cycle. Indeed, if e; enters a cycle v,
then all paths v'a, n € N, are mutually incomparable.

Another class of essentially left infinite vertices are those that emit paths to infinitely
many vertices. (In [30], such vertices are called left infinite.)

The following result generalizes [18, Lemma 3.3(i)] and part of the proof of
[30, Theorem 3.2].
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ProrosiTioN 5.22. Let E be a directed graph, g be a graph trace on E, and v € E° be
some vertex. Assume that either one of the hypotheses below is satisfied:

(a) v emits an entry to a cycle; or
(b) g is finite and v is essentially left infinite.

Then g(v) = 0.

Proor. The main ingredient in the proof is the observation that, for any finite set F of
mutually incomparable paths starting at v, one has the inequality

> gw) 2 IFI- g(v). (5.18)
wer(F)

Indeed, if we list F as {ay, ..., a,} (with all the « distinct, that is, n = |F]|), then, by
mutual incomparability, we have the inequality 3’,.c,r) p,, = Z’}zl Pa; and then (5.18)
follows immediately from Theorem 5.19.

By assumption, in either case, we can find an infinite set ¥ C E* of mutually
incomparable paths starting at v such that the sum M = 3}, y, g(w) is finite. (In case
(a), as seen in the preceding remark, we can ensure that (Y) is a singleton; case (b)
is trivial, by finiteness of g.) The desired conclusion now follows immediately from
(5.18), which implies that M > n - g(v) for arbitrarily large n. O

Remarks. As we will see shortly, graph traces on E correspond to certain maps
on the ‘compactly supported’ diagonal subalgebra D(E)an = Uyep,, 0y D(E)qy,
which will eventually yield tracial positive functionals on the dense *-subalgebra
C*(E)tn € C*(E).  Although neither D(E)g,, nor M(E)q,, nor C*(E)g, are
C*-algebras, they are nevertheless unions of increasing nets of unital C*-
algebras: D(E)fin = Uvep,, ) DEIGys ME)fin = Uvep,, ) M(E)q,,, and C*(E)gin =
Uvep,, 0 4y C*(E)q,,. (Recall that, for any finite subset V C E", the projection qy is
defined to be ),y p,.) It is clear that the conditional expectations Es and E5 map
C*(E)gn onto M(E)q, and D(E)gy, respectively, so Corollaries 5.14 and 5.16 have
suitable statements applicable to C*(E)q,, With the word ‘state’ replaced by ‘positive
linear functional’. By definition, positivity for linear functionals defined on each one
of these *-algebras is equivalent to the positivity of their restrictions to each of the cut-
off algebras corresponding to V € Pg,(E®). Upon identifying D(E)q, = CC(ZT(F)) and
M(E)gn = CC(W)), the positive cones D(E)[ and M(E){ correspond precisely to
the nonnegative continuous compactly supported functions.

With this set-up in mind, Theorem 5.19 has the following consequence.

TueorREM 5.23. For any graph trace g on E, there exists a unique positive linear
functional n = ng : D(E)sn — C such that

ne(py) = g(s()) VYAeE".
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When restricted to the unital C*-algebras D(E)q,, V € Pin(E®), the positive linear
functionals ng, g € T(E), have norms

e, Il = ) 80,

veV

In particular, for g € T(E), the functional 14 is norm-continuous if and only if g is finite
and, in this case, one has |\ngll = ligll.

Proor. Let A be the complex span of {p,}cg-, and let A; be its Hermitean part,
which is the same as the real span of {p,}icg-. An application of Theorem 5.19
shows that there is a unique R-linear functional 8 : A; — R with 6(p,) = g(s(1)) for
all 2 € E*. If we fix V € Pgo(E®) and x € Ajqy, another application of Theorem 5.19
to the inequality —||x|lgy < x < ||x|lgy shows that |6(x)| < 6(gy)||x|l. Thus, for each
V € Pn(E®), there is a unique C-linear Hermitean functional 5y : D(E)gy — C with
[Invll = nv(gv), so that iy is in fact positive with norm equal to ),y g(v). Clearly, if
V c W are both finite subsets of E°, then nwloe)g, = 1v; thus, by density, there exists
a unique positive linear functional 7, defined on all of D(E) such that ne|p(z)q, = nv if
V € Pin(E?). o

REmMARKS. As a x-subalgebra in C*(E)gy, both D(E)s, and M(E)g, are nondegenerate
(since they both contain {g, }vep,,(£), as well as regular, because they are normalized
byalls,,ecE Iand all D, VE EP. Given a positive linear functional 7 on either one
of these algebras, it then makes sense to define what it means for it to be s,-invariant.

Remark 5.24. The map g+ 7, establishes an affine bijective correspondence
between T(E) and the space of positive linear functionals on D(E)s, that are s,-
invariant for all e € E'. The inverse of this correspondence is obtained as follows.
Given a linear positive functional 6§ on D(E)g, which is s -invariant for all e € E ! the
associated graph trace is simply the map

g E'svi—0(p,) € [0, ). (5.19)

REmARK 5.25. In [14], a groupoid model is exhibited for graph C*-algebras, so that to
any directed graph E one associates an étale groupoid Gg such that C*(Gg) = C*(E).
Furthermore, this construction identifies the diagonal D with CO(G?)), where the unit
space Gg) is naturally identified with E<*. Thus, the correspondence g + 1, of the
previous remark gives rise, with the help of Riesz’s theorem, to the correspondence
8 P g, associating to each graph trace g € T(E) a totally balanced positive Radon
measure y, on G = E<,

When we specialize to the case of interest to us, Theorem 5.23 yields the following
statement.

THeEOREM 5.26. For any normalized graph trace g, there exists a unique state Y, €
S (D(E)) satisfying
Ue(py) = 8(s(1) VAEE" (5.20)
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All states Y, g € T1\(E), are fully invariant and, furthermore, the correspondence
T\(E) 3 g +— Y, € S™(D(E))
is an affine bijection, which has as its inverse the correspondence
SI™(D(E)) 30— ¢’ € T1(E) (5.21)
defined as in (5.19).

Remarks. The reader who is familiar with [28] can see that our approach is lengthier
than the one in that paper. However, we do not require any K-theory computations (or
the related results on states on K, lower semicontinuous dimension functions, quasi-
traces, etc); our approach is purely constructive.

Remarks. Using Corollary 5.16, it follows that for any g € T|(E), the composition
Xg = ¥g 0 Ep defines a tracial state on C*(E); in this way we obtain an injective
correspondence

T\(E)> g+ x, € T(C*(E)). (5.22)

Of course, any tracial state 7 € T(C*(E)) becomes invariant when restricted to D(E),
so using (5.21) we obtain a correspondence

T(C*(E) a1+ g" € T(E). (5.23)

Theorem 5.26 shows that this map is surjective, because the correspondence (5.22)
is clearly an affine right inverse for (5.23). The surjectivity of (5.23) is also proved
in [28], by completely different means. In general, the map (5.22) may fail to be
surjective (equivalently, the map (5.23) may fail to be injective). This will be clarified
in Theorem 5.42 below.

Remark 5.27. Using formulas (5.7), given a normalized graph trace g € T1(E), the
associated tracial state y, = ¥, o Ep—hereafter referred to as the Haar trace induced
by g—acts on the spanning monomials as

g(s(@) ifa=4,
0 otherwise.

Xg(s(ys;) = {

Among other things, the above formulas prove that y, is in fact gauge invariant, that
is, Yg0y; = xg forall zeT.

Conversely, every gauge-invariant tracial state 7 € T(C*(E)) arises in this way.
Indeed, if 7 is such a trace, then by gauge invariance it follows that, whenever «, 8 € E*
are such that |a| # |8|, we must have 'r(sasZ) = 0; furthermore, if |@| = |B], then

7(0) =0 it a#p,
T(538,) = T(py,,) otherwise,

T(855) = T(5pS,) = {

so in all cases we get T(sas;) = XgT(SaS;).
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To summarize:

e the range of the injective correspondence (5.22) is the set T(C*(E))" of gauge-
invariant tracial states;
e  when restricting the correspondence (5.23) to T(C*(E))", one obtains an affine
isomorphism
T(C*(E))" 31+ g" € T\(E).

When searching for an analogue of Theorem 5.26, with D(E) replaced by M(E),
it is obvious that the space T'(E) is not sufficient, so additional structure needs to be
added to it.

DeriniTion 5.28. The cyclic support of a function g : E° — C is defined to be the set
supp‘g = {v € E” : v € E” cyclic, g(v) # 0}

(Recall that a cyclic vertex v is one visited by a simple entry-less cycle. Equivalently, v
is aray of length zero.) A cyclically tagged graph trace consists of a pair (g, 1), where
g is a graph trace and u : supp°g > v — u,, € Prob(T) is a map—hereafter referred to
as the rag. Note that our definition includes the possibility of an empty tag in the case
when suppg = @. (More on this is in Theorem 5.42 below.) The space of all such
pairs will be denoted by T°"(E). The adjective ‘finite’, ‘infinite’, or ‘normalized’ is
attached to (g, u) precisely when it applies to g.

Using this terminology, one has the following extension of Theorem 5.23. (Recall
that, if v is the seed of the ray a, then b, is the normal partial isometry s,s,s%.) The
structure of the proof is as follows: we fix a cyclically tagged graph trace and, roughly
speaking, build part of the corresponding functional for each ray @. We then sum
over these to obtain a functional 6 on Mg,(E) which satisfies some, but not all, of our
desired invariance properties. We augment this functional with the ‘graph-trace’ part
by use of the conditional expectation onto the diagonal, represented as a measure v on
/\7(? ). Suitably combining 6 with the functional represented by v gives us the desired
functional on M(E).

TueorREM 5.29. For any cyclically tagged graph trace (g, u) on E, there exists a unique
positive linear functional ij = 7y : M(E)an — C such that:

(1) Tigw(p,) = g(s(d)) for every finite path A € E*;
(i1) for any ray a and any integer m # 0,

g(s(a)) fT " duse)(z)  ifg(s(a)) #0,

0 otherwise.

ﬁ(g,u)(bg) =

When restricted to the unital C*-algebras M(E)q,, V € Piin(E®), the positive linear
functionals 7 ), (g, ) € T(E), have norms

g0 McENG, || = Z g).

veV
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In particular, for any (g, 1) € T*'(E), the functional fj ) is norm-bounded if and only
if g is finite and, in this case, one has || wll = lIglli.

Proor. Assume that (g, i) € T°"(E) is fixed throughout the entire proof. Fix for the
moment a ray a with g(s(a)) # 0, and consider the C*-subalgebra C*(b,) € M(E).
As pointed out in Lemma 5.12, using the fact that the projection b2 = p, is the
characteristic function of the compact—open set T, C M(E), we have of course the
equality M(E)p, = C*(b,), so using the surjective *-homomorphism

e : M(E) 3 a+— ap, € C*(b,) — C(T)

we can define a state w, on M(E) by

wa(a):fﬂa(a)dﬂs(a)~
T

Specifically, if we write the compression ap, as f(b,), for some f e C(T), then
wela) = fT f (@) dug)(z). Using the product rules (5.3), (5.4), and (5.5), it follows
that on the generator set G o((E), the state w,, acts as

U ifa<é, o[ dso e =a

walp) = 0 ) =4 Jr (5.24)
0 otherwise, .
0 otherwise.
Define now the functional 6 : M(E)g, — C by
0(a) = Z g(s(@)wqe(@), ae M(E)g. (5.25)
a€E;,
8(5(2))#0

Concerning the pointwise convergence of the sum in (5.25), as well as its positivity,
they are a consequence of the following fact.

Cramv. For any vertex v € E°, one has the inequality

> sls(@) < gv). (5.26)
a€E;,
r(a)=v

In particular, the sum

6, = Z 8(s(@)walpmE)p,

ack;,
r(a@)=v

is a norm-convergent sum; thus, 6, is a positive linear functional on M(E)p, with norm

ol = > gls(@). (5.27)

a€kE;,
r(@)=v
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The inequality (5.26) follows from the observation that, for any finite set F of rays
with range v, the projections {p,}qcr satisfy the inequality }’,.r p, < p,, which by
Theorem 5.19 implies that ), g(s(@)) < g(v). The equality (5.27) is now clear from
the positivity of 6,, which combined with (5.24) yields

6,01 = 6.(p) = D" gls@)walp,) = D gls(@)).
acE;, acE;,
r(a)=v r(a)=v
Using the claim, we see that 6 given in (5.25) is indeed correctly defined, positive,
and it can alternatively be presented as 6(a) = Y cpo 6,(a) (a sum which has only
finitely many nonzero terms for each a € M(E)g,). By construction, 6 acts on the
generator set G p((E) as

0p) = ) g(s@), A€E, (5.28)
e
s(a " duye(z) if @ € E} and g(s(a)) # 0,
o™ = 8(s( ))ﬁ s (2) g(s(@)) (5.29)
0 otherwise.

Next we consider the positive linear functional 7, : D(E)s, — C associated to g, as
constructed in Theorem 5.23, and the linear positive functional , o Ep : M(E)g, — C.
(Here we use the fact that Ey maps C*(E)g, onto D(E)gq,.) Using Riesz’ theorem,
there is a positive Radon measure v on m) such that 77,(Ep(f)) = f @) f dv for

all fe CC(/V((E)) = M(E)ﬁ/n.\ Using this measure, we now define the desired positive
linear functional 7 on C.(M(E)) = M(E)q, by

—

7O = 0) + f Fduv

ME)\Q,p
= 60(f) + ng(En(f)) - Z ng(En(fpa)) (5.30)
a€ckE;,
= 0(f) + ng(En(f)) — Z Ng(En(f)pe)- (5.31)
a€E,,

(The equality (5.30) follows from Lemma 5.12.)
To check condition (i), start with some A € E* and observe that, for all rays @, we

have the equalities
p, ifA<é&,,
p/lpa/ =

0  otherwise,

which, by (5.28), imply that

D 1 En(pp)) = Y mep) = ) &s(@) = 6(p,),

acEy, acE;, acE;,
/1<§0 /l<§0
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so by (5.30) we obtain the desired property

(py) =ng(py) = g(s(D).

In order to check condition (ii), we simply verify that, for any ray « and any integer
m, we have the equality
(b)) = 0(bg). (5.32)

In the case when m = 0, we have bg = p,. so by condition (i) and (5.29), we have
ﬁ(b?,) =17i(p,) = g(s(@)) = G(bg). In the case when m # 0, we notice that since Eqp
vanishes on G(E) \ Gp(E)—Dby (5.7)—we have Ep(b) = 0, and then (5.32) is trivial
using (5.31).

The remaining statements in the theorem (including the uniqueness of 7j) are pretty
clear, since any positive linear functional 7 satisfying conditions (i) and (ii) must
satisfy flpe),, = 1. from which the continuity of the restrictions k), follows
immediately. O

One aspect not addressed so far is invariance of the states 7. For this purpose, the
following definition is well suited.

Dermition 5.30. Two cyclic vertices are said to be equivalent if they are visited by the
same entry-less cycle. A cyclically tagged graph trace (g, u) is said to be consistent
if u, = u,, whenever v and w are equivalent. (Note that if two cyclic vertices v, w
are equivalent, then g(v) = g(w).) The space of all consistent cyclically tagged traces
on E is denoted by T°"(E). As agreed earlier, the adjective ‘finite’, ‘infinite’, or
‘normalized’ is attached to an element (g, u) € T*"(E) precisely when it applies to g.
In particular, the space of normalized consistent cyclically tagged graph traces on E is
denoted by T7°"(E).

Prorosition 5.31. A cyclically tagged graph trace (g, u) is consistent if and only if
the associated positive functional fjq ) : M(E)s, — C constructed in Theorem 5.29 is
s,-invariant for all e € E'.

Proor. Assume that (g, ) is consistent; let us show the invariance of fj ), which
amounts to checking that for each e € E':

M) Nguw(SepySe) = Mg (pp,) forall A € E¥;
(i) Tgu)(S.DYs5) = fieuw(p.by) foralla € Ej,, m € Z.

P?

Property (i) is obvious, since #j. ) agrees with the s -invariant functional 7, on
D(E)fn. As for condition (ii), we only need to verify it if s(e) = r(a) (otherwise
both sides are zero). Also notice that if || > 0, then ea is also a ray with
s(ea) = s(a), which satisfies s,b0s; = b,, so by condition (ii) in Theorem 5.29,
we have fiig . (s,b5%) = Tlie0(bih) = 8(s(e)) [L2" dutsea(2) = 8(5(@)) [ 2" dptyon(2) =
fguw(by). In the remaining case, || =0, so @ reduces to a vertex v = r(v) for
some simple entry-less cycle v. If e is not an edge in v, then it is a ray; thus, the

preceding argument still applies (we will have s,b)'s; = b7'). If e is an edge on v,
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then s,b™s% = b™

e’v e r(e)’
which now reads #j (b

and uy, = Uy(e).
Conversely, notice first that, if 7, is s,-invariant for all e € E 1 then it will also
satisfy the identity

with r(e) obviously equivalent to v, and the desired equality—

’r’ze)) = fj(eu (D} )—Tfollows from the equalities g(v) = g(r(e))

g (52a57) = Tigu(Py@) YA€ E", a € M(E)sn.

Secondly, observe that, if v, v are equivalent cyclic vertices, presented as v = s(v) and
v = s(v') for two simple entry-less cycles, then we can write v = @ and v’ = Ba for
two suitably chosen paths , 8 € E*. This clearly implies that b, = sﬁbv s;, which also
yields by = spb's for all m € Z.

Combining these two observations with condition (ii) from Theorem 5.29, it follows
that, if #j, ) is invariant, then for any two equivalent cyclic vertices v and V', we have
(with «, B as above)

270 = R = T 505 = )
= flgu(by) = me du(z) VmeZ,
T

which clearly implies that u,, = u,. O

REmARK 5.32. The map (g, 1) — fj,) establishes an affine bijective correspondence
between 7°'(E) and the space of positive linear functionals on M(E)g, that are s,-
invariant for all e € E'. The inverse of this correspondence is the map 6 — (g%, 1)
defined as follows. Given a linear positive functional § on M(E)s, which is s,-invariant
forall e € E', the graph trace g” is given by (5.19), and the tag 1’ = (1) equppe? 18 given
(implicitly) by

0(f(D,))
g'v)

When we specialize to states, we now have the following extension of
Theorem 5.26.

f f@dul(z) = Vv e supp‘g’, f e C(T). (5.33)
T

TueorEM 5.33. For any normalized consistent cyclically tagged graph trace (g, u) €
T{'(E), there exists a unique state ¢ ) € S (M(E)) satisfying:

1) Pewp) = g(s() for every finite path A € E*;
(i1) for any ray a and any integer m,

g(s(a)) j}; " dps)(2)  ifg(s()) # 0,

0 otherwise.

¢(8,ﬂ)(bg) =
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All states ¢y, (g ) € T{(E), are fully invariant and, furthermore, the

correspondence .
TY(E) 3 (8, 1) ¥ Py € S™(M(E)) (5.34)
is an affine bijection, which has as its inverse the correspondence
S™(M(E)) 3 0+ (g, 1) € TS (E) (5.35)

defined as in (5.19) and (5.33).

Remarks. Using Corollary 5.14, it follows that for any (g, u) € T{*'(E), the
composition 7, ;) = ¢, © Ep defines a tracial state on C*(E); in this way we obtain
an injective correspondence

T'(E) 3 (g, 1) V> T(gu € T(C*(E)). (5.36)

Of course, any tracial state 7 € T(C*(E)) becomes invariant when restricted to M(E),
so using (5.35) we obtain a correspondence

T(C*(E)) > 7 +— (g7, i) € T(E). (5.37)

Theorem 5.33 shows that this map is surjective, because the correspondence (5.36) is
clearly an affine right inverse for (5.37).

Remark 5.34. The range of (5.36) clearly contains the range of (5.22), which equals
T(C*(E))T. After all, any trace g € T1(E) can be tagged using the constant map
u : supp’g — Prob(T) that takes u, to be the Haar measure for every v, and it is
straightforward to verify that for this particular tagging one has 7(g ;) = x,-

Concerning the range of (5.36), one legitimate question is whether it equals the
whole tracial state space T(C*(E)). Using the bijection (5.34), this question is
equivalent to the surjectivity of the map

S™(M(E)) 3 ¢ —> ¢ 0o By € T(C*(E)). (5.38)

As we have seen in Corollary 4.6, a sufficient condition for the surjectivity of (5.38) is
the condition that the inclusion M(E) ¢ C*(E) has the (honest) extension property. As
it turns out, this issue can be neatly described using the graph.

THueEOREM 5.35. The inclusion M(E) C C*(E) has the extension property if and only if
no cycle in E has an entry.

Proor. To prove the ‘if” implication, assume that no cycle in E has an entry, fix a pure
state w on M(E), and let ¢ be an extension of w to C*(E). In order to prove uniqueness
of ¢, it suffices to show that the value of ¢ on a standard generator s,,s7% is independent
of the choice of ¢. By assumption, there are an x € E=* and a z € T such that w = w, ,
as in Lemma 5.12. On the one hand, by Fact 4.1 and the observation that w(p,) = 1
for all y < x, it follows that

Yy < x: ¢(s,85) = d(p, S, SpDy)- (5.39)
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On the other hand, using the results from [16, Section 3], it follows that there
is v < x such that p,/sws;py belongs to M(E). (In the language of [16], x must
be essentially aperiodic by our assumption on E.) Using (5.39), it follows that
¢(sas2) = w(pysasg p,), and the desired conclusion follows.

For the ‘only if” direction, we show that if there is a cycle v € E* that has an entry,
then we can construct a pure state on M(E) which has multiple extensions to states on
C*(E). Consider the path x = v* € E* formed by following v infinitely many times.
For each z € T, consider the state w, , € S(C*(E)) introduced in Definition 5.10, given
by

wyx(a) = <6x|ﬂpath(YZ(a))6x>-

As explained in Remark 5.11, since x ¢ E;, it follows that

1P °
(z,x)~(L,x) VzeT,

which, by Lemma 5.12, means that all restrictions w,|pmiE), z € T, coincide, so
they are all equal to the pure state & € /W(f) corresponding to the equivalence class
(1, x). = T x {x}. However, as states on C*(E), the functionals w, , z € T, cannot all
be equal, since for example we have w, (v) = z for all z € T. O

DeriniTioN 5.36. A graph E is tight if every cycle is entry-less.

Combining Theorem 5.35 with Corollary 4.6 and Theorem 5.33, we now obtain the
following statement.

Tueorem 5.37. If E is tight, then the correspondence (5.36) is an affine isomorphism
between the space T|"(E) and the tracial state space T(C*(E)).

Remark 5.38. Tight graphs are interesting in other respects: they are the only graphs
that yield finite, stably finite, quasi-diagonal, or AF-embeddable C*-algebras [26], as
well as the only graphs that yield graph algebras with stable rank one [10]. A graph
which yields a C*-algebra with Hausdorff spectrum must be tight, although this is not
sufficient [7, Example 10].

In the remainder of this paper we aim to parametrize the entire tracial state space
T(C*(E)) for arbitrary graphs by employing Theorem 5.37 in conjunction with certain
procedures that replace the graph E with a tight subgraph E’, in such a way that the
tracial state spaces T(C*(E)) and T(C*(E")) coincide. Since the subgraphs that are best
suited for analyzing how the trace spaces change are the canonical ones, the following
terminology is all we need.

Derinition 5.39. If E is a directed graph, a tightening of E is a canonical subgraph, that

is, one that can be presented as E \ H, for some saturated hereditary subset H C E% in

such a way that:

(o) E\ H is tight; and

() the canonical *-homomorphism py : C*(E) — C*(E \ H) implements a bijective
correspondence: T(C*(E \ H)) > T+ 1o py € T(C*(E)).
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Since py is always surjective, the correspondence from (B) is always injective, so the
only requirement in our definition is its surjectivity.

When it comes to parametrizing tracial states on graph C*-algebras, the most useful
and natural tightening is as follows.

ExampLE 5.40. Let E be a graph, and let C = Cg be the set of vertices which emit
entrances into cycles. The set C is obviously hereditary, but not saturated in general,
so we need to take its saturation C. As it turns out, E \ C constitutes a tightening of E.
First of all, since passing from E to E \ C clearly removes all entries into the cycles in
E, itis clear that E \ C is tight. Secondly, in order to justify the surjectivity of

T(C*(E\ C)) 3 7+ T 0 pyz € T(C*(E)),

all we must show is the fact that all tracial states on C*(E) vanish on ker pg, for
which it suffices to prove the inclusion H C N,, which in itself is a consequence of
Proposition 5.22.

The subgraph constructed in the above example is called the minimal tightening,
and is denoted by Ejgn. The canonical *-homomorphism will be denoted by pyign :
C*(E) — C*(Egign)- Combining this construction with Theorem 5.37, we now obtain
the following result.

TueorREM 5.41. For any directed graph E, the map
T (Eiight) 3 (8, ) ¥ T(g) © Piight € T(C*(E))
is an affine isomorphism.

The final result in this paper deals with a graph-theoretic characterization of
automatic gauge invariance for tracial states, which as pointed out in Remark 5.27
is equivalent to the surjectivity of the map (5.22). In [30], it is shown that this feature
is implied by condition (K), the condition that no vertex be the source of a unique
simple cycle. However, as Theorem 5.42 below shows, this is not necessary.

TueEOREM 5.42. For a directed graph E, the following conditions are equivalent:

(1) all tracial states on C*(E) are gauge invariant;
(i1)  the source of each cycle in E is essentially left infinite.

Proor. (i) = (ii): Suppose that A = ¢; ... e, is a cycle such that v = s(1) = r(ey) is not
essentially left infinite; we show how to construct a tracial state on C*(E) which is
not gauge invariant. Note that as v is not essentially infinite, in particular, it does not
emit an entrance to any cycle; therefore, none of the edges in A will be removed when
forming Ejign, and so we can assume that E is tight. (Since the canonical quotient
7 C*(E) — C*(Egne) is equivariant for the respective gauge actions, a non-gauge-
invariant tracial state on C*(E)ggn:) Will give rise to a non-gauge-invariant trace on
C*(E).)
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We say that a path u € E* is acyclic if it cannot be written as u = avg for a,8 € E*
and v a cycle. Let A denote the set of all acyclic paths with source v; note that any
two paths in A are incomparable, and so A must be finite because v is not essentially
left infinite. For w € E?, let g(w) = |JA N r~!(w)|; it is straightforward to verify that
g is a finite graph trace with g(v) = 1, which we can normalize to obtain g’ € T(E).
Note that the cyclic support of g’ is precisely r({ey, . .., e,}) (as v is not essentially left
infinite, it emits no entrances to cycles).

Now we can take any z € T \ U}y and let uy,,) = 6, foralli =1,...,m. The affiliated
tracial state 7, ) € T(C*(E)) will satisfy

Teg (b)) = g(s())2V # 0,

so that in particular 74, is not gauge invariant.

(i1) = (i): Suppose that the source of each cycle is essentially left infinite. Any finite
graph trace must vanish on an essentially left infinite vertex as in Proposition 5.22;
hence, if every source of every cycle is essentially left infinite, then there are no
vertices in the cyclic support of any graph trace, and so there are no taggings to
consider. Thus, every tracial state on C*(Eygn,) is gauge invariant, which shows that
every tracial state on C*(FE) is gauge invariant. O

REmARrks. Besides the minimal tightening FEjgene introduced in this paper, other
tightenings could naturally be considered. The same arguments as those used in
Example 5.40 can be used with C replaced by another hereditary subset H c E°, as
long as:

(A) the canonical subgraph E \ H is tight; and
(8) one has the inclusion H C N, for all g € T(E).

One way to ensure (A) is to take H to contain Cg. As far as condition (B) is concerned,
we could use Proposition 5.22 as a guide. In particular, we can consider the set L = Lg
of all essentially left infinite vertices. Since Lg is potentially much larger than Cg, the
resulting subgraph E \ Lg will potentially be considerably smaller than Ejigne (and thus
easier to analyze regarding graph traces).
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