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Abstract. We study the statistical inference of the cosmological dark matter density field from
non-Gaussian, non-linear and non-Poisson biased distributed tracers. We have implemented a
Bayesian posterior sampling computer-code solving this problem and tested it with mock data
based on N -body simulations.
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1. Introduction
The distribution of galaxies poses a challenging multivariate statistical problem. Galax-

ies are biased tracers of the underlying three-dimensional dark matter density field.
To accurately infer such fields one needs to account for the non-Gaussian, non-Poisson
and non-linear biased distribution of galaxies. We show that this is possible within the
Bayesian formalism by explicitly writing down the posterior distribution including these
effects.

2. Method
We rely on the Bayesian framework to express the posterior distribution function (like-

lihood weighted prior) of matter fields given a set of tracers, a biasing and a structure
formation model. In particular we consider a negative binomial distribution for the like-
lihood modeling the data (the galaxy field). This permits us to model the over-dispersed
galaxy counts (see Kitaura et al. 2014 and references therein). The expected galaxy num-
ber density is related to the dark matter density through a nonlinear scale-dependent
expression extracted from N -body simulations (see Cen & Ostriker 1993; de la Torre
& Peacock 2013; Kitaura et al. 2014; Neyrinck et al. 2014). In this way we extend the
works based on the Poisson and linear bias models (Kitaura & Enßlin 2008; Kitaura et al.
2010; Jasche & Kitaura 2010; Jasche & Wandelt 2013) following the ideas presented in
Kitaura 2012 and Kitaura et al. 2014. In particular, we implement these improvements
in the argo Hamiltonian-sampling code able to jointly infer density, peculiar velocity
fields and power-spectra (Kitaura, Gallerani & Ferrara 2012). For the prior distribution
describing structure formation of the dark matter field we use the lognormal assumption
(Coles & Jones 1991). We note however, that this prior can be substituted by another
one, e. g. based on Lagrangian perturbation theory (see Kitaura 2013; Kitaura et al. 2012;
Jasche & Wandelt 2013; Wang et al. 2013; Heß, Kitaura & Gottlöber 2013). Alternatively,
one can extend the lognormal assumption in an Edgeworth expansion to include higher
order correlation functions (Colombi 1994; Kitaura 2012). We calculate the posterior dis-
tribution on a grid of NC cells dividing our observed volume. The lognormal distribution
for the dark matter field δM can be written as a function P(δM |S({pC })), with {pC } being
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a set of cosmological parameters that go into the covariance matrix S. For the likelihood
we consider the negative binomial distribution (NB), so that the probability of observing
Ni galaxies in a voxel given the expectation value λi = fN̄ wi(1 + δi

M)α exp[−( 1+δ i
M

ρε
)ε ]

is given in the following form: L(N|λ, β), with the parameter β modeling the deviation
of Poissonity. For β → ∞ or for low expectation values (low λ) the NB tends towards
the Poisson distribution function. We note that deviations from Poissonity to model the
galaxy distribution have been considered in previous works (see e. g. Saslaw & Hamilton
1984; Sheth 1995).

The expected number counts λi is constructed from the mean number per voxel N̄ ,
the completeness wi , and the density (1 + δi

M)α exp[−( 1+δ i
M

ρε
)ε ] in the voxel. fN̄ is the

normalisation factor: fN̄ = N̄

〈( 1 + δ l
M )α e

[−(
1 + δ l

M
ρ ε

) ε ]

〉, where 〈...〉 denotes the ensemble average

over the whole volume. The biasing parameters are given by {α, β, ε, ρε}. Combining
these terms to a posterior function gives a full description of the desired probability to
infer the dark matter field from the observed galaxy distribution P (δM |N,S({pC })) ∝
P(δM |S({pC })) × L(N|λ, β):

P (δM |N, S({pC })) =
1√

(2π)NC det(S)

NC∏
l=1

1
1 + δl

M

(2.1)
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.

Note that for the field Φ = ln(	)−〈	〉 = ln(1+δM)−μ our prior is exactly a Gaussian prior.
Therefore, our method yields at the same time the optimal logarithmic Gaussianised
density field (Neyrinck et al. 2009, Carron & Szapudi 2014).

3. Validation
We employ our recently developed Hamiltonian Markov Chain Monte Carlo based

computer code for Bayesian inference from the posterior distribution shown in Eq. 2.1
(see Ata et al.in prep). To test our method we take a subsample of 2 · 105 halos from
the halo catalog of the Bolshoi dark matter only N -body simulation at redshift zero
comprising the halo masses between 109 and 1014 M� (Klypin et al. 2011). We run two
independent chains: the first one with the classical Poisson-Lognormal model, and the
second one with the novel NB-Lognormal model. Our results demonstrate that our new
model is able to recover the dark matter density field yielding unbiased power-spectra
(within 5%) in the k-range of 0.02 to 0.6 h Mpc−1 (see solid blue and bashed dotted light
blue lines in Fig. 1). However, the Hamiltonian sampling run with the Poisson-Lognormal
model including the same nonlinear deterministic bias produces biased reconstructions
with power-spectra deviating about 20 % at ∼ k = 0.4 h Mpc−1 (see red dashed line in
Fig. 1). The superior three-dimensional resamblance between the original dark matter
field from the N -body (8 · 109 dark matter particles) and the reconstruction (based on
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Figure 1. Power spectra
Slices ob the observed volumes

2 · 105 halos), using the NB likelihood as compared to the Poisson likelihood, is apparent
in the slice cuts shown in Fig. 1.

4. Conclusions
We have introduced a detailed posterior distribution within the Bayesian framework

accurately modeling the statistical nature of the distribution of galaxies. Moreover, we
have implemented a Hamiltonian sampling code to infer the corresponding matter density
fields. We validated our method against realisitic mock data for which the underlying
dark matter density field is known. Our numerical tests emphasize the importance of a
scale-dependent nonlinear bias and the deviation from Poissonity.
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