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Abstract. The general relativistic perturbations of a uniformly rotating and
axisymmetric elastic deformable astronomical body in the first post-Newtonian
approximation of Einstein's general relativity is discussed in a co-rotating coor-
dinates. The main new results presented here are the post-Newtonian variations
of the energy and Euler equation, which at the Newtonian level of accuracy is so
called Jeffreys-Vicente equation and it playa fundamental role for the descrip-
tion of global geodynamics in the classical geophysics. Our results will be useful
to treat the relativistic nutation and precession of the Earth and other planets.

1. Introduction

Pioneering works by Damour, Soffel and Xu(1991) (DSX scheme) laid the foun-
dation for a modern theory of general relativistic celestial mechanics at the first
post-Newtonian approximation of Einstein's theory of gravity. However this
general relativistic DSX-formalism is not complete unless the time evolution of
the (mass- and current-) multipole moments of the various astronomical bodies
is completely specified(Xu, et al. 1997). In this paper we consider models of
perfectly elastic (no dissipation), cold deformable astronomical bodies. Such
models, at the Newtonian level, have been highly successful for the description
of seismic effects and the global motion of the Earth in space (precession, nuta-
tion, polar motion, changes in the length of the day et al.). We use Carter and
Quintana's formalism(1973) to discuss the perturbations of a uniformly rotat-
ing, stationary and axisymmetric astronomical body in the first post-Newtonian
approximation of Einstein's theory of gravity. To describe the rotating astro-
nomical body we profitably employ 'rotating coordinates' (err, Xa) tied to this
body, which has many advantages. The metric in the rotating system will be
introduced in section II. The relaxed unperturbed astronomical body, for which
the shear stresses vanish everywhere and it can be described by a perfect fluid
model, is defined in rotating coordinates. In Section III, as main new results
we present the perturbed local evolution equations, i.e., the perturbed energy
equation and the perturbed Euler equation, which at the Newtonian level of
accuracy is so called Jeffreys-Vicente(1957) equation. Newtonian J- V equation
is the basis to discuss the nutation and the precession of the Earth and other
planets. The extended PN J- V equation is the first time deduced by ourselves.
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2. The Unperturbed Metric in Rotating Coordinates

Accordance to the notation used in DSX scheme, the local coordinates is de-
noted by capital letters, i.e., by X" = (eT, X a ) . We introduce a rotating coor-
dinates X

a
= (eT, X

a
) , which satisfies the coordinate transformation T = T,

X a
= R abx», where Rab(T) is a time-dependent rotation matrix, dRab / dT =

€bcd ocR ad. From this we can easily derive the metric tensor in rotating coordi-
nates

(2)

(3)

(1)Goo

GOa

(
2W + V

2
)-exp - e2 + 0(5),

Va 4W
-;- - c/ + 0(5) ,

8abexp (2;) + 0(4) = 8ab (1 + 2;) + 0(4) ,

where we use the notation O(n) == O(e-n ) . W == W + 2~2V2 - 4~;Vb +i5-, W a ==
Rab (Wb - !VbW). Wand Wa are the scalar- and vector-potential that com-
pletely determine the metric to first post-Newtonian order in non rotating coor-
dinates.

3. The Perturbed Configuration

In order to describe small deviations from the relaxed ground state of our as-
tronomical body we will employ the formalism devised by Carter and Quintana.
The Eulerian variations of the energy-momentum tensor 6TJ.Lv can be taken as

6TJ.Lv = 6puJ.Luv + SpTJ.LV + (pe2 + p) 6TJ.Lv - pe2 hJ.Lv - 2Jl 8J.Lv , (4)

where uJ.L is 4-velocity, TJ.LV = gJ.LV + uJ.Luv/e
2 is the projection tensor, hJ.Lv = 69J.Lv

is the Eulerian variation of metric 9J.Lv, 8J.Lv is the shear tensor. For an unsheared
reference state 6sJ.Lv = sJ.Lv' The covariant displacement field, for obvious reasons,
will be defined in rotating coordinates. It is taken as ~a = (0,8a ) , since from
adjusting the initial time and gauge it is always possible to define ~o = O.
The covariant components are then given by ~a = (GOa8

a, Gba8a). To post-
Newtonian accuracy and first order in the displacement field we can derive the
relations between the displacement field and the shear tensor

(7)

Sab

800 0(4), SOa = 0(5), (5)

(a 1 ~ c 1 [2W ( (a 1 s c) V C c ~V) V(a ·b)S b) - -u b8 + - 8 b) - -u b8 + 8 ( + 8, 3 a ,c e2 '3 a ,c , a

-(a -c d 1 -c.c 1-a- b c 1 -c -d e]+ V €b)cd O 8 - 3 6abV 8 - 3V V 8 ,c - 36abV €cdeO S + 0(4) ,(6)

where sb == 8
b
r and two indices enclosed in round brackets imply symmetrization.

The Euleria~ variation of the pressure is

8p = -p*WG,bsb - Ke + ; (4We + VaVbSa,b) + 0(4) ,
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where the volume dilatation 8 is given by

b 1 (-bb -Cd-b - -)8 == e~ = S ,b + c2 V S + €bcdO S V + 3W,csc + 38W + 0(4) .
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(8)

The main results of this paper concern the perturbed local evolution equations

fJ (1WIL;V) = 0 in the rotating coordinate system. Taking p, = 0 and p, = a we
obtain the perturbed energy balance equation and the perturbed Euler equation
as

8p

o

-\7. (ps) - c~ (pyasa + (psa),a + 2W,asap+ 3pfJW) + 0(4)

-P,asa - p*8 + 0(4), (9)

* (1 2WG) (.. 2 'Ob.c) *8W * b W *(~W )p +~ Sa+ €abc~G S + p - G,a - P S,a G,b - PUG ,a

b- {3 1 { [-a -b b - b-a
-p*S W G,ba - (",,88a{3 + 2j.,Ls a);{3 + c2 p* V (V S ) + W G,bS V

- 2ybsbWG,a + (fJW),Tya + 8sbW[b,a] - 4( fJWa),T]

+1\; (ewG,a - eva) + (1\;(4We + ybyCs~c)) ,a} + 0(4), (10)

where p* == p + p/c2 and W G == W + V
2
/ 2. Note that the part containing the

shear-stress tensor reads explicitly

{3 1{ - -c-b -b
(2j.,Ls a);{3 = (2j.,LSba),b + c2 -(4j.,LW Sba + 2j.,LscaV V ),b + (2j.,LSab),rV

+2p,(2W,csac + facbocsbdyd)} . (11)

This is the desired dynamical equation for the displacement field. It is valid up
to terms of 0(4) and second order in the displacement field itself.
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