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SOME PROPERTIES OF ISOLATING BLOCKS

FOR PLANAR SYSTEMS

SHU-XIANG YU

Abstract. In this paper, some qualitative properties of trajectories inside an
isolating block for planar differential equations are obtained.

§1. Introduction

Consider the differential system defined in the plane

dx
dt

= X(x, y),

dy
dt

= Y (x, y).
(1.1)

Suppose X,Y ∈ C1. Let the vector field V ≡ (X,Y ) define a flow f(p, t).

Let B ⊂ R2 be the closure of a bounded and connected open set with

the boundary ∂B. In general, B is assumed to be multiply connected. Let

L1, · · · , Ln denote its boundary components, where Li ∩ Lj = φ for i 6= j,

and L1 the external boundary. Each of them is a smooth simple closed

curve. Let intB denote the interior of B. We define three subsets b+, b− and

τ as follows:

b+ = {p ∈ ∂B|∃ε > 0 with f(p, (−ε, 0)) ∩ B = φ},

b− = {p ∈ ∂B|∃ε > 0 with f(p, (0, ε)) ∩ B = φ},

τ = {p ∈ ∂B|V is tangent to B at p}.

Definition 1.1. ([1]) If b+ ∩ b− = τ and b+ ∪ b− = ∂B, then B is

called an isolating block for the flow defined by (1.1).

It follows from the above definition that if B is an isolating block, then

all the tangencies to B must be external.
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Definition 1.2. Suppose B ⊂ R2 is an isolating block for the flow

defined by (1.1). If a trajectory Γ1 of (1.1) enters B at M1 (a strict entrance

point) of the external boundary L1 of B and then leaves B at M2 (a strict

exit point) of L1 so that intB is divided into two disconnected regions B1

and B2, then Γ1 is called a cut trajectory of B.

Conley and Easton in [2] have studied generally properties of the isolat-

ing block. A special property of planar isolating blocks and an application

to the existence of connecting orbits have discussed in [3] (See Lemma 1 of

[3]). In the present paper, we shall discuss qualitative properties of planar

flows inside the isolating block and give some new results.

§2. The main results

Suppose B is an isolating block for flow defined by (1.1) and a critical

point Q ∈ intB. Our main aim is to study the existence of elliptic regions

of Q (See [4, p.295] for the definition). Therefore, we consider a bounded

sectorial region D contained in B with boundary consisting of the criti-

cal point Q, two semi-trajectory arcs f(M1, R
+), f(M2, R

−) and the closed

subarc M1mM2 of ∂B from M1 to M2, and such that when t → +∞ (or

−∞), f(M1, t) (or f(M2, t)) tends to Q, and M1 ∈ b+,M2 ∈ b−. Such a

sectorial region is said to be adjacent to ∂B.

Definition 2.1. Suppose D is a bounded sectorial region adjacent to

∂B, as stated above. D is said to be inadmissible if there are a trajectory

Γ ⊂ D which tends to Q as t → ±∞ and a circle ρ of radius r small

enough with the centre Q such that the interior of each of the curvilinear

triangles Qm1γ1 and Qm2γ2 is a parabolic sector of Q ([5,p.164]) in ρ,

where it is assumed that ρ intersects QM1,Γ and QM2 at m1, γ1, γ2 and

m2, respectively (Fig.1).

Theorem 2.1. Let B be an isolating block for flow defined by (1.1)

and a critical point Q ∈ intB. Let D be an inadmissible sectorial region

adjacent to ∂B and let D do not contain any internal boundary components

of ∂B. Let D1 = D\G, where G is the region enclosed by Γ and Q. Then

there must be at least one critical point of (1.1) in D1 (Fig.1).
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Proof. Since M1 ∈ b+ and M2 ∈ b−, there must be at least one tan-

gency to B on the segmental arc M1mM2. Let A1, A2, · · · , A2n−1 be the

tangencies to be arranged in numerical order on the arc M1mM2. Then the

points on the segmental arcs M1A1, A2A3, · · · , A2n−2A2n−1 (In what fol-

lows, we shall denote these arcs by 1+, 2+, · · · , n+ respectively) of M1mM2

are the strict entrance points of B, while the points on the segmental arcs

A1A2, A3A4, · · · , A2n−1M2 (We shall denote them by 1−, 2−, · · · , n− respec-

tively) of M1mM2 are the strict exit points of B ([5, p.37]). Take arbitrarily

an integer k such that 1 < k < n. Consider three consecutive tangencies

A2k, A2k−1, A2k−2, and four relevant segmental arcs (k + 1)+, k−, k+, (k −

1)−. It is easy to see that the positive semi-trajectory originating from every

point in a small neighbourhood of A2k−1 on k+ must leave D1 from some

point on the segmental arc k−, while the positive semi-trajectory originat-

ing from every point in a small neighbourhood of A2k−2 on k+ must leave

D1 from some point on the segmental arc (k − 1)−. Therefore, there must

be a nonempty set β+

k ⊂ k+ such that for each point x ∈ β+

k , the positive

semi-trajectory f(x,R+) leaves D1 neither from a point on k− nor from a

point on (k − 1)− for increasing time. Similarly, there must be a nonempty

set β−

k ⊂ k− such that for each point x ∈ β−

k , the negative semi-trajectory

f(x,R−) leaves D1 neither from a point on k+ nor from a point on (k+1)+

for all t < 0. In other words, each of these semi-trajectories can not leave

D1 from a point on the adjacent segmental arcs. Consider case k = 1. It is

easy to see that if the positive semi-trajectory f(x,R+) originating from a
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point x ∈ 1+ tends to Q in D as t → +∞, then it must enter the parabolic

sector Qm1γ1(see Fig.1). So, from the continuity (the solutions depend con-

tinuously on initial conditions) it follows that the positive semi-trajectory

originating from every point in a small neighbourhood of x on 1+ also tends

to Q in D as t → +∞. The same argument implies that the positive semi-

trajectory through a point x of M1A1 sufficiently close to M1 must tend

to Q in D as t → +∞. Thus there is a maximal open segmental arc M1h

of M1A1 such that for every point x ∈ M1h, the positive semi-trajectory

f(x,R+) tends to Q in D as t → +∞, while the positive semi-trajectory

f(h,R+) does not tend to Q in D as t → +∞. On the other hand, the same

argument used in case 1 < k < n implies that the positive semi-trajectory

originating from every point in a small neighbourhood of A1 on 1+ must

leave D1 from some point on the segmental arc 1−. Moreover, the set of

such points is an open set on the segmental arc M1A1. This implies that

h 6= A1, and the positive semi-trajectory f(h,R+) can neither tend to Q in

D nor leave D1 from a point on 1− for increasing time. Hence, for k = 1, we

have proved that there is a nonempty set β+

1
⊂ 1+ such that for each point

x ∈ β+
1

, the positive semi-trajectory f(x,R+) can neither tend to Q in D

nor leave D1 from a point on 1− for increasing time. For k = n, a similar

conclusion holds.

Choose arbitrarily n points a+

i ∈ β+

i (i = 1, 2, · · · , n). We now can prove

that there is at least one among the positive semi-trajectories {f(a+

i , R+)|i

= 1, 2, · · · , n} such that it stays in D1 for all t > 0 and does not tend

to Q as t → +∞. The following proof proceeds by reduction to absurdity.

Suppose that each of the semi-trajectories {f(a+

i , R+)|i = 1, 2, · · · , n} either

leaves D1 from some point on the segmental arc M1mM2 for increasing

time or tends to Q as t → +∞. Thus, since the positive semi-trajectory

f(a+
1
, R+) can not tend to Q(note a+

1
∈ β+

1
), it must leave D1 from a point

on M1mM2 for increasing time. Let it leave D1 from some point on k−,

where 1 < k ≤ n. But this means that each of {f(a+

i , R+)|i = 2, · · · , k}

can not tend to Q as t → +∞ for, otherwise it must meet f(a+
1
, R+) at

a point for increasing time and which contradicts uniqueness of solutions.

Therefore, each of {f(a+

i , R+)|i = 2, · · · , k} must leave D1 from a point

on M1mM2 for increasing time. However, we note that the semi-trajectory

f(a+
2
, R+) can not leave D1 from a point on 1− or 2− because a+

2
∈ β+

2
,

hence, it can only leave D1 from a point on i−(i ≥ 3). This implies that

the positive semi-trajectory f(a+
3
, R+) can not leave D1 from a point on

1− for increasing time for, otherwise it must meet f(a+

2
, R+) and which
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contradicts uniqueness of solutions, hence, it can only leave D1 from a point

on i−(i ≥ 4). Further, this also implies that the semi-trajectory f(a+
4
, R+)

can not leave D1 from a point on 2−, hence it can only leave D1 from a point

on i−(i ≥ 5) for increasing time. Repeating an argument used above, one

implies that the semi-trajectory f(a+

i , R+) can only leave D1 from a point

on j−(k ≥ j ≥ i + 1) (i.e., on the segmental arc with greater subscript).

From this, it follows that the semi-trajectory f(a+

k
, R+) can not leave D1

from a point on M1mM2 for increasing time. Moreover, as stated above, it

can not also tend to Q as t → +∞, therefore, this contradicts the preceding

hypothesis. Thus, there must be a positive semi-trajectory γ+ such that it

can neither tend to Q nor leave D1 from a point on M1mM2 for increasing

time. By the Poincaré-Bendixson theory of planar systems, the ω-limit set

of γ+ must contain critical points or closed orbits. Further, since a closed

orbit contains at least one critical point of (1.1) in its interior, this implies

that there must be at least one critical point of (1.1) in D1. Hence Theorem

2.1 is proved.

Corollary 1. If the sectorial region D in Theorem 2.1 contains the

internal boundary components Li1 , · · · , Lik of ∂B, then the conclusion of

Theorem 2.1 still holds provided we set D1 = D\(G∪Gi1 ∪ · · ·∪Gik), where

Gi1 , · · · , Gik are the regions enclosed by Li1 , · · · , Lik respectively.

Proof of Corollary 1. We know from the proof of Theorem 2.1 that

there is at least one among the positive semi-trajectories {f(a+

i , R+)|i =

1, 2, · · · , n}, say f(a+

j , R+), such that it stays in D\G for all t > 0 and does

not tend to Q as t → +∞, where a+

j ∈ β+

j ⊂ j+, A2j−1 and A2j−2 are two

tangencies close to a+

j .

Suppose f(a+

j , R+) intersects Li0 at bj, where Li0 is one of the internal

boundary components {Li1 , · · · , Lik} and bj is a strict exit point of B. Con-

sider the segmental arc A2j−2a
+

j A2j−1 and its segmental subarc a+

j A2j−1.

Let ã = {x ∈ A2j−2a
+

j A2j−1| the point where f(x,R+) intersects Li0 is a

strict exit point of B}. From the theorem of continuity (the solutions de-

pend continuously on initial conditions) it follows that ã is an open set on

the segmental arc A2j−2a
+

j A2j−1. Since A2j−1 is a tangency to B, the posi-

tive semi-trajectory originating from every point in a small neighbourhood

of A2j−1 on a+

j A2j−1 must leave B from some point on the segmental arc

M1mM2. Hence there must be at least one boundary point of the set ã on

a+

j A2j−1. Let a0 be a boundary point close to a+

j . Then either there is a
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point p ∈ f(a0, R
+) such that p is a tangency to Li0 or f(a0, R

+) tends to

a critical point of (1.1) in D1 as t → +∞. In the former case, it follows that

there is an internal tangency to B. But this is impossible because B is an

isolating block. In the latter case, it follows that Corollary 1 holds.

If f(a+

j , R+) does not meet any one of the internal boundary com-

ponents {Li1 , · · · , Lik}, then by the Poincaré-Bendixson theory of planar

systems it follows that there must be at least one critical point of (1.1) in

D1, where D1 = D\(G ∪ Gi1 ∪ · · · ∪ Gik). Corollary 1 is proved.

Remark 1. Suppose Q is a unique critical point of (1.1) in B. Then,

Theorem 2.1 means that the fact that there are no internal tangencies to

B can imply that there are no certain type of elliptic regions of the critical

point Q.

Using exactly the same argument used in the proof of Theorem 2.1, we

can prove the following theorem. We suppose that the symbols a±i , i±, β±

i

have the same meanings as in Theorem 2.1.

Theorem 2.2. Let B be an isolating block for flow defined by (1.1). Let

B1 be the region enclosed by the trajectory arc M1M2 of the cut trajectory

Γ1 of B and the segmental arc M1mM2 of the external boundary L1 of B

(Fig.2). Let A1, A2, · · · , A2n−1 be the tangencies to be arranged in numerical

order on the arc M1mM2. If n ≥ 2, then there must be a point a+

i ∈ i+ and

a point a−i ∈ i− such that the semi-trajectories f(a+

i , R+) and f(a−i , R−)

stay in B1 for all t > 0 and t < 0 respectively (i = 1, 2, · · · , n).

Proof. First we note, by Definition 1.2, it follows that the positive

semi-trajectory originating from every point in a small neighbourhood of

M1 on 1+ must leave B1 from a point on n− for increasing time. For k = n, a

similar conclusion holds. Thus, one can consider 1+ and n− as two adjacent

segmental arcs.

We proceed by induction. First suppose n = 2. That is, there are three

tangencies A1, A2, A3 on the arc M1mM2. It is easy to see that the positive

(or negative) semi-trajectory originating from any point on β+

i (or β−

i )

(i = 1, 2) stays in B1 for all t > 0 (or t < 0). So, when n = 2, Theorem 2.2

holds.

Let k > 2 be an arbitrary positive integer. Let us now make the induc-

tional hypothesis that Theorem 2.2 is true for 2 ≤ n ≤ k − 1 (i.e., for all

those odd numbers which are not greater than 2k − 3). We need to show

that it is also true for n = k (i.e., for the odd number 2k − 1).
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In fact, from n = k − 1 to n = k, two tangencies A2k−2 and A2k−1

are added to the arc M1mM2. The following proof proceeds by reduction

to absurdity. Suppose that there is some segmental arc j+ such that for

every point x ∈ j+, the positive semi-trajectory f(x,R+) leaves B1 from

a point on M1mM2 for increasing time. Take arbitrarily a point a+

j ∈ β+

j ,

then, the positive semi-trajectory f(a+

j , R+) must leave B1 from the point

a′l on l− for increasing time. The trajectory arc a+

j a′l divides the segmental

arc M1mM2 into three segmental arcs: The segmental arcs a+

j a′l, M1a
+

j and

M2a
′

l (Fig.2). From the fact that the semi-trajectory f(a+

j , R+) leaves B1

neither from a point on the adjacent segmental arcs nor from a point on

any entrance segmental arc i+ for increasing time, it follows that there are

at least three tangencies on the segmental arc a+

j a′l of M1mM2, while the

amount of tangencies on the arcs M1a
+

j and M2a
′

l of M1mM2 is not less than

2. Thus the number of tangencies on the arc a+

j a′l of M1mM2 is not greater

than 2k−1−2 = 2k−3. Furthermore, since a+

j is a strict entrance point of B1

and a′l is a strict exit point of B1, the trajectory arc a+

j a′l possesses the same

property as the arc M1M2 of Γ1. By the inductional hypothesis it follows

that there must be a point q on the arc a+

j A2j−1 of M1mM2 such that the

positive semi-trajectory f(q,R+) stays for all t > 0 in the region enclosed

by the segmental arc a+

j a′l of M1mM2 and the trajectory arc a+

j a′l, hence

in B1. But since a+

j A2j−1 ⊂ j+, this contradicts the preceding hypothesis.

Hence we have proved that for each i ∈ {1, 2, · · · , n}, there must be a point

a+

i ∈ i+ such that f(a+

i , R+) stays in B1 for all t > 0. Similarly, we can

prove that for each i ∈ {1, 2, · · · , n}, there must be a point a−i ∈ i− such

that f(a−i , R−) stays in B1 for all t < 0. Thus Theorem 2.2 is proved.

A1

A2j−1

A2l−1

A2n−1 a+

j

a′l

B1

Γ1

m

M1M2

(Figure 2)
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