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Large language models (LLMs) are neural networks that use billions
of parameters pre-trained on large-scale language corpora.1

Emergent capabilities are thought to arise within LLMs as the
scale of training parameters and data increases.2 One notable
example is the zero-shot reasoning capability of LLMs, which
refers to their ability to perform specific tasks based on text instruc-
tions without any task examples or extra fine-tuning. Although
LLMs are known to encode clinical knowledge comparable with
that of human clinicians even without additional training,3–5 the
extent to which recent LLMs can be safely adopted in the field of
psychiatry remains underexplored.

In February 2024, we evaluated five LLMs (GPT-4, LLaMA2-70B,
Mixtral-45B, Vicuna-13B and Gemma-7B) using a zero-shot
approach, each repeated five times (Supplementary Table 1). These
models were tasked with diagnosing 21 clinical cases and answering
95 multiple-choice questions drawn from the DSM-5-TR® Clinical
Cases6 and DSM-5-TR® Self-Exam Questions.7 The performance of
the LLMs was compared with that of 11 psychiatry residents from

a tertiary hospital. Residents were then retested on the questions
where their initial answers differed from those of the best-performing
LLM (GPT-4), with the LLM’s answers provided for reference. All
procedures involving human subjects were approved by the
Institutional Review Board of Severance Hospital (4-2024-0131).

GPT-4 notably outperformed both psychiatry residents and
open-source models in diagnostic and knowledge tasks (Fig 1).
For instance, in diagnostic tasks, GPT-4 achieved a mean F1 score
of 63.41%, markedly higher than the residents’ score of 47.43%
(P = 0.005). Similarly, in knowledge tasks, GPT-4 demonstrated
an accuracy of 85.05%, compared with the residents’ accuracy of
62.01% (P = 0.002). Notably, when residents received guidance
from GPT-4, their performance improved, with mean F1 scores in
diagnostic tasks increasing to 60.15% (P < 0.001) and accuracy in
knowledge tasks rising to 81.63% (P < 0.001).

However, GPT-4 was not without flaws. It exhibited a higher
rate of ‘comorbidity errors’ where mutually exclusive diagnoses
(e.g. major depressive disorder and bipolar I disorder) were
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Fig. 1 Bar plots of the task performances using mean scores and error bars with 95% confidence intervals. Dashed vertical lines separate the
task performance of the residents (left) and the large languagemodels (right). Asterisks indicate a significant (P < 0.05) difference comparedwith
GPT-4 results from the Mann–Whitney U-test.

† This study was conducted while the corresponding author was at
Massachusetts General Hospital, Harvard Medical School.
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simultaneously presented, compared with the residents (30.48% v.
0.87%, P < 0.001). The process of making psychiatric diagnoses in
humans is influenced by psychiatrists’ understanding and belief
systems, shaped by art, politics, philosophy, religion, psychothera-
pies and personal experiences. The high comorbidity error rate of
GPT-4 suggests that its diagnoses lack this blend of unique experi-
ences and interpretations, ultimately affecting its diagnostic results.
For instance, GPT-4 often provided adjustment disorder as the main
diagnosis alongside major depressive disorder, acute stress disorder,
post-traumatic stress disorder and prolonged grief disorder
(Supplementary Table 2). This phenomenon is consistent with find-
ings of other studies, which have reported that LLMs frequently
struggle to understand the context of specific patient cases or grasp
subtle differences between individual disorders.8 Despite this, the
comorbidity error rates of the residents did not increase significantly
after GPT-4 guidance (P = 0.4405; Table 1 and Supplementary Tables
3 and 4), suggesting that GPT-4 can positively influence clinicians’
decision-making without increasing critical errors.

The significant increase in similarity between residents’ answers
and GPT-4’s responses after the guidance (mean Jaccard index
rising from 0.26 to 0.42 in diagnostic tasks; P < 0.001) raises important
considerations about the integration of LLMs into psychiatric
practice. Prior research has highlighted that dependence on clinical
decision-aiding algorithms could impair medical professionals’ critical
thinking.9 There is more to consider in psychiatry than the DSM, and
uncritical acceptance of these tools may potentially affect patient out-
comes. Therefore, careful integration into practice is necessary.

It is important to note that in this study, LLMs were assigned the
role of ‘expert’, which may have obscured the comparison, as the
human group consisted of residents still in training. Future research
could use a ‘psychiatry resident’ role for LLMs, compare LLMs with
board-certified psychiatrists and use prompts that include the multi-
faceted knowledge of the DSM, ICD and psychodynamic psychiatry.

As the field of psychiatry continues to evolve, it is crucial to
approach the integration of LLMs thoughtfully. Although they
offer promising capabilities, maintaining the human element in
psychiatric care – including the ability to interpret complex
patient narratives and contextualise symptoms within broader life
experiences – remains paramount. Balancing technological
advances with the irreplaceable aspects of human clinical expertise
will be key to leveraging LLMs effectively in psychiatric practice.
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Table 1 Performance, similarity to GPT-4, and comorbidity error rate of residents before and after GPT-4 guidance

Diagnostic task Knowledge task

Performance Similarity to GPT-4 Comorbidity error Performance Similarity with GPT-4

Weighted F1, mean
(s.d.), %

P-valuea Jaccard index, mean
(s.d.)

P-valuea Error rate,
mean (s.d.),

%

P-valuea Accuracy,
mean (s.d.),

%

P-valuea Jaccard index, mean,
(s.d.)

P-valuea

Resident 47.43 (7.51) <0.001 0.26 (0.04) <0.001 0.87 (1.84) 0.441 62.00 (6.20) <.001 0.46 (0.05) <0.001
Resident with

GPT-4
60.15 (7.73) 0.42 (0.07) 1.73 (4.20) 81.63 (3.14) 0.87 (0.08)

a Calculated using paired t-test.
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