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TIME-DISCRETISED GALERKIN APPROXIMATIONS
OF PARABOLIC STOCHASTIC PDES

W. GRECKSCH AND P.E. KLOEDEN

The global discretisation error is estimated for strong time discretisations of finite
dimensional Ito stochastic differential equations (SDEs) which are Galerkin ap-
proximations of a class of parabolic stochastic partial differential equation (SPDE)
with a strongly monotone linear operator with eigenvalues Ai ^ Aj ^ • • • in its
drift term. If an order 7 strong Taylor scheme with time-step A is applied to the
N dimensional Ito-Galerkin SDE, the discretisation error is bounded above by

where [x] is the integer part of the real number x and the constant K depends
on the initial value, bounds on the other coefficients in the SPDE and the length
of the time interval under consideration.

1. INTRODUCTION

Numerical methods for parabolic stochastic partial differential equations (SPDEs)
require the discretisation of both time and space variables. While both can be discretised
simultaneously, the advantage of first discretising the state variables by either Galerkin
or finite difference methods is that higher order numerical schemes that have been
derived for finite dimensional Ito stochastic differential equations (SDEs) can then be
applied in the time discretisation stage (see [3] and the references cited therein). The
constants in the time discretisation error estimate then depend on the dimension of the
SDE under consideration and the nature of this dependence needs to be clarified in
order to provide a useful global space-time discretisation error estimate. This will be
done here for a class of parabolic stochastic partial differential equations that includes
special stochastic reaction-diffusion equations.

Let V be a bounded domain in M.d with sufficiently smooth boundary dT> and
consider a parabolic SPDE

(1) dUt
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where {Wt,i ^ 0} is a standard scalar Wiener process, with Dirichlet boundary condi-
tion

(2) U = 0

and initial condition Uo £ Hl'2(T>). Here Hl'2(D) is the space of functions u : V i-> R1

which vanish on dT> such that u and its first order generalised derivatives Du belong
to Li(Ti) with the norm ||-|| and A is a linear operator which is densely defined in
i2(^>) by {y £ Hl"2{T>) : Av £ £2(2?)} such that —A is strongly monotone, that is
there is a positive constant a such that

(-Au,u)^ a\\u\\2 , u£Hl'2(T>),

where (•,•) is the inner product and |-| the associated norm of the space Li^p). In
addition / and g, which map either L2(~D) or Ho' (X>) into itself, are formed from real
valued functions of a real variable with uniformly bounded derivatives of apropriate
order, into which the numerical values U = U{t,x,w) are inserted (thus derivatives of
U are not present here).

The eigenvalues Xj and corresponding eigenfunctions <j>j £ Ho' (T>) of the operator
—A, that is with

{o j —A.<pj = Aj(f>j, J — 1 , Z , . . . ,

form an orthonormal basis in L2[T>) with Xj —> 00 as j —» 00 (see [1]); for example,
if A is the Laplacian operator on the unit interval [0,1], then Xj = J2TV2 and cj>j =

00

V2sin(j7rx). Each u £ L2CD) thus has the unique representation u = ^ Uj<j>j with

norm |w| = wJZ «?, while each u £ Hl'2{V) has the unique representation u =

^2 y/X~jUj<f>j with equivalent norm ||it|| =

Let X?] be the N— dimensional subspace of Ho' (2?) spanned by {</>i,--- ,</>N} and

let PJV denote the projection of L2 or HQ'2(V) onto Ajv- Write UN synonomously
N

for (UN'\--- ,UN'N) £ RN and £ UN''<f>j £ XN according to context and define
i

AN = PNA \V , /AT = PN/ I v and OJV = P^g I v where / and g are now

interpreted as mappings of L2(T>) or Hl'2(V) into itself. The N-dimensional Ito-

Galerkin SDE corresponding to the SPDE (1) and boundary condition (2) is then

(4) dUt
N = {ANUt

N + fN(Ut
N) } dt + gN(Ut

N) dWt.
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Note that the effect of ANUN is equivalent to multiplication of UN £ RN by an N x N

diagonal matr ix with jth diagonal component — Xj.

Following Kloeden and Platen [3], an order 7 strong Taylor scheme with constant

time-step A for the SDE (4) has the form

(5) Y&I = Y? + £ ^(Yk
N)iatkA,

with coefficient functions F£f and multiple stochastic integrals Ia,k,A, where 7 takes

possible values 0.5 (Euler scheme), 1.0 (Milstein scheme), 1.5, 2.0, . . . . The ad-

missible multi-indices a = (ji,- • • ,ji) & Ay \ {v} here have components ji = 0 or 1

corresponding to integration with respect to 'dt' or 'dWt', respectively, while the jth

component of F£ is defined by

(6) F^(Y")=L%...L%Fj(Y»)

where the operators

N a 1 N &

2 4-> 9

ijl

and

N

are applied successively to Fj(YN) = YN'* and the result evaluated at YN. See [3]

for further details.

For a common initial value U^ — YQ* the global strong discretisation error of the

numerical scheme (5) has the mean-square form

(7) E\U^A-Yk
N

A\2^KNA2\

where the constant KN depends on the dimension TV as well as on the time interval

0 ^ kA ̂  T under consideration and uniform bounds on the functions / and g and

their derivatives. The main result of this paper will be to determine the nature of the

dependence of the constant KN in (7) on N and to combine it with the truncation

error in the Galerkin approximation to obtain an estimate of the combined space-time

discretisation error for the SPDE (1) for the numerical scheme (5) applied to the Ito-

Galerkin SDE (4).
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2. MAIN RESULT

Let (CljJ7, P) be a probability space, let {Tt,t ^ 0} be a filtration contained in

T with respect to the given Wiener process {Wt,t > 0} , and let C2 = L2 (^,L2(T>))

and H\'2 = L2 (d,Hl'2(Vyj be spaces of mean-square integrable L2{V) and Hl'2(V)

valued T-measurable random variables, that is with finite values of E \u\2 and E \\u\\2 ,

respectively.

It is well known (see [1, 2]) that the above SPDE (1) with boundary condition (2)
then has a unique Tt -measurable strong solution Ut with

UeL2(]fi,T],n1
0'

2)(>\C([0,T},C2)

for each finite T > 0 and initial condition Ug £ 7i0' , since by the above assumptions
/ and g are uniformly Lispchitz continuous from L2(T>) into itself and thus satisfy a
linear growth bound on L2(V). By similar arguments, a unique solution U$* also exists
for the Ito-Galerkin SDE (4) with the initial value U^1 = PNUO • For the remainder
of the paper it will be assumed that the iterates Y£* of the numerical scheme (5) have
initial value Y^ = PNUO and belong to XN rather than RN.

THEOREM 1 . Tie global space-time discretisation error of the order 7 strong
Taylor scheme (5) with constant time-step A apph'ed to the N-dimensional Ito-
Galerkin approximation (4) of the SPDE (1) has the form

(8) E |E/*A - Yh»\ < K

wiere [x] is the integer part of the real number x and the constant K depends on
E\\U0\\

2, bounds on t ie / , g coefficients of the SPDE and the length of the time
interval 0 ^ kA ^ T under consideration.

The proof will be presented in the next section. It can be strengthened as in [3] by
use of Doob inequalities to provide a similar estimate for E max \UkA — Yjf], but

this will not be done here.

3. PROOF

The inequalities

(9) |PJV«| ^ M , \(I - PN)U\ <

hold since
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and

H2= f; u*^\j+1 f;
j=N+l j=N+l

Also if U G Hl'2{V) and UN € XN, then

- ANUN,U-UN) = (A(U -UN),U- UN)

since AN = A on XN and — A is strongly monotone and linear. Hence by the Ito
formula it follows for the solutions Ut of (1) and Uf* of (4) that

E\Ut- Ut
N\2 =E\U0-U0

N\2 + 2E f (AU. - ANU?, U, - U?) ds
Jo

+ 2E f (f(U.) - fN(U?),U, - U?) ds
Jo

+ 2E f \g(U.) - gN(U?)\2 ds
Jo

^E\(I-PN)U0\
2 -2aE I \\U, -U?\\2 ds

Jo

+ 2E f \f(U.) - fN(U?)| \U, - U?\ ds
Jo

+ 2E f \g(U.) - gN(U?)\2 ds.
Jo

Now by the inequalities (9) and the fact that / is uniformly Lipschitz with constant K
as a mapping from Lz(T^) into itself

\f(U) - fN{UN) |2 = \f(U) - PNf(UN) + PNf{U) - fN(UN) |2

< 2 \f(U) - PNf(U)\2 + 2 \PNf(U) - fN(UN) |2

- 2 |(7 - PN)f(U)\2 + 2 \PN(f(U) - f(UN)) |2

^2\Jf\1\f(U)\2+2K2\U-UN\2,

with a similar inequality holding for g too. Inserting these into the energy inequality
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above then gives

E\Ut-Ut
N\2 ^X^EWUof+ZX^E f \\f(U.)\\ ds + AX^E f \\g(U,)\\2 ds

Jo Jo

6K2)E f\U.-U?\2 ds
Jo

J \g(U,)\\2

10

so by the Gronwall inequality

2

(l+6K2)E f \U,-U?\2 ds,
Jo

E\Ut-Ut
N\

< A^+1 e ( 1 + 6 ^ ) T
 (E \\UO\\2 +E j T | | / ( ^ ) | | ds + 4E f \\g(U,)\\2 ds) ,

\ Jo Jo J

that is,

(10)

where KT,U0 is independent of N.

Inequalities (7) and (10) combine to give the following global space-time discreti-

sation error estimate

(11) E\UkA- Yk
N

A\2 < 2KTiUo A^ + 1 + 2KN

To determine the nature of the dependence of KN on N here it is necessary to examine
the terms in the remainder of the strong stochastic Taylor expansion used to derive the
strong Taylor scheme (5). Details are given in the proof of [3, Theorem 10.6.3] and
will not be repeated in full here. In particular, the remainder consists of multiple
stochastic integrals with nonconstant integrands /a,jb,A (-Fa \P- )) f°r multi-indices a
in the remainder set 237. These are estimated in inequality [3, p.364 (6.23)] under the
assumption that the coefficient functions satisfy a linear growth bound. This is true here
under the assumptions on the coefficients of the SPDE (1) and it is only the Aj (j = 1,
. . . , N) factors in the operator VN that contribute to the dependence of the coefficient
KN on N. Specifically, each application of L°N contributes a single dominating power
of XN . Let l(a) be the length of a multi—index a and n(a) the number of component
indices ji that are equal to 0. The bound in the squared inequality [3, p.364 (6.23)]
thus takes the form
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where cj)(a) is equal to 2(l(a) - 1) if l(a) = n(a) and /(a) + n(a) - 1 if l(a) ± n(a).
If 7 is an integer the dominant value occurs for /(a) = n(a) = 7 + 1 and the required
bound is of the form

while if 27 but not 7 is an integer the dominant value occurs for l(a) = n ( a ) = 7 + 3/2

and the required bound is of the form

Inserting this into (11), using the inequality \/a2 + b2 ^ \a\ + |6| and renaming the

constants, gives the desired result

E\UkA - Y&\ < KTtUo

where [x] is the integer part of the real number x.
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