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Abstract. The concept of a metaplectic form was introduced about 40 years
ago by T. Kubota. He showed how Jacobi-Legendre symbols of arbitrary order give
rise to characters of arithmetic groups. Metaplectic forms are the automorphic forms
with these characters. Kubota also showed how higher analogues of the classical
theta functions could be constructed using Selberg’s theory of Eisenstein series.
Unfortunately many aspects of these generalized theta series are still unknown, for
example, their Fourier coefficients. The analogues in the case of function fields over
finite fields can in principle be calculated explicitly and this was done first by J. Hoffstein
in the case of a rational function field. Here we shall return to his calculations and clarify
a number of aspects of them, some of which are important for recent developments.

2000 Mathematics Subject Classification. 11F27, 11L05, 11T24.

1. Introduction. Several years ago J. Hoffstein [9] published an investigation into
the nature of those Dirichlet series whose coefficients are Gauss sums and whose
analytic properties can be derived from the theory of metaplectic groups in the
function field case. He restricted his considerations to rational function fields where
the calculations are considerably easier than in the general case. The general theory
[10, §II.3] shows that the functions in question are meromorphic with certain analytic
properties. In the function field case this means that the functions are rational, with
known denominators and with numerators of known degree. Their calculation reduces
to a finite one. Moreover the residue at the (only) pole can also be given explicitly,
even if the expression one obtains is not as illuminating as one would wish. J. Hoffstein
uses the results to verify the function field analogue, for rational function fields, of
a conjecture made by C. Eckhardt and the author [5] in the case of Gauss sums of
order 4.

Unfortunately the notations used by J. Hoffstein and the present author are very
different. The first object of this paper was to express the main results of [9] in the
alternative language. This is not particularly difficult but it is hoped that it will prove
useful. In his paper J. Hoffstein used one particular method to evaluate the coefficients
of the Dirichlet series. He expresses them as double sums and by reversing the order
of summation obtains a useful expression. Instead of this approach we shall here
use one of the Davenport–Hasse theorems to express the Gauss sums in terms of a
standard quantity. Consequently we express the coefficients as a single sum. This has
two advantages. First of all there is much less cancellation between the terms of the
sum. Secondly it shows that the theory of metaplectic forms allows one to investigate
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the following question and variants thereof. Let �q be the usual finite field of q elements.
Let n > 1 be an integer so that q ≡ 1 (mod n). For a monic polynomial f (x) ∈ �q[x] let
D( f ) denote the discriminant of f . The question is: of the qd − qd−1 monic polynomials
without multiple factors of degree d for how many is D( f ) an nth power? As far as the
author knows, there have been no algebraic investigations into such questions.

To formulate the framework in which we shall be working we shall make some
definitions. Let p be the characteristic of �q. Let µn = {x ∈ �q : xn = 1} and let
χ : �×

q → µn; x �→ x
q−1

n . Let R = �q[x], k = �q(x) and k∞ = �q((x−1)) (the field of all
Laurent series in x−1, i.e. the completion of k at the “infinite place”). Let deg denote
the degree of an element of R. We shall write π∞ for x−1 when we consider the latter
as an element of k∞.

We define the Legendre-Jacobi symbol
( f

g

)
n in R in the usual way. It is easy to

express this symbol in terms of the resultant (for example as in [14, §§28–29]) as
follows: (

f
g

)
n

= χ
(
b−m

0 R(g, f )
)

where b0 is the leading coefficient of g and m is the degree of f . This is [14, §29,
Eqn. (2)] in the context of a finite field. Let now a0 be the leading coefficient of f and
n the degree of g. Then one has the symmetry property of the resultant:

R( f, g) = (−1)mnR(g, f ).

From these two equations one obtains the reciprocity law for the Legendre-Jacobi
symbol: (

f
g

)
n

= χ
(
b−m

0 an
0(−1)mn) (

g
f

)
n
.

We shall write

( f, g)∞ = χ
(
b−m

0 an
0(−1)mn)

so that the reciprocity law takes on the form(
f
g

)
n

= ( f, g)∞

(
g
f

)
n
.

These results go back to the thesis of F. K. Schmidt (see [12, §3.2.1 ] and [13]). They are
often attributed to A. Weil (see [2, pp. 333–336]). Bass also attributes to Weil a lemma
(loc.cit. Lemma 8.2) which allows one to extend the proof from rational to general
function fields, but this is also due to F. K. Schmidt1. One should note that the very
simple form of the reciprocity law means that one can compute the Legendre symbol
by a straightforward Euclidean algorithm.

1The results of F. K. Schmidt appeared in his thesis with a summary in [13]. This is in a particularly obscure
series and I have not been able to find it. There is a facsimile of the thesis in the library in Göttingen,
presumably identical to the one referred to by Roquette in [12, loc.cit.].
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It is also worth noting here that if f is a polynomial as above with leading term a0

as above then the discriminant D( f ) of f is given by [14, §29, Eqn. (2)]

D( f ) = a−1
0 R( f, f ′).

Next we shall construct an additive character on k∞. To do this we shall first
let eo be the additive character on �p given by eo( j (mod p)) = exp(2π i j/p). We use
this to define an additive character e� on �q by e�(x) = eo(Tr�q/�p (x)). Now let ω be
a global differential on the rational curve. Let now eω( f ) = e�(Res∞(ωf )) for f in k∞
where Res∞ denotes the residue of the differential at infinity. If v �= ∞ is a place of
k then it corresponds to an irreducible polynomial φ ∈ R. We shall let Resv(ω) be
the sum of the residues of the differential ω over the zeroes of φ. This then lies in
�q as the sum is over a set of conjugates. Abel’s theorem on the residues affirms that
Res∞(ω) + ∑

v finite Resv(ω) = 0 for any global differential ω. It follows that if ω is
regular outside ∞ then eω|R = 1. If ω = dx/x2 then one has that {y ∈ k : eω|yR =
1} = R. For this reason we shall denote by e the additive character on k∞ defined by
ω = dx/x2.

Next let ε : µn → �× be a homomorphism. For most of our purposes we shall
assume that ε is injective – but not always. Then we define, for r, c ∈ R, the Gauss sum

g(r, ε, c) =
∑

y (mod c)

ε

((
y
c

)
n

)
e
(

ry
c

)

where we sum over those y that are coprime to c. Our main interest will be in the
behaviour of g(r, ε, c) as a function of c. To this end we shall introduce a family of
functions. For a, b ∈ k×

∞ we write a ∼ b if a/b ∈ k×n
∞ . Then we define for η ∈ k×

∞

ψ(r, ε, η, s) = (1 − qn−ns)−1
∑

c∈R,c∼η

g(r, ε, c)q− deg(c)s.

Since for u ∈ �×
q one has ψ(r, ε, uη, s) = ε((u, η)∞)ψ(r, ε, η, s) it suffices to consider η of

the form π i
∞. Note that for u as above one also has ψ(ur, ε, η, s) = ε

(
(u, η)−1

∞
)
ψ(r, ε, η, s)

so that it involves no loss of generality to consider only monic r.
In the notation of [9] we have, if n is odd,

q − 1
n

Zm′(t, i) = ψ(m′, j−1, π−i
∞ , s1)

and, if n is even,

q − 1
n

Zm′ (t, i) = ψ(m′, j−1, π−i
∞ , s1) + ψ

(
m′, j−1, π−i+n/2

∞ , s1
)

where t = q−s1 and the s of [9] is s1/2. The numerical factor q − 1
n arises as Hoffstein

considers monic polynomials c whereas we consider those whose leading coefficient is
an nth power.

The general theory, [10, §II.3], also recalled in [9], shows that ψ(r, ε, π−i
∞ , s) is

a rational function in q−s with denominator 1 − qn+1−ns. The definition shows that
if we choose i to satisfy 0 ≤ i < n then the numerator of ψ(r, ε, π−i

∞ , s) is of the
form q−is times a polynomial in q−ns. This fact means that we can separate the
two components of Hoffstein’s Zm′ (t, i) in the case that n is even; this allows us to
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take over his results without any further arguments. In particular we can compute
the degree of the numerator. What we find on using [9, Proposition 2.1] is that
ψ(r, ε, π−i

∞ , s) = q−is(1 − qn+1−ns)−1	(r, ε, i, q−ns) where the degree of the polynomial
	(r, ε, i, T) in T is at most [(1 + deg(r) − i)/n]. This follows from the proposition in
question by considering the behaviour on both sides as t → ∞; we shall consider the
functional equation in detail in Section 3. Note that the bound will be negative when
deg(r) ≤ i − 2; in this case 	(r, ε, i, T) = 0.

We let

C(r, ε, i) =
∑

deg(c)=i
c monic

g(r, ε, c). (1)

Then for i with 0 ≤ i < n we have

(1 − qn−ns)ψ(r, ε, π−i
∞ , s) = q − 1

n

∑
i′≥i

i′≡i (mod n)

C(r, ε, i′)q−i′s.

This means that

	(r, ε, i, T) = 1 − qn+1T
1 − qnT

q − 1
n

∑
j≥0

C(r, ε, i + n j)Tj. (2)

We have thus reduced the calculation of the 	(r, ε, i, T), and thereby of the
ψ(r, ε, π−i

∞ , s), to that of the C(r, ε, i) with i ≤ deg(r) + 1. For the j ≥ [(1 + deg(r) −
i)/n] and 0 ≤ i < N we have recurrence relation C(r, ε, i + ( j + 1)n) = qn+1C(r, ε, i +
jn).

The quantity which will interest us most is

ρ(r, ε, i) = 	(r, ε, i, q−n−1)
= lim

s→1+ 1
n

(1 − qn+1−ns)qisψ(r, ε, π−i
∞ , s) (3)

which is also the Fourier coefficient of a generalized theta series. It follows from the
discussion above that

ρ(r, ε, i) = q − 1
n

.
C(r, ε, i′)

q
n+1

n (i′−i)

where i′ ≡ i (mod n) and i′ > deg(r). In view of (1) this is an explicit formula for
ρ(r, ε, i). We note here that ρ(r, ε, i + nN) = q(n+1)Nρ(r, ε, i) for N ∈ �.

In [9] the C(r, ε, i) are denoted by Si(r) (generally with m′ in place of r). Also,
corresponding to ρ(r, ε, i) Hoffstein uses q−1

n rm′ (i) with m′ = r.
We shall discuss the evaluation of the C(r, ε, i) and the consequences for the

understanding of the ρ(r, ε, i), and also of the ψ(r, ε, π−i
∞ , s), or, what is effectively the

same, the 	(r, ε, i, T).

2. The Davenport-Hasse theorem. The version of the Davenport–Hasse theorem
which we need here is the following. Let χ, ε, e� be as as above. Let m > 1 be an integer.
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Let q′ = qm. Let τ (ε) be the Gauss sum

τ (ε) =
∑
y∈�×

q

ε(χ (y))e�(y).

Then (see [4, §3,I])∑
y∈�×

q′

ε
(
χ

(
Norm�q′ /�q (y)

))
e�

(
Tr�q′ /�q (y)

) = −(−τ (χ ))m.

Let µ denote the Möbius function in R. Then we shall use the Davenport–Hasse
theorem to prove the following theorem.

THEOREM 2.1. Let r, c ∈ R be coprime. Then we have

g(r, ε, c) = µ(c)ε

((−r
c

)−1

n

(
c′

c

)
n

)
(−τ (ε))deg(c)

where, as usual, c′ denotes the derivative of c with respect to x.

Proof. First of all we recall that if c is not square–free and if r is coprime to
c then g(r, ε, c) = 0. Thus in this case both sides of the formula are zero. Next,
under the assumption that r and c are coprime it is also elementary that g(r, ε, c) =
ε(( r

c )−1
n )g(1, ε, c) and so we can assume that r = 1. It is a further elementary property

of Gauss sums that if c1, c2 ∈ R are coprime then

g(r, ε, c1c2) = ε

((
c1

c2

)
n

(
c2

c1

)
n

)
g(r, ε, c1)g(r, ε, c2).

One verifies also easily from the chain rule that if c1 and c2 are coprime in R then(
(c1c2)′

c1c2

)
n

=
(

c1

c2

)
n

(
c2

c1

)
n

(
c′

1

c1

)
n

(
c′

2

c2

)
n
.

It follows that we are thus reduced to proving the theorem in the case where c is
irreducible and r = 1. In this case we have that g(r, ε, c) is equal to

∑
y (mod c)

ε

((
y
c

)
n

)
e�

(
Res∞

(
y dx

c

))

which we rewrite as

∑
y (mod c)

ε

((
y
c

)
n

)
e�

(
Res∞

(
y dc
c′c

))
.

As before we can extract the c′ as an external factor ( c′
c n) since c′ is coprime to c (as c is

irreducible). Let m = deg(c). Then we can identify R/(c) with �qm . It remains to show
that Res∞( y dc

c ) = −Tr�qm /�q (y) and ( y
c )n = Norm�qm /�q (y). The first of these follows

from first using Abel’s theorem to convert the residue to the sum of the residues over
the zeros of c (over a suitable extension field) and we obtain precisely the result claimed.
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For the second we recall that Norm�q′ /�q (y) = y1+q+q2+···+qm−1 = y
qm−1
q−1 . When we apply

χ to this we obtain

χ
(
Norm�qm /�q (y)

) = y
qm−1
q−1

q−1
n =

(y
c

)
n

in R/(c). The result in the case where c is irreducible follows now directly from the
Davenport–Hasse theorem. This completes the proof of the theorem. �

One consequence of this theorem is that for c coprime to r one has g(r, ε, c)n =
µ(c)n((−τ (ε))n)deg(c). The second factor on the right–hand side is a Größencharakter
and the formula is simply the Eisenstein–Weil theorem in this context.

We shall use this to give a more useful expression for the C(r, ε, i). We let

C∗(r, ε, i) =
∑

deg(c)=i
c monic,gcd(r,c)=1

g(r, ε, c). (4)

If we write c = r∗c1 in (1) where r∗ is monic and divides some power of r and c1 is
coprime to r then we obtain

C(r, ε, i) =
∑

r∗
g(r, ε, r∗)ε(χ (−1))(i−1) deg(r∗)C∗(rr∗(n−2)

, ε, i − deg(r∗)
)
. (5)

The set of r∗ is finite and easily described. On the other hand our theorem shows that

C∗(rr∗(n−2)
, ε, i

) = (−τ (ε))i
∑

c1 monic
deg(c1)=i, gcd(c1,r)=1

µ(c1)ε

((
r
c1

)−1

n

(
r∗

c1

)2

n

(
c′

1

c1

)
n

)
. (6)

This method of calculation has the advantage that, it reduces the number of Gauss
sums that have to be computed to a finite set depending only on r; as one of our
questions concerns the behaviour of ρ(roπ

j, ε, i) as a function of j for field ro (not
divisible by π ). For most purposes π will be irreducible. It is also to be noted that the
degree of cancellation expected is not excessive since one knows that at least for large
i the function C∗(r, ε, i) grows like qi(1+ 1

n ). The inner sum grows then like qi( 1
2 + 1

n ) and
has of the order qi terms.

J. Hoffstein’s method for computing C(r, ε, i) was to start from

C(r, ε, i) =
∑

deg(c)=i
c monic

g(r, ε, c).

and to expand it to

C(r, ε, i) =
∑

deg(c)=i
c monic

∑
y (mod c)

ε

((y
c

)
n

)
e(y/c).

One can take as a set of residues (mod c) the set of y of degree < i which is independent
of c. Thus the sum on the right-hand side can be regarded as a double sum where the
outer sum is over j < i and the inner sum is over c, y where the deg(y) = j. For i small
this can be used effectively but we shall not make any use of it here. Generally it has the
disadvantage that there is a much larger amount of cancellation which takes place here;
the number of terms is of the order q2i but the sum is of the order qi(1+ 1

n ). Hoffstein
uses it only when the degrees are small.
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3. Hecke theory and the functional equation. Let S be a set of prime elements of
R and let ψS(r, ε, η, s) be defined in the same way as ψ(r, ε, η, s) but with the restriction
that the c are coprime to all elements of S. One can verify that if π is a prime not is S
and if r is coprime to π then

ψS(rπ j, ε, η, s) = 1−N(π)n−1−ns−(1−N(π)−1)N(π)( j+1)(n−ns)

1−N(π)n−ns ψS∪{π}(rπ j, ε, η, s)

+ g(−r, εj+1, π )ε(η, π j+1)∞N(π )j−( j+1)sψS∪{π}(rπ−j−2, ε, ηπ−j−1, s)

where for any c ∈ R, c �= 0 we write N(c) = qdeg(c). Also J = [ j/n] and the exponent
−j − 2 appearing in the arguments of the last function is to be understood (mod n).
This formula can be considered as a sort of “Hecke theory" for these functions. Note
that the function ψS∪{π}(rπ j, ε, η, s) depends on j only (mod n) whereas ψS(rπ j, ε, η, s)
has a more complicated behaviour in j – described by the formula. If j < n − 1 then
the formula simplifies to

ψS(rπ j, ε, η, s) = ψS∪{π}(rπ j, ε, η, s)

+ g(−r, εj+1, π )ε(η, π j+1)∞N(π )j−( j+1)sψS∪{π}(rπ−j−2, ε, ηπ−j−1, s)

and for j = n − 1 one has

ψS(rπ j, ε, η, s) = ψS∪{π}(rπ j, ε, η, s)(1 − N(π )n−1−ns).

These equations can be inverted to show that

ψS∪{π}(rπ j, ε, η, s)(1 − N(π )n−1−ns)

is equal to

ψS(rπ j, ε, η, s) − g(−r, εj+1, π )ε(η, π−( j+1))∞N(π )j−( j+1)sψS(rπn−j−2, ε, ηπ−j−1, s)

for 0 ≤ j ≤ n − 2; if j = n − 1 the appropriate formula has already be given above. This
formula can be extended to a set of primes {π1, π2, . . . , πt}. Let, for 1 ≤ i ≤ t, ji be
such that 1 ≤ ji ≤ n − 2. Let r be coprime to all the πj, (1 ≤ j ≤ t) Then we find that

ψS∪{π1,π2,...,πt}
(
rπ j1

1 π
j2
2 · · · π jt

t , ε, η, s
) ∏

1≤i≤t

(1 − N(πt)n−1−ns)

is equal to a sum over all the subsets of {1, 2, . . . , t} where the term corresponding to
T ⊂ {1, 2, . . . , t} is

(−1)Card(T)
∏
i∈T

⎛
⎜⎜⎝g(−r, εji+1, πi)

∏
�∈T
� �=i

(
π�

πi

)ji+1

n
ε
(
η, π−ji−1

i

)
∞N(πi)ji−( ji+1)s

⎞
⎟⎟⎠

ψS

⎛
⎝r

∏
� �∈T

π
j�
�

∏
i∈T

πn−ji−2
i , ε, η

∏
i∈T

π−ji−1
i , s

⎞
⎠ .
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The main application of this which we shall need is the observation that if r is a unit
and 0 ≤ i < n then

ψ{π1,π2,...,πt}
(
rπ j1

1 π
j2
2 · · ·π jt

t , ε, π−i
∞ , s

) ∏
1≤i≤t

(1 − N(πt)n−1−ns)

is of the form q−is	{π1,π2,...,πt}(rπ
j1
1 π

j2
2 · · · π jt

t , ε, i, q−ns)
/

(1 − qn+1−ns) where 	{π1,π2,...,πt}(
rπ j1

1 π
j2
2 · · · π jt

t , ε, i, X
)

is a polynomial of degree ≤ ∑
1≤j≤t deg(πj). This is not an

optimal estimate but it is nevertheless useful.
Next, the Periodicity Theorem [10, p. 134] implies that for π �∈ S

lim
s→1+ 1

n

qis(1 − qn+1−ns)ψS∪{π}(r, ε, π−i
∞ , s)(1 + N(π )−1)

= lim
s→1+ 1

n

qis(1 − qn+1−ns)ψS(r, ε, π−i
∞ , s).

From this one concludes that

ρ
(
rπ j1

1 π
j2
2 · · · π jt

t , ε, i
) =

∏
1≤i≤t

(1 − N(πi)−1)−1	{π1,π2,...,πt}
(
rπ j1

1 π
j2
2 · · ·π jt

t , ε, π−i
∞ , q−n−1).

On the other hand we have

	{π1,π2,...,πt}
(
rπ j1

1 π
j2
2 · · · π jt

t , ε, π−i
∞ , qns)(1 − qn+1−ns)

is equal to ∏
1≤j≤t

(1 − N(πj)n−1−ns)
∑
�≥0

C∗(π j1
1 π

j2
2 · · · π jt

t , ε, i + n�
)
q−n�s.

We shall write ∑
�≥0

C∗∗(π j1
1 π

j2
2 · · · π jt

t , ε, i + n�
)
X�

for ∏
1≤j≤t

(1 − qdeg(πi)(n−1)Xdeg(πi))
∑
�≥0

C∗(π j1
1 π

j2
2 · · · π jt

t , ε, i + n�
)
X�

and observe that the coefficients C∗∗(r∗, ε, i) can be computed by a difference scheme
from the C∗∗(r∗, ε, i). Finally we remark that if

(1 − qn+1X)
∑

�

d�X�

is a polynomial of degree N in X , say
∑

0≤�≤N D�X� then D� = d� − qn+1d�−1 if
� > 0 and D0 = d0. This means that

∑
0≤�≤N D�q−(n+1)� telescopes to dNq−N(n+1) and

consequently that

ρ
(
rπ j1

1 π
j2
2 · · ·π jt

t , ε, i
) =

∏
1≤i≤t

(1 − N(πi)−1)−1C∗∗(rπ j1
1 π

j2
2 · · ·π jt

t , ε, i + Mn
)
q−M(n+1)

for M >
∑

1≤j≤t deg(πj).
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The functional equation takes on the following form (this is [9, Proposition 2.1]
with the necessary modifications) for i with 0 ≤ i < n and r monic:

qisψ
(
r, ε, π−i

∞ , s
) = qn(s−1)Eq(2−s)iψ(r, ε, π−i

∞ , 2 − s) 1−q−1

1−qns−n−1

+ εχ (−1)i(1+deg(r))τ (ε2i−deg(r)−1)qn(2−s)([(1+deg(r)−i)/n]−2)q2n−deg(r)+2i−2

× q(2−s)(1+deg(r)−i)nψ(r, ε, π i−1−deg(r)
∞ , 2 − s) 1−qn−ns

1−qns−n−1

where

E = 2 +
[

2i − 2 − deg(r)
n

]
= 1 −

[
deg(r) + 1 − 2i

n

]

and (x)n = x − n[x/n].
The restriction that r be monic represents no loss of generality as ψ(ur, ε, i, s) =

χ (u)−iψ(r, ε, i, s) for a unit u.
We can also express the functional equations as relations between the appropriate

	(r, ε, i, T) and 	(r, ε, i′, q−2T−1). This becomes a set of relations between five
C(r, ε, i, j); we shall not make any use of them here.

There are some important relations between the ρ(r, ε, i). The first, the Periodicity
Theorem, (see [10, p. 134]) asserts that this function depends only on r modulo nth
powers. One can deduce easily from this and the Hecke relations above that for 0 ≤
j < n − 1 one has

ρ(roπ
j, ε, i) = N(π )−

j+1
n g(−ro, ε

j+1, π )εχ (−1)i( j+1) deg(π)

× ρ(roπ
n−2−j, ε, i − ( j + 1) deg(π )) (7)

and

ρ(roπ
n−1, ε, i) = 0 (8)

where π is irreducible, monic and coprime to ro. There is a form of this relation for the
“infinite prime”; this has been given in [9, Proposition 2.2]. It asserts

ρ(r, ε, i) = τ
(
ε2i−1−deg(r))εχ (−1)i(1+deg(r))ρ(r, ε, (1 + deg(r) − i)n)q2i+E−3−deg(r) (9)

and

ρ(r, ε, i) = 0 (10)

if 2i ≡ 1 + deg(r) (mod n). Note that in [9] the last assertion is not asserted but it
follows because the Gauss sum is −1.

In the case n odd then the number of undetermined ρ(roπ
j, ε, i) for fixed ro drops

from n2 to ((n − 1)/2)2. The situation when n is even is rather more difficult to analyze
and depends more sensitively on the context, especially on the nature of n and deg(ro)
but nevertheless the number of independent coefficients is reduced by something like
a factor of 4.

4. Some examples. We have already seen that the degree of 	(r, ε, i, T) is bounded
by [(deg(r) + 1 − i)/n]. Thus if deg(r) < i − 1 then 	(r, ε, i, T) = 0. This applies only
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to r with deg(r) ≤ n − 2 as 0 ≤ i < n. Let co = q − 1
n . If now 0 ≤ deg(r) + 1 − i < n,

i.e. i − 1 ≤ deg(r) < i − 1 + n then 	(r, ε, i, T) = C(r, ε, i). In these cases ρ(r, ε, i) =
coC(r, ε, i). When we use this in combination with the relations between different
ρ(r, ε, i) described in the previous section then we can compute, for small n, the ρ(r, ε, i)
for a useful number of r (or deg(r)) and i.

The cases n = 2 and n = 3 are not that relevant to us here because the relations
(7) and (8) suffice to determine the ρ(r, ε, i) completely once we have treated the cases
with deg(r) = 0. If n = 2 we have only the cases i = 0, 1 and the considerations above
show that ρ(1, ε, 0) = co. The relation (9) shows that ρ(1, ε, 1) = coτ (ε)q. If n = 3 then
again ρ(1, ε, 0) = co and ρ(1, ε, 1) = coτ (ε)q. Finally (10) shows that ρ(1, ε, 2) = 0.

If n = 4 then we have again ρ(1, ε, 0) = co and ρ(1, ε, 1) = coτ (ε)q. Further
ρ(1, ε, i) = 0 for i = 2, 3. If deg(r) = 1 and r is monic then we have ρ(r, ε, 0) = co,
ρ(r, ε, 2) = coτ (ε2)q2 and ρ(r, ε, i) = 0 for i = 1, 3. If deg(r) = 2 then we have ρ(r, ε, i) =
coC(r, ε, i) for all i. This case is interesting because the relations (9) apply. These show
that in this case

C(r, ε, 2) = τ (ε)qC(r, ε, 1)εχ (−1)

and, as C(r, ε, 0) = 1,

C(r, ε, 3) = τ (ε3)q3.

These equations are not self-evident. When deg(r) = 3 one has by (10) that ρ(r, ε, i) = 0
for i = 0, 3 and ρ(r, ε, i) = coC(r, ε, i) for i = 1, 3. Here one has

C(r, ε, 3) = τ (ε2)q2C(r, ε, 1).

If deg(r) = 4 and i = 0, 1 then the degree of 	(r, ε, i, T) is at most 1 and so this
polynomial depends on C(r, ε, i) and C(r, ε, i + 4) for these values of i. On the other
hand for i = 3, 4 we have ρ(r, ε, i) = coC(r, ε, i) and

C(r, ε, 3) = τ (ε)q2C(r, ε, 2).

For larger values of deg(r) we could give expressions but they are more complicated
and we shall not discuss them here.

For larger values of n the same methods allow us to compute ρ(r, ε, i) for all i
and deg(r) ≤ n − 1. The case deg(r) = n − 1 and i = 0 is special since we have to use
(10) from which we obtain ρ(r, ε, 0) = 0. For deg(r) < n − 1 one has ρ(r, ε, 0) = co.
For other values of deg(r) and i we have ρ(r, ε, i) = 0 if deg(r) < i − 1 and ρ(r, ε, i) =
coC(r, ε, i) otherwise. Again the equations (9) lead to non-trivial relations between the
C(r, ε, i).

We next turn to the evaluation of the C(r, ε, i) when deg(r) ≤ n − 1. This we do
using (5) and (6). In the former the set of r∗ satisfies deg(r∗) ≤ i < n and so no r∗ has a
factor which is a non-trivial nth power. It follows from this that there is only one r∗ and
it is such that r/r∗ is ro, the product over the irreducible polynomials which divide r. If
deg(ro) > i then C(r, ε, i) = 0, otherwise C(r, ε, i) = g(r, ε, r/ro)C∗(r, ε, i − deg(r/ro)).
The factor C∗(r, ε, i′) has been evaluated by (6). There are some special cases which
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one can deal with more completely. We have C∗(r, ε, 0) = 1. Next

C∗(r, ε, 1) = (−τ (ε))
∑
a∈�q

r(a)�=0

ε(χ (r(a)))−1

which is a character sum of classical type. If r is of degree 0 then this sum is
(q − 1)ε(χ (r(0)))−1. If r is of degree 1 then it is 0. If r is if degree 2 then it is essentially
a Jacobi sum; the cases where r is irreducible and where it is reducible are a little dif-
ferent – see, for example, [9, Remark following Prop. 3.4].

For r of degree greater than 2 the nature of the sum is less clear and one can verify
that the prime decomposition is no longer made up of divisors of q. This corresponds
to the fact that the analogue of the

∑
a∈�q

r(a)�=0

ε(χ (r(a)))−1 in complex analysis is a beta

integral if deg(r) = 2 but a hypergeometric function if deg(r) = 3.
In (6) we can split the sum over c1 into two sums. We consider semi-simple

commutative algebras A over �q of rank i. For each c1 the algebra �q[x]/(c1) is such
an A. We can then regard the sum in (6) as an outer sum over all such A and then an
inner sum over elements a ∈ A for which the discriminant does not vanish. These sums
are in general not easy to analyze. It is worth noting that they are essentially known
for deg(r) ≤ 2 and, when deg(r) = 2, r is reducible. The sums are then analogues of
Selberg’s integral and the evaluation was effected by Anderson and Evans, see [8].
For the convenience of the reader we shall quote the more general version given in
[15] in language closer to that of this paper. Suppose that q is odd. Let ε1, ε2, ε3 be
homomorphisms �×

q → �× with ε3 non-trivial. Let d be the order of ε3. Let φ be the
unique character of �×

q of order 2. We shall assume that ε1 and ε2 are powers of ε3.
We define j, k by ε1ε

j
3 = 1, ε2ε

k
3 = 1, and 0 ≤ j < d, 0 ≤ k < d. Let i be an integer with

i > j and i > k. Let

C(ε1, ε2, ε3, i) =
∑

c

ε1((−1)ic(0))ε2(c(1))ε3(D(c))φ(D(c))

where the sum is over all polynomials of degree i without multiple factors. Let

D(ε1, ε2, ε3, i) =
∏

0≤�<i

τ
(
ε1ε

�
3

)
τ
(
ε2ε

�
3

)
τ
(
ε3ε

�
3

)
τ̄
(
ε1ε1ε

n−1+�
3

)
qτ (ε3)

Then C(ε1, ε2, ε3, i)/D(ε1, ε2, ε3, i) is a rational integer which is given by

q[i/d]

⎛
⎝−i +

∑
0≤s≤2[i/d]

(2s + 1)q2[i/d]−s

⎞
⎠

if (n)d ≤ j and ( j + k + 1 − n)d > k , by

q[i/d]+1

⎛
⎝−i +

∑
0≤s≤2[i/d]+1

(2s + 1)q2[i/d]+1−s

⎞
⎠

if (n)d > k and ( j + k + 1 − n)d ≤ j and by

1 + (q − 1)i

otherwise.
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The proof of this beautiful formula is based on an idea of G.W.Anderson [1]. It
is based on studying the L-functions associated with characters of the form ε(( V

∗ )q−1)
and interpreting the Jacobi-Legendre symbol, as above, in terms of the resultant.
J. Denef and F. Loeser [6] gave a variant of the proof and were led in [7] to a more
general related result.

The formulæ (2),(3), (5) and (6) show that

ρ(r, ε, i) ∈ τ (εi) × q − 1
n

q−(n+1)[(1+deg(r)−i)/n]�[11/n]

where, as before ρ(r, ε, i) = 0 if 1 + deg(r) < i. In simple cases the element of �[11/n] is
a product of Jacobi sums but this will not be so in general. The cases which we have
discussed above show that the prime decomposition can be somewhat unpredictable.
If, for example, the polynomial r is of degree 3 then the sum defining C is an analogue
of the hypergeometric function and so one would not expect that its behaviour as a
function of r will be simple.

There is every reason to expect that much the same holds in characteristic 0, at least
up to a transcendental factor – see [9, Conjecture 4.10]. In this context “transcendental”
means that it is a special value of a function built out of standard transcendental
functions, not that it is transcendental in the stricter use of this word. Nevertheless it
probably is transcendental in this sense, but not provably so. Also there is no obvious
“denominator” corresponding to the factor q−(n+1)[(1+deg(r)−i)/n].

When n = 3 and k = �(
√−3) one has a closed formula [11, Theorem 9.1] in which

the transcendental factor is given explicitly.
When n = 4 this conjecture is compatible with the evidence of [5]. Here no

interpretation of the transcendental factor was proffered ([5, p. 240]).
When n = 6 G.Wellhausen has computed ρ(r, ε, η) for 44 values of r. He was

able to give an interpretation of the transcendental factor. He found in the range he
considered a number of ‘sporadic’ factors – and these seem to be the analogues of
those we have seen above. Consequently it seems to be the case that one has to give up
the idea that there is a “closed formula” for the ρ(r, ε, η). One has to consider them
as a a new class of arithmetic functions (in r). They have certain characteristics which
are analogous to Gauss sums. If we regard Gauss sums as, essentially, nth roots of
Größenchakaktere (by the Eisenstein-Weil theorem) then the ρ(r, ε, η) are a further
class of the same type. The relationship between them will essentially be given by the
“inner products”, that is, the asymptotic behaviour of r �→ g(r′, ε, r)ρ(rr′′, ε, η). This
leads us to the investigations on “Weyl multiple Dirichlet series” (see, for example, [3]
and its sequels). This theory is far from complete but it offers considerable promise
in understanding the arithmetic role of the coefficients of generalised theta series on
general linear groups as considered in [10, §II.3].
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