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Introduction. In recent years a new approach to the study of compact symmetric
spaces has been taken by Nagano and Chen [10]. This approach assigned to each pair of
antipodal points on a closed geodesic a pair of totally geodesic submanifolds. In this paper
we will show how these totally geodesic submanifolds can be used in conjunction with a
theorem of Bott to compute homotopy in compact symmetric spaces. Some of the results
are already known (see [1], [5], [11] for example) but we include them here for
completeness and to illustrate this unified approach. We also exhibit a connection
between the second homotopy group of a compact symmetric space and the multiplicity of
the highest root. Using this in conjunction with a theorem of J. H. Cheng [6] we obtain a
topological characterization of quaternionic symmetric spaces with antiquaternionic
involutive isometry. The author would like to thank Prof T. Nagano for all his help and
his detailed descriptions of the totally geodesic submanifolds mentioned above.

i

Preliminaries.

DEFINITION. A Riemannian manifold M is called a symmetric space, if for each point
q of M, there exists an involutive isometry sq of M such that q is an isolated fixed point of
sq. We call sq the symmetry at q.

If G is the closure in the compact open topology of the group of symmetries
generated by {sq\q eM}, then it is known that G is transitive on M, (provided M is
connected, which we will assume hereafter) and hence the typical isotropy subgroup K,
say at o, is compact and M = G/K. We will assume throughout that G is semisimple and
that M (and therefore G) is compact. We will denote the Lie algebra of G by g and the
involution ad(so)(g) = sogso by ad(so). We will use the same notation for the induced
involution on g. Since G is semisimple, the Killing form Bg is a negative definite bilinear
form on g invariant under ad G.

The Cartan decomposition of g with respect to ad(so) is given by g = k + m where k
and m denote the eigenspaces of plus and minus one respectively. Since k is the Lie
algebra of K, we identify m with the tangent space to M at o. The following inclusions are
well known.

[m, m]<=k, [k, m]<=m, [k,k]ck.

We will denote by <, > the unique Riemannian metric on M, which is invariant under G
and coincides on the tangent space TOM to M at o with — B%. Recall that on a symmetric
space M the exponential map Exp: TOM—>M is given by ExpX = (expX)(o), where exp
is the exponential map of G, sometimes just written as ex, for X em. We will denote by
h a maximal abelian subalgebra of m and by A its image under Exp: TOM—>M, that is A
is a maximal torus through o in M. The dimension of such a torus is then by definition the
rank of M denoted by r(M). Using the fact that {ad(//)2 \H e h} is a commutative system
of semisimple operators stabilizing m and k we get the following well known result [7,
Chapter 7].
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THEOREM A. (1) We have the following orthogonal root space decompositions

m = h+ 2 m<*> k = ko+ 2 K
aeR(M) aeR(M)

(2) For each aeR(M) we can choose bases {Xa} and {Ya} for ma and ka respectively
such that

(a)
[H,Xa] = a(H)Ya and [H, Ya] = -a{H)Xa, for all H eh

(b)
ad(exp H)Xa = cos oc{H)Xa + sin a(H) Ya and

ad(exp H) Ya = cos a(H) Ya - sin a(H)Xa, for all H eh.

DEFINITION. The linear forms o-ih-^R are called the roots of M with respect to h
and n{a) = dim ma = dim ka is called the multiplicity of a.

We can order the roots in a standard manner and this enables us to define positive
roots and simple roots. We will denote the simple roots by or,,. . . , ar where r = r(M)
and we will use the symbol 2 to denote the set of simple roots. Before proceeding we
recall a few more facts. For Xegv/e may consider X as a vector field on M, which we
will also denote by X. Its value X(p) at p e M is the initial tangent to the curve
(exp tX){p). Since G acts on M as a group of isometries, it therefore carries geodesies to
geodesies and hence X restricted to a geodesic is a Jacobi field along that geodesic.

For each smoothly closed geodesic c through o, we consider the antipodal point p of
o on c. Denote by M+(p) the orbit Kw(p) of the identity component of K through p,
then M+(p) = F(so,M)(p) is a symmetric space and is called a polar set of M. Note that
so fixes the point p and therefore so ° sp = sp °so, so that ad(sp) stabilizes k and m giving us
a Cartan decomposition g = (k+ + m+) + (k~ + m~) at p. M+(p) = K/K+ and the tangent
space to M+(p) at p can be identified with k~, that is TpM

+(p) = {Y(p) | Y e k~}. The
normal space to TpM

+(p) is the tangent space to another connected totally geodesic
submanifold denoted by M~{p). Now M~{p) = F{sp°so,M){p) = F{sp°s0,M){o) and
ToM~(p) can be identified with m~ as can TpM~(p). We also have that M~(p) = G~/K+

where G~ is the connected subgroup of G given by the Lie subalgebra k+ + m~. We
define two lattices as follows F = {// e h | exp H e K} and F° = £ Zav where the sum is
taken over all roots and av = 2nAJ(Aa,Aa), where Aa is the unique vector in h such
that (H,Aa) = a(H) for all / / e h .

DEFINITION. The index of a geodesic y from p to q is defined to be the number of
conjugate points of p counted with their multiplicities, in the open geodesic segment from
p to q. We will denote the space of shortest geodesies from p to q by the symbol Qd.

THEOREM (R. Bott). / / Qd is a topological manifold and if every non shortest geodesic
from p to q has index greater than or equal to Ao, then

n,+1(M) = n,(Q"), f o r ; < A 0 - l .

DEFINITION. A polar set M+(p) is called a pole of the symmetric space M if and only
if M+(p) = {p}. This is equivalent to the condition that the symmetries sp and so agree on
M.
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Now so°sq = sq°so if and only if either so(q) = q or q is the midpoint of a geodesic
from o to a pole o' of M.

DEFINITION. Let o' be a pole of A/, then the centrosome, denoted by C(o,o') is
defined as follows C(o, o') = {y e M \so°sy = sy°so,so(y)¥=y).

Note if we project to the symmetric space M/(o,o') (obtained from M by identifying
o and o') or M* the symmetric space characterized by the property that every space
locally isometric to M is a covering manifold of M, then C(o,o') projects to a polar set of
this space. Thus finding the new polar set in this space (which is starred in the list of
Nagano and Chen [10]) gives us a method of finding the space of shortest geodesies from
o to o'. The procedure will therefore be as follows. We choose a polar set M+(p) furthest
away from o in order to make the index of non shortest geodesies to p as large as
possible. All shortest geodesies from o to p will lie in M~(p) since they are perpendicular
to M+(p). By definition of M~(p) we have that so°sp is the identity on M~(p) and
therefore p is a pole of M~(p). The space of shortest geodesies from o to p can then be
calculated by applying the centrosome argument as explained above to the space M~(p).
In order to carry out the computations we will need to know all the polar sets for a given
space, these have all been calculated by Nagano and Chen [10]. In order to find the polar
set furthest from o we will use [3, Proposition 2.2], which tells us the initial tangent to the
shortest geodesic to p. If p = Exp X then the initial tangent to any other geodesic from
o to p is of the form X + H with H in T. We note that in order to calculate higher
homotopy we can work on the universal covering space of M and we may assume that
H e r ° = ZZarv. Since a lot of the calculations are long but not difficult, we will not
include them all here.

1. Spaces of classical type.

R(M) of type Ar. We first consider the spaces AI(2m) = SU(2m)/SO(2m),
A2m^i = SU(2m) and AII(2m) = SU(4m)/SP(2m) all of which have the root system
A2m-i- All these spaces have a pole p which is the furthest polar set from o. The shortest
geodesic to p has initial tangent given by the weight nu>m = nl2{ex + e2 + . . . + em -
em+1 - . . . — £2m). In the case of the group SU(2m) all tangent vectors in the discussion
should be doubled. The roots for /42m_i are e,•.- Sj(i¥=j, l^i,j^2m) and therefore
fa — ej)v = nfe — Ej). We have therefore that the initial tangents to the non shortest
geodesies from o to p have the form jr/2(n1e1 + n2e2 + . . . - nm+1em+i - . . . - n2me2m)
where the n,'s are odd integers. The initial tangent to a typical non shortest geodesic for
which the index Ao is minimal has nm_i = 3 and all other «, = 1. For such a geodesic we
get m + 1 conjugate points before reaching p (not counting multiplicity), since each of the
positive roots £m_, - em,. . . , em_! - E2m evaluate on JI/2(E1 + . . . + 3em_, - . . . - e2m)
to give a value greater than n and therefore the Jacobi fields Ya (which behave like the
sine function, see [3]) for a = em_i - £,,/ >m - 1 when restricted to the non shortest
geodesic vanish before p . Since the roots all have the same length, they all have the same
multiplicity for a given space. The multiplicities (i are as follows, n = 1 for AI(2m), n = 2
for /42m-i> and ju = 4 for AII(2m). We have therefore that A0 = m + l for AI(2m),
Ao = 2m + 2 for i42m-i, and Ao = 4m + 4 for AII(2m). Using the centrosome argument we
see by consulting the list of Nagano and Chen that the corresponding spaces of shortest
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geodesies are as follows. Qd = Gm(C2m) for A2m_u Qd = Gm(U2m) for AI(2m), and
Qd = Gm(H2m) for AII(2m). We therefore have the following proposition.

PROPOSITION 1.1

ni+lSU(2m)ISO{2m) = n,Gm(K2m), forl^i^m-1,

ni+lSU(4m)/Sp(2m) = n,Gm(H2m), for 1=£i=s Am + 2.

The above result for SU(2m) was first obtained by Bott by choosing l2m and
-l2m e SU(2m) as the points p and q in his theorem. Note that -/2 m is in fact the pole of
SU(2m). The same argument as above also works for the cases SU{2m + 1), AI(2m + 1),
and AII(2m + 1). The corresponding weight vector in this case is given as follows:

(om = Jt(et + . . . + £ „ - (m/2m + l)(em+, + . . .

and the Qd's are Gm(C2m+1) for A2m, Gm(R2m+1) for AI(2m +1), and Gm(H2m+l) for
.4/7(2™ + 1).

R(M) of type Z)r. Here we are considering the spaces SO(2m) and Gm(R2m) which
have the root system Dm. Again these spaces have a pole, and it is the polar set furthest
from o. The initial tangent to the geodesic going to the pole is given by the weight
7i(om = 7il2{E] + E2 + • • • + em)- The roots are ±£, ± e, and therefore the corresponding
av's are JZ(±£J ± £,). The index for non shortest geodesies is minimized by those having
initial tangent of the form jr/2(3e, — e2 + e3 + . . . + em). This gives us m — 1 conjugate
points (not counting multiplicity) coming from the positive roots EX- £y,2«y=sm. Now
applying the centrosome argument the spaces of shortest geodesies turn out to be as
follows. For SO(2m), Qd = DIII(m)L)DIII(m), where the union means two disjoint
copies of DIII(m) = S0(2m)/U(m). For the space Gm(IR2m), Qd = SO{m). Since all the
roots have the same length the root spaces all have the same multiplicities \i, which are as
follows: n = 1 for Gm(IR2m) and as is always the case for a group, ju = 2 for SO{2m). We
therefore have the following proposition.

PROPOSITION 1.2.

ni+lS0(2m) s n,Z)///(m) U DIII(M), for 1 ^ / =£ 2m - 4,

n,+1Gm(R2m) = n,SO(m), forl^i^m-3.

R(M) of type Cr or BCr. In this case we are considering the spaces Cm = Sp(m),
Cl(m) = Sp(m)/Su(m), and DIII(m). Note that DIII(m) has the root system Cm if m is
even and BCm if m is odd. AH these spaces have a pole and the initial tangent to a
shortest geodesic going to a pole is given the vector nl2wm = nl2(ex + e2 + ... + em).
The roots for Cm are ±£, ± £,, 1 ^ / <j =s m, and ±2e,, 1«i: ss m. Adding elements of the
lattice P to this vector we see that the initial tangents to non shortest geodesies are of the
form ;r/2(n,£, + . . . + nmem) where the n,'s are odd integers not all equal to plus or minus
one, this being the case for the shortest ones. The minimal Ao is attained when one
«, = ±3 and the rest are ±1. The number of conjugate points (not counting multiplicity)
is therefore m - 1 + 2, since the Jacobi field Ya will have vanished twice before it gets to
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the pole when a = 2e,. In the case of the root system BCm the number of conjugate points
will be m + 2, since e, is also a root. The multiplicities n are then as follows. For Sp(m) all
roots have jU = 2 and so A0 = 2m + 2. For Sp(m)/U(m) all roots have fi = l, therefore
Ao = m + 1. In the case of DIII(m) with m even all roots have fi = 4 except those of the
same length as the highest root which have n = 1, and therefore Ao = 4m + 2. When m is
odd the shorter roots have /i = 4, and the longer roots have /x = 1, and hence Ao = 4/n — 2.
By reading off the appropriate centrosomes we get the following spaces of shortest
geodesies from o to p. For Sp(m),Qd = Sp(m)/U(m), for DIII(m),Qd = Ull(m) =
U(2m)/SP(m), and for CI(m),Qd = UI(m)= U(m)/O(m). We have now proved the
following proposition.

PROPOSITION 1.3.

n,+15p(m) = n,5/?(m)/[/(m), for 1 =£ i« 2m,
n,+,SO(2m)/C/(m) s TliU(2m)/Sp(2m), for 1 =£ / =£ 4m, i eue/i,

/or 1 s£ i «s 4m - 4, i odd,
n,Sp(m)/t/(m) = n,f/(m)/O(m), /or 1 « i =£ m - 1.

2. Spaces of exceptional type. In computing the homotopy groups for these spaces
we will usually choose the antipodal point on what I will call the Helgason sphere S(a)
(see [8]), as the second point in Bott's theorem.

M = FI1: We choose p to be the antipodal point on the Helgason sphere S(a) = S8. Since
fi(a) = 7 where a = 2eu and since the other root e, has multiplicity ju(£i) = 8 we get the
following values for Ao, and Qd,A0=15 and Qd = Sy. We therefore have the following
proposition.

PROPOSITION 2.1.

n,+ , FII s n,S7, for 1 « i =s 13.

M = EIV: Again we use the antipodal point on the Helgason sphere S(a) = S9. The roots
are et — e2, e2 — £3, and £j — e3 which is the highest root. They all have multiplicity ju = 8.
The shortest geodesies to the pole of this S9 all lie in the M~(p) = T. S9, where T denotes
a circle and the dot denotes the space T xS9 with the pairs of points (x,y) and (x',y')
identified. Here x' is the pole of x in T, and y' is the pole of y in S9. We know from the
Borel-Siebenthal construction for M~{p) (see [10]), that the geodesic segment in T to the
pole has initial tangent nl2{2ex — e2 — £3) on which the highest root and e, - e3 evaluate
as 3JT/2. We therefore have that the shortest geodesies to p lie in the S9 and Qd = S8. It is
a simple matter to show that Ao = 16, and we now have the following proposition.

PROPOSITION 2.2.

n,+j EIV = n,S8, for 1 =£ i =s 14.

M = EM: Here again we argue as above. The initial tangent to the shortest geodesic
going to the antipodal point on the Helgason sphere is given by Ji/2eu Since the root
system is BC2 the multiplicities are as follows: /x(2e,) = 1, ju(e, ± £y) = 6, and /i(e,) = 8.
The minimal index Ao is attained for non shortest geodesies with initial tangents of the
form J T ( ± £ 1 / 2 - £ 2 ) and Ao = 7. Since S(a) = S(2e1) = S2 we now have proved the
following proposition.
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PROPOSITION 2.3.

M = EV: The space EV has a pole and it is the furthest polar set from o. The initial
tangent to a shortest geodesic to this point is given by 7tco7 = n(e6 + 5(e8 — e7)). Since the
root system is E1 all roots have multiplicity p = l. The minimal index for a non shortest
geodesic to the pole is attained for geodesies with initial tangents of the form
^(^6 + 2(£8 ~ e2) ± £i ± £2) or JI(E1 — £2 —.. . — £6), and the index for such geodesies is
Ao = 7. The centrosome argument gives the space of shortest geodesies as Qd = /4//(4)/Z2

where AII(2)/Z2 denotes a symmetric space with AII(4) as its double cover. We therefore
have the following proposition.

PROPOSITION 2.4.

n,+, EV = n,AII(4)/Z2, for 1 =s i =s 5.

M = EVII: Here again we will choose as our second point the antipodal point on the
Helgason sphere. The initial tangent to a shortest geodesic going to this point is given by
nj2Ex. The root system of this space is C3, the minimal index Ao is attained by geodesies
with initial tangent of the form jr(e,/2 - e2) and is equal to nine, giving us the following
proposition.

PROPOSITION 2.5.

n,+ , EVII = n ,5 ' , /or 1 =s t" =S 7.

M = EVIII: Here we choose the point p on the polar set M+{p) furthest away from o.
The polar set in question is the symmetric space G8(R

 16)# which is the space with G°(IR16)
as a double covering and is not G8(IR

16). The initial tangent to a shortest geodesic to p is
given by £8 and the minimal Ao is attained for geodesies with initial tangents of the form
n/2(es + £] — £2 — . . . - £6 + £7) for which the index is Ao = 7. The centrosome argument
then gives that the space of shortest geodesies is Qd = G4(U

12) giving us the following
result.

PROPOSITION 2.6.

n,+ , EVIII s n,-G4(R
12), for 1 ^ i ̂  5.

M = F4, FI, Ell, EVI, and EIX: For all these spaces the root system is F4. The M~(p)
corresponding to the polar set furthest from o in the above spaces are Spin(9), G!}([R9),
G2(R10), G°4(U

n), G4(R16) respectively. The initial tangent to the shortest geodesic top is
(04 of the root system F4. A typical non shortest geodesic to p for which we obtain a
minimal Ao has initial tangent n{ex + e2 - £3) for which Ao is 10,5,7,11, and 19 for the
respective spaces. The centrosome argument now gives the space of shortest geodesies Qd

as G2(IR
9), S3. S4, S3. S5, S3. S\ and S3. 5 " for the respective spaces. The dot denotes
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the product of the two spaces with the pairs of points (x,y) and (x' ,y') identified, where
x' and y' are the poles of x and y respectively. We therefore have the following result.

PROPOSITION 2.7.

n,.+1F4 = n,.G2(R9), /or 1 « « « 8 ,

n i + 1 « = n,S3 . S4, for 1 =£ i =£ 3,

n , + 1 £ / / s n,S3 • S5, for 1 =£ i =£ 5,

n,+ 1£V/ 3 n,S3 . S7, /or 1 =£ i ^ 9,

n,+ 1ELr = n,S3 . S11, /or 1 *£ i« 17.

Now from these results and the fact that the second homotopy group of a Lie group
is trivial, and using the homotopy sequence for a fibration in the cases of El and G2, we
conclude the following.

THEOREM 2.8.

H(a) = 1 if and only if Y\2M * 0.

Note that when ju(ar) = 1, the Helgason sphere has dimension two and gives a non
trivial element in the second homotopy group. From our computations for the spaces ETV
and FII we have that again the Helgason sphere gives a non trivial element in the
appropriate dimension of homotopy. There would appear to be an interesting connection
between this fact and the results of Burstall, Rawnsley and Salamon [4]. M. Takeuchi [11]
has also computed n 2 for all compact symmetric spaces.

3. In [6] Cheng constructed a one to one correspondence between quaternionic
symmetric spaces with anti-quaternionic involution and simple five step graded Lie
algebras, for the necessary background see [6], [12] and [9]. Theorem 2.8 now gives an
equivalent classification in terms of the second homotopy group of an associated compact
symmetric space. In order to state the theorem we must quote some facts (see [6]).

Let 1 = l_2 © l_i © lo © li © 12 be a simple five step graded Lie algebra. Let L and Lu

denote the adjoint groups whose Lie algebras are 1 and the compact dual of I
respectively. Let U denote the adjoint group of lc, the complexification of I. There exists
z el such that adz =p\ on \p,p e {-2, -1 ,0 ,1 ,2} and there exists a maximal compact
subgroup G of L such that I = g © gperp where gperp denotes the orthogonal complement
of g, and gperp contains a maximal abelian subalgebra containing z. We now get the
following theorem by combining Theorem 2.8 and the results of Cheng.

THEOREM 2.9. The following statements are equivalent.
(i) I is a simple five step graded Lie algebra.
(ii) There exists a quaternionic symmetric space with anti-quaternionic involution, whose
associated twistor space is the complex flag manifold Lc/Pc, where P is a parabolic
subgroup of L,
(iii) The multiplicity of the highest root of the symmetric space LJG is equal to one.
(iv)n2(Lu/G)*{0}.
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