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Abstract. Let G be a connected graph of order n, and let k>2 and m>0
be two integers. In this paper, we show that G is a fractional (k, m)-deleted graph
if §(G)>k+m+ %, n>9 —1—4,/2(k — 1)2 + 2+ 2(2k + )m and |Ng(x)U
Ne(y)| = %(n + k — 2) for each pair of non-adjacent vertices x, y of G. This result is an
extension of the previous result of Zhou [11].
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1. Introduction. The graphs considered here will be finite undirected simple
graphs. We refer the readers to [1] for the terminologies not defined here. Let G be
a graph. We use V(G) and E(G) to denote its vertex set and edge set, respectively.
For any x € V(G), we denote the degree of x in G by dg(x). For X C V(G), we define
dg(X) =Y.y d(x). We write Ng(x) for the set of vertices adjacent to x in G, and
Ng[x] for Ng(x) U {x}. For X C V(G), we use G[X] and G — S to denote the subgraph
of G induced by X and V(G) — X, respectively. Let X and Y be two disjoint vertex
subsets of G, we denote the number of edges from X to Y by eq(X, Y). Instead of
eg({x}, Y), we just write eg(x, Y). We use §(G) for the minimum degree of G.

Let k> 1 be an integer. Then a spanning subgraph F of G is called a k-factor,
if dp(x) = k for each x € V(G). Let h : E(G) — [0, 1] be a function. If ) _ /h(e) =k
holds for any x € V(G), we call G[F}] a fractional k-factor of G with indicator function
h where Fj, = {e € E(G) : h(e) > 0}. A fractional 1-factor is also called a fractional
perfect matching [6]. In this paper we introduce first the definition of a fractional
(k, m)-deleted graph, that is, a graph G is called a fractional (k, m)-deleted graph,
if there exists a fractional k-factor G[F}] of G with indicator function / such that
h(e) = 0 for any e € E(H), where H is any subgraph of G with m edges. A fractional
(k, m)-deleted graph is simply called a fractional k-deleted graph, if m = 1.

Iida and Nishimura gave a neighbourhood condition for a graph to have a k-factor
[3]. Zhou obtained some sufficient conditions for graphs to have factors [8-10]. Correa
and Matamala showed a necessary and sufficient condition for graphs to have factors
[2]. Yu and the co-authors gave a degree condition for graphs to have fractional k-
factors [7]. Liu and Zhang showed a toughness condition for graphs to have fractional
k-factors [5].

The following results on k-factors and fractional k-factors are known.
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THEOREM 1. (Iida and Nishimura [3)). Let k be an integer such that k > 2, and let G
be a connected graph of order n such that n> 9k — 1 — 4,/2(k — 1)> + 2, kn is even and
the minimum degree is at least k. If G satisfies

ING() U NGO = 504k —2)

for each pair of non-adjacent vertices x, y € V(G), then G has a k-factor.

THEOREM 2. (Zhou and Liu [11]). Let k be an integer such that k > 2, and let G be
a connected graph of order n such that n > 9k — 1 — 4,/2(k — 1) + 2, and the minimum
degree 5(G) > k. If

ING() U NG| 2 (-4 & —2)

Jor each pair of non-adjacent vertices x,y € V(G), then G has a fractional k-factor.

In this paper, we obtain a neighbourhood condition for a graph to be a fractional
(k, m)-deleted graph. The result will be given in the following section.

2. Main theorems and proofs. Now, we give our main theorem which is an
extension of Theorem 2.

THEOREM 3. Let k> 2 and m> 0 be two integers. Let G be a connected graph of
order nwithn> 9% — 1 — 4/2(k — 1)> + 2 + 22k + m, 8(G) = k + m + @)=L [f

1
ING() U Na)] = 501+ k= 2)
for each pair of non-adjacent vertices x,y of G, then G is a fractional (k, m)-deleted
graph.

From Theorem 3, we get immediately Theorem 2 if m = 0. If m = 1 in Theorem 3,
we get the following corollary.

COROLLARY 1. Let k> 2 be an integer. Let G be a connected graph of order n with

n>13k+1— 420k — 12 12, 8(G) >k + 2. If
ING() U NG| 2 (-4 & —2)

for each pair of non-adjacent vertices x, y of G, then G is a fractional k-deleted graph.

In order to prove Theorem 3, we depend on the following lemmas.

Fact 2.1. [3] Let k be an integer such that k > 1. Then

>3k+5, for k>4

o Y >3k+4, for k=3
9%k —1—4,/2(k—1)>+2 “ 343 for k=2

> 2, for k=1
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LEMMA 2.1. (Liu and Zhang [4]). Let G be a graph, then G has a fractional k-factor
if and only if for every subset S of V(G),

86(S, T) = kS| + dg-s(T) — k|T| = 0,

where T = {x:x € V(G)\ S,dg_s(x) <k —1}.

LEMMA 2.2. Let k> 1 and m >0 be two integers, and let G be a graph and H a
subgraph of G with m edges. Then G is a fractional (k, m)-deleted graph if and only if for
any subset S of V(G),

86(S, T) = kIS| + Y do-s(x) = KIT| = Y dy(x) = en(S, T)

xeT xeT
where T = {x:x € V(G)\ S, dg_s(x) — dg(x) + eg(x,S) < k—1}.

Proof. Let G = G — E(H). Then G is a fractional (k, m)-deleted graph if and only
if G’ has a fractional k-factor. According to Lemma 2.1, this is true if and only if for
any subset S of V(G),

8¢(S, T') =kIS| + dg_s(T') — k|T'| >0,

where 7" = {x:x € V(G)\ S, dg_s(x) < k — 1}.

It is easy to see that dg_s(x) = dg_s(x) — dy(x) + eg(x, S) for any x € 7". By the
definitions of 7" and T, we have 7" = T. Hence, we obtain 84 (S, T") = §¢(S, T) —
Y ver du(x) + en(S, T). Thus, 8¢/(S, T") >0 if and only if §¢(S, T) > > .. du(x) —
eq(S, T). It follows that G is a fractional (k, m)-deleted graph, if and only if (S, T') =
KISI+ 3 cerde-s(x) = kIT| = Y . cr du(x) — en(S, T). U

Proof of Theorem 3. According to Theorem 2, the theorem is trivial for m = 0. In
the following, we consider m > 1.

Suppose that G satisfies the conditions of Theorem 3, but is not a fractional
(k, m)-deleted graph. From Lemma 2.2 there exists a subset S of V(G) such that

KIS|+ > (dg-s(x) — dp(x) + epr(x, 8) — k) < —1, (1)

xeT

where T ={x:xe V(G)\ S, dg_s(x) —dy(x)+eny(x,S) <k—1} and H is any
subgraph of G with m edges. ]

At first, we prove the following claims.
Claim 1. |S|>1.

Proof. If S = @, then according to equation (1), dy(x) <m and §(G) >k +m+

2_
%, we get

2 _
12 Y o) — (v~ R 2 306 —m k= 3T o
xeT xeT xeT

this is a contradiction. 0

Claim 2. |T| >k + 1.
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Proof. If |T| < k, then by equation (1), Claim 1, dy(x) < m and 8(G) >k +m +

1°—1 .
%, we obtain

~1 2 KIS| + Y (do-5(x) — dp(x) + en(x. S) = k)

xeT

> |TIIS|+ ) (do-s(x) — du(x) + en(x, S) — k)

xeT

= Y (S| + do-s(x) = du(x) + en(x, S) — k)

xeT

> Y (do(x) — du(x) + en(x, S) — k)

xeT

> (8(G)—m—k)

xeT

D1
=X

xeT

20,

a contradiction. O

From Claim 2, T # @. Let
hy = min{dg_s(x) — dy(x) + ey(x, S)|x € T},

and choose x; € T with dG_S(xl) — dH(xl) +epy(x1, S) = hy and dH(xl) —ep(x1,S) 1s
minimum. Further, if 7'\ N7[x;] # 9, we define

hy = min{dg_s(x) — dy(x) + eg(x, S)lx € T\ Nr[x]},

and choose x; € T'\ Ny[x1] with dg_s(x2) — dy(x3) + ey(x2, S) = hy and dy(xy) —
en(x2, S) is minimum. Then we obtain 0 < A < hy < k — 1 by the definition of T'.

In view of the choice of xj, x3, we have x;x; ¢ E(G). Thus, by the condition of
Theorem 3, the following inequalities hold:

n+k-—2

7 < |Ng(x1) U Ng(x2)]

< dg-s(x1) + dg-s(x2) + | S|
= [S| 4+ hi + du(x1) — en(x1, S) + hy + du(x2) — en(x2, S),

which implies

n+k—2

S| >
IS] > >

= (h +hy +du(x1) + du(x2) — en(x1, S) — en(x2, 5)).  (2)
Now in order to prove the theorem, we shall deduce some contradictions according

to the following two cases.
Case 1: T = N7[x1].
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Clearly, the following inequalities hold by dy(x;) < m:
IT| = IN7[x1]| < dg-s(x1) +1 = +du(x1) —en(x1, )+ 1 <h+m+1. (3

In view of §(G) < dg(x1) < |S|+ dg-s(x1) = [S| + 1 + du(x1) — en(x1, S) and
dy(x1) < m, then we have

[S| = 8(G) — hy — du(x1) + eg(xy, S) = 8(G) — hy —m. 4)

By equations (1), (3), (4)and 0 < i} < k — 1, we get

—1 = KIS+ ) (d-s5(x) — du(x) + en(x, S) — k)

xeT

> kIS| + (Il — k)| T
> k(8(G) —hy —m) + (b — k)(hy +m+1)

+1)° -1
Zk(k—i-m—i-% —h—m)+ -k +m+1)
1)’ -1
= — 2k —m— Dy + k> — (m + Dk + %
m+1\> 1
= (m-k+"3) -
1
>——>—1
4
This is a contradiction.
Case 2. T\ N7[x|] # @.
From |E(H)| = m and x1x; ¢ E(G), we get
du(x1) + du(x2) < m. (5)

Subcase 2.1. hy = 0.
Clearly, iy = 0. By (1), (2) and |S| + |T| < n, we obtain

—1 = kISI+ ) (do-s(x) = du(x) + en(x, S) = k)

xeT

> k|S| = k| T| = kIS| — k(n — |S]) = 2k|S| — kn
= 24 ("2 o)+ d) = ento, ) = e, ) ) — o
= k? — 2k — 2k(du(x1) + du(x2) — en(x1, S) — en(x2, S)),

that is,

K —2k+1
—_—

0.
2k

dy(x1) + dy(x2) — eg(x1, S) — ey (x2, S) >

According to the integrity of dy(x1) + du(x2) — ey(x1, S) — eg(x2, S), we have

dy(x1) + dy(x2) — ep(xy, S) —ep(x2, S) = 1.
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In view of the choice of x; and x,, one of (a) and (b) holds for any u € T\
({x1, x2} U Ng({x1, x2})):

(a) dgfs(u) - dH(u) + eH(u, S) >1, or
(b) dg-s(u) — dpy(u) + en(u, S) = 0 and dy(u) — ep(u, S)= 1.

Since {x1, x2} N V(H) # @ and any vertex v € T \ ({x1, x2} U V(H)) satisfies (a), we
have

> (do-s(x) = du(x) + en(x, $)) = |T| =2 = 2m+ 1= |T| =2m 1. (6)

xeT

Using equations (1), (2), (5), (6), |S|+|T| <n, n>9% —1—-4/2(k -1 +2+
2(2k + 1)m and Fact 2.1, we obtain

—1 = KIS+ (do-s5(x) — du(x) + en(x, S) — k)

xeT
> k|S| +|T| — 2m — 1 — k|T|
= kIS| — (k — 1)|T| —2m — 1
> kIS| — (k= 1)(n—|S]) —2m — 1
= 2k —1)|S| = (k— Dn—2m—1

_2

> (k- 1) (% () + dig(xa) — e, S) — e S)))
—(k—1Dn-2m-1

> (2k — 1)(#—;;4) —k=Dn—2m—1

n Qk—1)k—2)

=S Gk -

> g—(2k+1)m—1

—Qk+Dm—1

9k — 1 —4/2(k — 1)2 + 2 + 22k + Dm
2
Ok —1-4/2(k—1P 2
2

> 0,

this is a contradiction.

Subcase 2.2. 1 < hy, <k —1.

According to dp(x;) <m, we get |[Nr[xi]| <dg-s(x1)+ 1= +du(x1)—
eg(x1,8)+ 1 < h +m+ 1. Complying this with equations (1), (2), (5), m>1, 0 <
h<h<k-1,n>%—-1-4/2(k—1)>+2+22k+ )m and |S|+|T| <n, we
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have

—1 = KIS|+ Y (do-s(x) — du(x) + en(x, S) — k)

xeT
> kIS| + hi|N7[xi]l + hao(IT| — IN7[x1]]) — kI T
= k|S| + (Il — )IN7[x1]| + (ha = K)|T|
> k|S| + (hy — ho)(hy +m + 1) + (hy — k)(n — |S])
=QRk—m)IS|+ (h —hy)h+m+1)—(k—h)n

> (2k—h2)<n+k—_2 —h—h —m) + (hy = ha)(hy +m + 1) — (k — ho)n

2
B n—5k 2
= I+ T B (1= 200 + k(k — 2) — 2l

sk
>4 B (2 = 2K + k(= 2) = 2k
, n—>5k 5
> 12+ I + B + (2 — 2Kk)ha + k(k — 2) — 2km
Ok +4
o T (k= 2) — 2km

2

3
> 205 — 2,/ 2(k — 1)2 + 2hy + (2k + Dymhy + 5/’12 + k(k — 2) — 2km
3
2./2(k — 1)% 4 2hy + 2k + Dym + Ehz + k(k — 2) — 2km
3
> 2h5 — 2,/2(k — 1)2 + 2hy + §h2+k(k—2)+1
1 203
= §<2h2—,/2(k— 1)2+2) +§h2—1

3 1
—“hy—1> =
27T =2
> 0.

> 2k —

v

It is a contradiction.
This completes the proof of Theorem 3.
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