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ON THE INDEX OF DIRAC OPERATORS ON ARITHMETIC
QUOTIENTS

ANTON DEITMAR

The aim of this note is to show how the trace formula of Arthur-Selberg can be used
to derive index theorems for noncompact arithmetic manifolds. Of special interest is
the question, under which circumstances there is an index formula without error term,
that is, of the same shape as in the compact case. We shall thus present evidence for
the hypothesis that the error term for the Euler operator vanishes in the case that
the rational rank is smaller than the real rank.

0. INTRODUCTION

Index theorems for noncompact but finite volume locally symmetric spaces Y usually
are of the form

ind (D) = / u) + "error terms",
JY

where u> is the local index form of the elliptic differential operator D. The error terms
are associated to the cusps.

Hirzebruch [11] used resolution of cusp-singularities to show that in the case of
Hilbert modular surfaces and their signature operators the error terms can be given as
special values of L-functions. Using the Selberg trace formula, this was extended to higher
dimensional Hilbert modular varieties by Miiller [14]. Also by means of the Selberg trace
formula, Barbasch and Moscovici [5] showed index theorems for real rank one spaces. A
detailed analysis of the geometry of arithmetic quotient varieties led Stern [16, 17] to
index theorems of the above type. By means of the adelic trace formula Labesse [12]
investigated the index of the signature operator, focussing on the representation theoretic
aspects.

In this note we shall use Arthur's formula [1] to give a geometric index formula of
the above type for Dirac operators. The advantage of this index formula is that in some
cases like products of real hyperbolic spaces the vanishing of the error term can be read
off. The most important example for this is the Euler operator De = d+d* as an operator
from even to odd forms.

In the compact case one has

indD = J w =
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490 A. Deitmar [2]

where to is the Euler form and x(Y) the topological Euler characteristic. The first equality
is the Atiyah-Singer index theorem, the second the Gauss-Bonnet equality. In the case
of arithmetic quotients Harder [8] has shown that the second equality also holds in the
noncompact case. One might wonder whether the first also carries over to noncompact
arithmetic quotients. We shall show that the first equality holds in the case of products
of rank one spaces modulo arithmetic groups coming from totally real number fields with
at least two real embeddings. This contains the case of Hilbert modular varieties. The
same assertion is known to be false in general. It seems likely it depends on the condition
that the Q-rank is smaller than the M-rank.

1. HOMOGENEOUS DIRAC OPERATORS AND THEIR INDEX KERNELS

An arithmetic quotient is a quotient manifold XT = T\X of a globally symmetric
space X by a torsion-free arithmetic group F. The space X is assumed not to have
compact or Euclidean factors. Under these circumstances the space X can be written as
a homogeneous space X = G/K, where G is a semisimple real reductive group acting
transitively by isometries and AT is a maximal compact subgroup of G. The group F is
an arithmetic subgroup of G.

To be able to use adelic methods we shall further assume that F is a congruence
subgroup, that is, there is a semisimple linear algebraic group Q over Q with G — Q(R),
a compact open subgroup K? of G(h.jin), where A/jn is the ring of finite adeles over Q,
such that F = £(Q) n KT.

In order to have strong approximation available we shall also assume the group Q to
be simply connected.

Since the indices of homogeneous Dirac operators are known to vanish otherwise, we
shall assume

rank G = rank K.

On the group Q(A) we have a unique Haar measure given by a rational top differ-
ential form. This measure is also called the Tamagawa measure. We shall distribute the
Tamagawa measure to the factors G(M) and G{A/in) in such a way that on G = S(R) we
have the Euler-Poincare measure given by

where x denotes the Euler-Poincare characteristic. It suffices to insist that this formula
holds for cocompact torsion free lattices F, but for arithmetic ones which are not cocom-
pact it holds as well [8].

Let flo = t0 © Po denote the polar decomposition of the real Lie algebra g0 of G
where k^ :— Lie^K and p0 is the orthogonal complement of to with respect to the Killing
form B of g0. Let g = 6 © p denote the complexified version. Since G and K have the
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same rank there is a Cartan subgroup T of G which is contained in K. Let t denote

the complex Lie algebra of T. Choose an ordering on the root system $ (g , t). Since p

is stable under Ad(T) it follows tha t this choice induces a decomposition p = p + © p_

according to positive and negative root spaces. This decomposition is a polarisation of

the quadratic space (B, p) and thus the space 5 := A*p_ becomes a module under the

Clifford algebra Cl(B,p). Since Q is simply connected the homomorphism K —> SO(p)

given by the adjoint action factors over the spin group Spin(p) c Cl(B, p). So K acts

on S. The same applies to A*p+ and the if-action on the space A*p_ ® A ' p + = A*p

coincides with the adjoint action.

The action of K on 5 leaves invariant the subspaces

5 + : = Ae"e"p_, S~ := A o d V -

Let (T, VT) be an irreducible unitary representation of K and write (f, Vf) for the dual

representation. Then the ^-representat ions S± <S> T define homogeneous vector bundles

E(S± ® T) over X whose smooth sections can by identified with the ^- invariants :

where K acts on C°°(G) by right shifts. The same applies to S and we have E(S ® T) =

E(S~ ® T)(BE(S+ <8> r ) . Let the Lie algebra g act on C°°(G) by left invariant vector fields,

that is, Xf(g) := — f(gexp(tX)) for X € g and / 6 C°°(G). Letdtt=o
denote an orthonormal basis of p the we have the Dirac operator acting on C°°(E(S ® r)):

dim AT

j=0

where we have written c(X,) for the Clifford action of X, € p C Cl(B, p) on 5. Clearly DT

commutes C°°(E(S+ ® r)) and C°°(E(S~ ® T)) and we shall write Df for the restriction

of DT to COC(E(S± <g> r)). Then D+ and D~ are adjoints of each other.

The homogeneous bundle E(S®T) pushes down to a bundle Er(S®r) over XT

whose space of smooth sections can be identified with (C°°(T\G) ® 5 ® T)K.

In [13] it is proven that there is a compactly supported smooth function gT such

that

tTir(gT) = dim (vv <8> S+ ® Vf) - dim (v^ ® 5"

for all 7T G G.

We want to show that tr7r(^T) vanishes for a principal series representation n. To

this end let P = MAN be a parabolic subgroup with A C exp(p) . Let (£, V£) denote

an irreducible unitary representation of M and eu a quasicharacter of A. Let TT^,, :=
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LEMMA 1 . 1 . We havetTn^v(gT) = 0.

PROOF: By Frobenius reciprocity we have

Horn*:(7, TT^ | K ) ^ H o m K w ( J \ K M , 0 ,

where KM := K D M. The claim will follow from S+\KM = S~\KM. TO prove this let
0 / u) € p_ be in the image of the projection of 0 := Lie.4 to p_. Then KM acts trivially
on Cu C p_. Let W C p_ be a ^M-complement to Co;, then A* P- = f\*W ®u> A f\*W

and so 5+ = Ae"en H^ ® w A A°dd W =KU l\odd W © w A Ae"e" W = S~. D

For any unitary representation n of G we define the Dirac operator

dim AT

DT,« ••= £ *{Xj) ® c{Xj) ® 1

acting on (TT00 ® S <g> r ) ^ . Write Z?^ for the restriction to (TT00 ®S±®T)K. If
and ker D~ are finite dimensional we define

T,7T

ind D^n := dim ker D^ — dim ker DT T.

LEMMA 1 . 2 . For ir € G the kernel of DTiir is finite dimensional and we have

PROOF: Since /C-types have finite multiplicities in n it follows that (7r°° ® 5 ®
is finite dimensional. On this finite dimensional space the operators D^ and D~n

adjoints of each other, so

^ ^ ^ T ) - dimkeiD

The formula of Parthasarathy [15] (see also [3]) implies

£>?,„ = -n(C) + T{CK) + B(pK) -

where C and CK are the Casimir operators of G and K.

This gives the claim. D

The Dirac operator for the G-representation on L2(F\G) will be denoted D T r . Recall
that L2(F\G) decomposes as

L2(r \G) = L2(T\G)dlsc © L2(r\G)conV

where L2(T\G)di$c, the discrete part, is the sum of all irreducible subrepresentations of
L2(r\G) and £2(r \G)c o n i is a continuous Hilbert integral extended over the principal
series. Let R{gT) denote the convolution operator ip H-» ip * gT, where gT(x) :— gT(x~l).
Then R(gT) - Rcont(9r) + Rdisc(gT) and [1, Theorem 7.1] says that RdiSC(9r) is a trace
class operator. The formula of Parthasarathy above fixes the value n(C) when D^ has
a non zero kernel. This gives:

https://doi.org/10.1017/S0004972700031294 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031294


[5] Dirac operators 493

LEMMA 1 . 3 . The spaces kerZ)+r n L2{T\G) and ker D~r n L2(T\G) are finite

dimensional. Denote the difference of their dimensions by ind D*r then

The association r >-> gT extends to virtual representations by linearity. Consider the
virtual representation of K on S+ — S~. We define

It follows that for n G G we have

dimX

trjr(/T)= £ (
q=0

An element g of G is called elliptic if it lies in a compact subgroup of G. For any
g e G and a compactly supported smooth function f on G let

9U):=jO, ,
JG/G9

denote the orbital integral. The required normalisation of Haar measures of G and G9

follows [10].

PROPOSITION 1 . 4 . Let g be a semisimple element of the group G. If g is not

elliptic, the orbital integrals O9(fT) and Og(gT) vanish. If g is elliptic we may assume

g € T, where T is a Cartan in K and then we have

tr T(9)\W(t,gg)\ J[ (pg,a)

for all elliptic g and

"sKyT> d e t ( l - 5 - i | p + ) '

if g is regular elliptic. For general elliptic g we have

Y, det {^~< n'^+P-PK
„ , . s£W(T,K)

where cg is Harish-Chandra's constant, it does only depend on the centraliser Gg of g.

Its value is given in [7], further u)1 is the differential operator as in [9, p.33].

If G is a product of real rank one groups then the orbital integral O9(fT) vanishes

also for g non-semisimple.
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PROOF: The computation of the orbital integrals of semisimple elements is essen-
tially in [7]. For the non-semisimple elements it suffices to assume that the real rank of
G is one. Consider a non-semisimple element g. By [4, Section 6], we get a curve i ^ z ,
of semisimple elements and a natural number m such that Og(fT) = limt_,0 tm/2O2t(fT).
The function x *-* Ox(fT) is bounded on semisimple elements by the proposition and
therefore we have Og(fT) = 0 for g non semisimple. D

CONJECTURE 1.5. The orbital integral Og(fT) vanishes for all g and all groups G.

2. T H E G-INDEX

Let TtG C B(L2(G)) denote the von Neumann algebra defined as the commutant
of the left representation of G on L2(G). On KG there is a canonical faithful, normal,
semi-finite trace trG, called the G-trace, uniquely determined by the property that

trG(R(fyR(f))= [ \f(g)\2dg,
J G

where R denotes the right representation of G (See [6].) Let dimG denote the dimension
defined by the G-trace.

Choose a compact form Gd of G in a way that Gd contains the compact group K.

The homogeneous space Xd = Gd/K then is symmetric and is called the dual symmetric

space to X.

Let A = AT denote the infinitesimal character of r then A also defines an infinitesimal
character of some irreducible representation W\ of Gd.

PROPOSITION 2 . 1 . The spaces ke rD*nL 2 (£ ' (5 ± 8>r)) are finite-dimensional
under dimg. Let indG (D+) denote the G-index of D+, which is, by definition, the
difference of these two G-dimensions. Then if A is regular with respect to the full root
system we have

indG W
where x(xd) is the Euler-characteristic of Xd. If X is not regular, the G-index of D+

vanishes.

It is known that the Euler characteristic is positive and that x (xd) = W (T, Gd) ,
where T is a Cartan subgroup of Gd.

PROOF: The finite dimensionality is [6, Lemma 3.2]. The index formula follows
from formulas (3.7)-(3.13) of [3]. D

3. T H E INDEX THEOREM

Assume now that Q is the restriction to Q of some algebraic group % over a number
field F. It is known that the index of the Dirac operator DT<V vanishes if rank G > rank K.
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If F has a complex place then it follows that rankG > rank if. So, in order to have a
nontrivial theory we shall assume the field F to be totally real. Let S denote the set of
Archimedian places of F. We assume that S has at least two elements.

THEOREM 3 . 1 . The index of the operator D*r is given by

ind (Z)+r) = indG (Dt)x(Xr) + R{T, T),

where the "error term" R(T,T) equals

R(r,r)= £ a(7)07(ffT).
76IWG

The sum is extended over the set of non-semisimple elements Tns ofT modulo the equiv-

alence relation (G,S) defined in [1]. Tie constant 0(7) coincides with aG(S, 7) of [1] up
to a volume factor.

In the case G = ResF/GSO(n, 1) for n ^ 3, t ie error term vanishes. Here SO(n, 1)
stands for the special orthogonal group of a quadratic form which has signature (n, 1)
over the reals.

Note that the first summand on the right hand side of the index formula also coincides
with the integral fXru>, where w is the index form of DT. This also equals the F-index
[2] of £>+, so we have ind (z?+r) = indr (D+) + R(T, F).

PROOF: Let Kr be the compact open subgroup of Q(Afin) such that F = KrDG(Q).

Define a compactly supported function / on £(A) by / = f;in ® /oo, where j ; i n : =

{l/vo\(Kr))lKr and / ^ := gT. Plug the function / into [1, Theorem 7.1(b)]. Then use
Lemma 1.3 and Proposition 1.4.

For the last assertion recall that Proposition 1.4 and [4, Section 6] imply that
R(T, F) = 0 if K has discrete center. The latter condition is satisfied for SO(n, 1). D

4. T H E EULER OPERATOR

Consider the homogeneous vector bundle E = E(T) associated with the representa-
tion T. Choose a homogeneous connection on E(T). These always exist and in the case
that T — a\K, where a is a finite dimensional representation of G, there is a unique flat
homogeneous connection. This is the case considered in [17]. The choice of a connection
gives us an exterior differential

The representation r being unitary gives us a homogeneous Hermitian metric on E and
we can define the formal adjoint d* of d and the Euler operator.

De
T:=d + d* : neven(E) -> nodd(E).

We now come to the main result of this note:
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THEOREM 4 . 1 . Assume that G = Resp/QH, where T-L is a semisimple connected

linear algebraic group over the totally real number Held F. Assume F has at ./east two

real embeddings and over R, ~H is a product of rank one groups. Let G :— G(M.) and

put X = G/K, the symmetric space attached to G. Let T be a torsion free congruence

subgroup of G. Write Xr = F\X for the quotient manifold. Let E(T) be a homogeneous

vector bundle over X given by a unitary finite dimensional representation r of the compact

group K and let De
rT be the Euler operator of the pushdown of E(T) to Xr. Then De

TV

has a well defined index and

md(De
Ttr)=indG(De

T)X(Xr).

Assume Conjecture 1.5 holds. Then the condition on the real points of G in the

above theorem can be removed.

For the usual Euler operator Df. on Xr we have

PROOF: The index of De
rT coincides with the index of D~t_ r , where f is the virtual

representation r ® (S+ — S+). With Lemma 1.3 it follows that the index exists. The

index theorem tells us that

ind (De
TX) = indG (De

T)X(Xr) + R(f, T).

Proposition 1.4 tells us that R(T,F) = 0.

The last assertion is clearly valid for cocompact groups F. This implies that the

G-index must be one. D
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