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Abstract

Conjecturally, the only real algebraic numbers with bounded partial quotients in their regular continued
fraction expansion are rationals and quadratic irrationals. We show that the corresponding statement is
not true for complex algebraic numbers in a very strong sense, by constructing, for every even degree d,
algebraic numbers of degree d that have bounded complex partial quotients in their Hurwitz continued
fraction expansion. The Hurwitz expansion is the complex generalization of the nearest integer continued
fraction for real numbers. In the case of real numbers the boundedness of regular and nearest integer
partial quotients is equivalent.
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1. Introduction

Real numbers admit regular continued fraction expansions that are unique except for
an ambiguity in the ultimate partial fraction of rational numbers. The same is true for
nearest integer continued fraction expansions. The nearest integer expansion is easily
obtained from the regular expansion, by applying a certain modification for partial
quotients that equal 1, as a result of which some partial quotients are incremented by
1, and some minus signs are introduced. As a consequence, for questions concerning
the boundedness of partial quotients of real numbers, the behaviour of regular and
nearest integer continued fractions is alike.

In both cases, finite expansions occur precisely for the rational numbers, and
ultimately periodic expansions occur precisely for quadratic irrational numbers. Not
much is known about the partial quotients for other algebraic irrationalities. There
exist transcendental numbers with bounded partial quotients, and also transcendental
numbers with unbounded partial quotients.
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The frequency of partial quotients for almost all real numbers is well understood,
and the usual behaviour is that arbitrarily large partial quotients do occur very
occasionally. More precisely, for almost all real numbers (in the Lebesgue sense),
partial quotient k appears with frequency log2(1 + 1/k(k + 2)), according to the
theorem of Gauss, Kuzmin and Levy. By a theorem of Borel and Bernstein real
numbers with bounded partial quotients have measure 0, and this implies that an >
n log n infinitely often for almost all x.

On the other hand, it is easy to construct real numbers with bounded partial
quotients (and there are uncountably many), but although we do not know very
much about their partial quotients, it seems impossible to construct algebraic numbers
this way while avoiding finite expansions (rational numbers) and ultimately periodic
expansions (quadratic irrationals). For all this, and much more, see [5].

C 1.1. The only real algebraic numbers for which the partial quotients in
their regular or nearest integer continued fraction expansion are bounded, are rational
numbers and quadratic irrational numbers.

If true, this means that nonperiodic expansions using bounded partial quotients only
occur for transcendental numbers.

In this paper we consider the corresponding question for complex continued
fractions. The reason we insisted on mentioning the nearest integer expansion for
the real case is that it admits an immediate generalization to the complex case, as first
studied by Hurwitz [2]. It is much harder to generalize the regular continued fraction
to the complex case; see also the next section.

Surprisingly, Hensley [1] found examples of complex numbers that are algebraic
of degree four over Q(i) and have bounded complex partial quotients (in the Hurwitz
expansion). This paper attempts to collect and tidy up the examples and proofs of
Hensley, and to generalize them to obtain the following theorem.

T 1.2. For every even integer d there exist algebraic elements α ∈ C \ R of
degree d over Q for which the Hurwitz continued fraction expansion has bounded
partial quotients.

The numbers we construct all lie on certain circles in the complex plane; the only
real numbers on these circles have degree two over Q and, although they too have
bounded partial quotients, they are of no help in refuting the above conjecture.

On the other hand, it will also be easy to construct transcendental numbers on the
same circles.

2. Hurwitz continued fractions

For a real number x, the nearest integer continued fraction expansion

x = a0 +
1

a1 +
1

a2 +
1
. . .
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can be found by applying the operator

xk+1 =N xk =
1
xk
− ak =

1
xk
−

⌊ 1
xk

⌉
,

for k ≥ 0, where a0 = bxe and x0 = x − a0. Here ak = b1/xke is an integer, with |ak| ≥ 2
for k ≥ 1, obtained by rounding to the nearest integer, and − 1

2 ≤ xk ≤
1
2 for k ≥ 0. The

continued fraction stops, and becomes finite, if and only if xk = 0 for some k ≥ 0, which
is the case if and only if x is rational. Note that we allow negative partial quotients
ak here, but the ‘numerators’ are all 1; alternatively, one often chooses ak positive but
allows numerators ±1. Also note that this continued fraction operator only differs from
the regular one in the way of rounding: one obtains the regular operator T by always
rounding down, ak = b1/xkc.

The Hurwitz continued fraction operator H is obtained by a straightforward
generalization to complex arguments. Let z be a complex number, and define

zk+1 =Hzk =
1
zk
− αk =

1
zk
−

⌊ 1
zk

⌉
,

for k ≥ 0, with α0 = bze ∈ Z[i] and z0 = z − α0. Now bze denotes rounding to the nearest
element of the ring of Gaussian integers, Z[i], with respect to the ordinary ‘Euclidean’
distance in the complex plane. Then obviously |αk| ≥ 2 for k ≥ 1, as it is easy to see
that zk lies in the symmetric ‘unit box’

B = {z ∈ C | − 1
2 ≤ Im w, Re w ≤ 1

2 }.

Again, one takes H0 = 0, and the expansion becomes finite for elements of Q(i), but
infinite otherwise:

z = α0 +
1

α1 +
1

α2 +
1
. . .

,

which is an expansion for z in Q(i) in the sense that always

α0 +
1

α1 +
1

α2 +
1

. . .
1
αn

−→ z for n→∞

and the finite continued fraction on the left is an element rn/sn ∈ Q(i).
Also, the behaviour on quadratic irrationalities is analogous: the nearest integer

continued fraction (the Hurwitz continued fraction) of an element x ∈ R \ Q (an
element z ∈ C \ Q[i]) is ultimately periodic if and only if x is a quadratic irrationality
over Q (z is quadratic irrational over Q[i]).
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So, the Hurwitz operator very nicely generalizes the nearest integer case to the
complex field. For the regular case there is no such straightforward generalization, as
the unit square of complex numbers with both real and imaginary parts between 0 and
1 does not lie completely within the unit circle. The best attempt, in some sense, that
we know of, is the rather cumbersome construction by Schmidt [4].

3. Generalized circles

In the proof of the main theorem, certain circles in the complex plane, and their
images under the Hurwitz continued fraction operator, will play an important role. We
fix the notation and list the relevant properties here.

D 3.1. A generalized circle, or g-circle for short, is the set of complex
solutions to an equation of the form

Aww̄ + Bw + B̄w̄ + D = 0

in the complex variable w (where ¯ denotes complex conjugation), for real coefficients
A, D and a complex coefficient B satisfying BB̄ − AD ≥ 0. We will denote a g-circle
by the matrix (

A B̄
B D

)
,

as

Aww̄ + Bw + B̄w̄ + D = (w̄ 1)
(
A B̄
B D

) (
w
1

)
.

The motivation for this definition is that the set of solutions in the complex
w = x + yi plane form an ordinary circle with centre −B̄/A and radius

√
|B|2 − AD/|A|

when A , 0, whereas for A = 0 they form a line ax − by = −D/2, with a = Re B and
b = Im B; in any case it passes through the origin precisely when D = 0.

The map w 7→ 1/w maps g-circles to g-circles. Indeed, the image of C =
(

A B̄
B D

)
under

this involution is C =
(D B

B̄ A

)
. Of course any translation of the complex plane also maps

g-circles to g-circles; as a consequence, the composed map Hw = 1/w − α maps g-
circle C =

(
A B̄
B D

)
to another g-circleHC given by(

0 1
1 ᾱ

) (
A B̄
B D

) (
0 1
1 α

)
=

(
D B + αD

B̄ + ᾱD A + αB̄ + ᾱB + αᾱD

)
.

Note that H leaves the determinant AD − BB̄ of the matrix corresponding to C
invariant.

Let z be a complex number, which we will assume to be irrational to avoid
notational complications arising from terminating continued fractions, and let α0 = bze
and z0 = z − α0. Also, let the circle C have centre −α0 and radius |z|. This is given by

‖w + α0‖ = (w + α0)(w + α0) = |z|2,
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so as a g-circle this is

C0 =

(
1 α0

ᾱ0 |α0|
2 − |z|2

)
.

For n ≥ 1 define αn = b1/zn−1e and zn = 1/zn−1 − αn. Then [α0, α1, . . .] is the Hurwitz
continued fraction expansion of z. By definition, z0 lies on g-circle C0, and also lies in
the unit box B.

If we applyH1 : w 7→ 1/w − α1 to z0 we obtain z1 ∈ B, while applyingH1 to C0 we
obtain a g-circle C1 as above, with z1 lying on it. Repeating this, we find g-circles
C0, C1, C2, . . . , with corresponding matrices

(A j B̄ j

B j D j

)
for j ≥ 0, and complex numbers

z j ∈ C j ∩ B. Moreover, A jD j − B jB̄ j = A0D0 − B0B̄0 = −|z|2 for j ≥ 1. We call the C j

the sequence of g-circles corresponding to the Hurwitz expansion z = [α0, α1, . . .].

L 3.2. If |z|2 = n ∈ Z then, for the g-circles C j =
(A j B̄ j

B j D j

)
corresponding to the

Hurwitz continued fraction expansion of z, we have A j, D j ∈ Z, B j ∈ Z[i], and B jB̄ j −

A jD j = n.

P. The statement is true for j = 0, as

C0 =

(
1 α0

ᾱ0 |α0|
2 − |z|2

)
with α0 ∈ Z[i] the nearest Gaussian integer to z. For j > 0 it then follows inductively
from the action ofH . �

4. Main theorem

T 4.1. Let z be a complex number. If n = |z|2 ∈ Z>0 then the sequence
C0, C1, C2, . . . of g-circles corresponding to the Hurwitz expansion of z consists of
finitely many different g-circles.

P. According to Lemma 3.2 the matrix entries for the g-circles C j corresponding
to the Hurwitz expansion of z satisfy: A j, D j ∈ Z and B j ∈ Z[i], while also A jD j −

B jB̄ j = −|z|2 = −n. The finiteness of the number of different g-circles among the C j

will follow from the observation that there are only finitely many solutions to this
equation with the additional property that the g-circle intersects the unit box B, a
condition imposed by the fact that the remainder z j ∈ C j ∩ B.

For the case A j = 0 this is clear: the g-circle is then a line r jx − i jy = −D j/2, where
r j = Re B j and i j = Im B j are rational integers satisfying r2

j + i2j = n; this admits only
finitely many solutions for B j, and for the line to intersect the unit box one needs
D j ≤ |r j| + |i j|.

For the case A j , 0 we proceed by induction on j, to show that the radius R j satisfies
R2

j > 1/8 for all j. For j = 0 this holds, as the g-circle C0 has radius R0 =
√

n. The
induction hypothesis (which will only be used in the final subcase below) is that if
C j−1 is a proper circle, then its radius satisfies R2

j−1 > 1/8.
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Suppose that g-circle C j happens to pass through the origin, for some j ≥ 1; that
means that D j = 0. This implies that g-circle C j−1 is a line not passing through the
origin; but it has to intersect the unit box, so the point P on it that is closest to the
origin is at distance less than 1/

√
2 from the origin. But under H the point P of C j−1

gets mapped to the point diametrically opposed from the origin on C j and will be at
distance at least

√
2. Hence the square R2

j of the radius of C j will be at least 1/2.
In the remaining cases, A j and D j are nonzero integers, and so are A j−1 and D j−1.
First suppose that A j−1 and D j−1 have opposite signs. This means that the origin is

in interior point of the g-circle C j−1. Also, z j−1 ∈ C j−1 ∩ B is at distance at most 1/
√

2
from the origin. The image C of C j−1 underH0 is a g-circle that also has the origin as
an interior point, that has the same radius as C j, and that contains 1/z j−1, which is at
distance at least

√
2 from the origin. This implies that the radius of C j is at least

√
2/2,

so R2
j ≥ 1/2.

Finally, suppose that A j−1 and D j−1 have the same sign. In this case the origin is
an exterior point of both C j−1 and of C j. However, the point P on C j−1 nearest to the
origin is at distance c < 1/

√
2 from the origin, as there is at least one point in C j−1 ∩ B.

The diametrically opposed point Q on C j−1 is at distance c + d from the origin, with d
the diameter of C j−1. Now using the induction hypothesis that d > 1/

√
2, we infer that

the diameter of the image of C j−1 underH0, and hence C j, has diameter

1
c
−

1
c + d

=
d

c(c + d)
>

1
√

2

c(c + 1
√

2
)
>

c

c(c + 1
√

2
)
>

1
1
√

2
+ 1
√

2

=
1
√

2
,

and therefore R2
j > 1/8.

We conclude that in any case R2
j > 1/8.

As
R2

j = (B jB̄ j − A jD j)/A2
j = n/A2

j ,

this leaves only finitely many possibilities for the integer A j. For C j to intersect the
unit box, its center cannot be too far from the origin:∣∣∣∣∣−B̄ j

A j

∣∣∣∣∣ ≤ 1

2
√

2
+

√
n
|A j|

,

and this leaves only finitely many possibilities for B j, for each A j. Since D j is
completely determined by A j and B j, the proof is complete. �

C 4.2. Let z ∈ C be such that its norm n = |z|2 ∈ Z>0 is not the sum of two
squares of integers. Then the partial quotients in the Hurwitz continued fraction of z
are bounded.

P. According to the theorem, the remainders zi of the Hurwitz continued fraction
operator all lie on a finite number of different g-circles. If such a g-circle C j passes
through the origin, then the entry D j of its matrix equals 0, and B j is a Gaussian integer
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F 1. The g-circles (intersected with the unit box B) that arise in the first 40 000 steps of the Hurwitz
continued fraction expansion of

√
2 + i
√

5.

that satisfies B jB̄ j = n by Lemma 3.2. This is a contradiction, as n is not the sum of two
integer squares. Therefore none of the g-circles passes through the origin. This means
that there exists a positive constant C (the shortest distance from any of the g-circles
to the origin) such that |z j| ≥C, and then |α j+1| = b1/z je ≤ d1/Ce. �

As an immediate consequence we have a proof of Theorem 1.2: start with any
positive integer n ≡ 3 mod 4, and construct elements of norm n; it is easy to construct

algebraic numbers of any even degree 2m this way, for example using m
√

2 + i
√

n − m
√

4.
We will carry this out explicitly for n = 7 in the next section.

5. Examples

Corollary 4.2 allows us to construct examples of various types. All examples in this
section use the set of g-circles arising from complex numbers of norm n = 7. We have
not attempted to determine all g-circles in this case by a straightforward computation,
but it is very likely that the complete set consists of the 72 g-circles of which the arcs
intersecting the unit box are shown in Figure 1.

More generally, we intend to consider the relation with the reduction theory of
complex binary quadratic forms of given determinant [3] on another occasion.

We begin with the type of example that Hensley found [1].

E 5.1. z =
√

2 + i
√

5.
The Hurwitz continued fraction expansion of z =

√
2 + i
√

5 reads

z = [2i + 1, −i + 2, i − 5, −i − 2, −4, i − 2, −4, −2, i − 1, −2i, . . .]

where the dots do not indicate an obvious continuation.
Figure 1 shows the g-circles (or rather, their intersection with the unit box B) that

arise in the first 40 000 steps. There are 72 of them; it is very likely that these form the
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10

10

F 2. The first 40 000 partial quotients in the Hurwitz continued fraction expansion of
√

2 + i
√

5.

F 3. The first 40 000 remainders of the Hurwitz continued fraction expansion of
√

2 + i
√

5.

complete set of g-circles, as the same set turns up in the examples below as well, and
in each case all 72 circles occur already after just a couple of thousand steps.

Figure 2 shows the 118 different partial quotients among the first 40 000.

When the computations are extended (to 50 000 partial quotients) the obvious
omissions in the picture, like 6 + 2i, −6 + 2i, do appear, with the exception of 2 − 6i.
The frequency of the partial quotients in the first 50 000 steps varies from around 2100
in 50 000 (for the elements of norm 5) to 18 in 50 000 (for the elements of norm 27),
and 1 in 50 000 (for the elements of norm 40). This should be compared (see also [1])
with the Gauss–Kuzmin–Levy result in the real regular case.

Also, the frequency with which the various g-circles are visited differs significantly;
this is graphically depicted in Figure 3, in which the first 40 000 remainders are plotted.
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10

10

F 4. The first 40 000 partial quotients in the Hurwitz continued fraction expansion of 3
√

2 + i
√

7 − 3
√

4.

F 5. The first 40 000 remainders of the Hurwitz continued fraction expansion of 3
√

2 + i
√

7 − 3
√

4.

Next consider the family of examples of the form wm =
m
√

2 + i
√

7 − m
√

4. For odd
m, the element wm is algebraic of degree 2m and norm 7 over Q. By Corollary 4.2 this
gives a proof for Theorem 1.2.

E 5.2. 3
√

2 + i
√

7 − 3
√

4.
The pictures show the first 40 000 partial quotients and the first 40 000 g-circles

that occur in this case. The same set of g-circles occurs as in the previous example.
In this case both 6 + 2i and −2 − 6i are still missing after 50 000 steps. The

frequency distribution here is similar to that in the previous case, but there seem to
be some differences; for example, the six elements of norm 40 that do occur in the
first 50 000 steps, do so 6, 4, 3, 2, 2, 1 times, while the seven elements in the previous
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10

10

F 6. The first 40 000 partial quotients in the Hurwitz continued fraction expansion of
√
π + i
√

7 − π.

F 7. The first 40 000 remainders of the Hurwitz continued fraction expansion of
√
π + i
√

7 − π.

example each occurred exactly once. It would be interesting to test the significance of
these differences seriously.

Finally, we give a transcendental example on the same set of g-circles.

E 5.3.
√
π + i
√

7 − π.
The plot of the g-circles in this case is so similar to the previous cases that we do

not reproduce it here. Only 2 − 6i does not show up among the first 50 000 partial
quotients.

6. Some additional observations

It seems that in the bounded case, the arcs in which the g-circles intersect the unit
box always get densely filled. This does not seem to be true in the unbounded case.
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F 8. The g-circles (intersected with the unit box B) that arise in the first 40 000 steps of the Hurwitz
continued fraction expansion of

√
2 + i
√

3.

100

100

F 9. The first 40 000 partial quotients in the Hurwitz continued fraction expansion of
√

2 + i
√

3.

E 6.1.
√

2 + i
√

3.
Note that the norm, 5, in this case is the sum of two integral squares. Figures 8–10

nicely illustrate the behaviour in this case.
There are g-circles through the origin, and the partial quotients are the union of a

bounded set (coming from g-circles avoiding the origin) and lattice points near the
finite number (4 in this case) of rays corresponding to g-circles that pass through the
origin.

Here parts of the g-circle arcs inside the unit box do not occur.

Also, we conjecture that the following converse of Corollary 4.2 holds.

C 6.2. Let z ∈ C be such that its norm n = |z|2 ∈ Z>0 is the sum of two squares
of integers. Then the partial quotients in the Hurwitz continued fraction of z are
unbounded, unless z is in Q(i) or quadratic over Q(i).
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F 10. The first 40 000 remainders of the Hurwitz continued fraction expansion of
√

2 + i
√

3.

For complex numbers for which the partial quotients form arbitrary subsets of the
very symmetric finite sets in our examples it is likely that questions about algebraicity
will be difficult to answer.
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