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INJECTIVITY AND EQUATIONAL COMPACTNESS 
IN THE CLASS OF K0-SEMILATTICES 

BY 

EVELYN NELSON* 

This note presents characterizations of the injective and of the equationally 
compact X0-semilattices, which are analogous, respectively, to the characteri
zations of the injective semilattices given by Bruns and Lakser [2] and of the equa
tionally compact semilattices given by Grâtzer and Lakser [3]. 

It is known (see Banaschewski [1]) that in an equational class of unitary alge
bras, the existence of enough injectives guarantees the existence of injective hulls; 
it will be seen here that the class of X0-semilattices has enough injectives, while not 
every X0-semilattice has an injective hull. 

As a sideline, we will see that the class of X0-semilattices also provides an example 
of an equational class of infinitary algebras in which Birkhoff's Subdirect Repre
sentation Theorem holds, but in which the Pure Representation Theorem (proved 
by Walter Taylor [5] for finitary algebras) does not hold. 

1. Preliminaries. An X0-semilattice is a semilattice S with the usual binary 
operation A, and an additional X0"

ary operation /\ which associates with each 
a e Sa (œ the set of natural numbers) the meet, /\a, and which satisfies the ob
vious identities. For a e S03, we sometimes write Ane© a(n) o r A{a(n) \nGco} 
for /\ cr. 

S is the class of all X0-semilattices. By "homomorphism" we will always mean 
mappings which preserve countable meets. 

Each X0-semilattice S has a natural partial ordering on it given by a<J) iff 
a Ab=a; with respect to this partial ordering a A b is the greatest lower bound of 
a and b, and /\a is the greatest lower bound of {a(n) | n e œ} for a e S". The 
symbol "V" is used to denote join (least upper bound) with respect to this partial 
ordering, and the symbol "A" *s u s ed indiscriminately to denote meet (least 
upper bound) of arbitrary (not necessarily countable) subsets. 

It is well-known that, for any semilattice S, the map which assigns to each g e S, 
{t e SI t<s}9 is a semilattice embedding of S into P(S), the set of all subsets of S, 
with the operation of set-intersection, and that moreover this embedding takes 
arbitrary (existing) meets to the corresponding set intersection in P(S). In particular, 
it follows that every K0-semilattice has an X0-embedding into a power of 2, the 
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two-element N0-semilattice. Consequently, Birkhoff's Subdirect Representation 
Theorem holds in S, and 2 is the only subdirectly irreducible member of S. 

Recall that the characteristic of a (possibly infinitary) algebra is the smallest 
infinite regular cardinal greater than the arities of all the fundamental operations. 
If A and B are algebras (of the same type) of characteristic m, then a homomorphism 
f\A->B is apure embedding (see Nelson [4]) iff, for all X9 every subset of A[X]2 

with fewer than m elements is contained in the kernel of a homomorphism A [X]-+A 
over A whenever it is contained in the kernel of a homomorphism A[X]-+B over 
/(where A[X] is the free extension of A by the set X, in any equational class con
taining both A and B). Since X0-semilattices are of characteristic Kl5 a homomor
phism / : S->T in S is a pure embedding iff every at most countable subset of 
S[X]2 (S[X] the free extension of S in S by the set X) is contained in the kernel of 
a homomorphism AS|X|->S over S whenever it is contained in the kernel of a homo
morphism S[X]->T over / . 

Let N G S have as underlying partially ordered set the natural numbers with the 
usual order; then the embedding <£:N->NxN given by 

m = (0, 0) 
#D = (1, 0) 

</)(n+ï) = (n9 n) for n > 1 

has a retraction, namely ^:NxN->N given by 

V((0, n)) = 0 for all n 

w((n, 0)) = 1 for all n > 1 

ip((n, m)) = (n A m) + l for n9 m > 1, 

and thus in particular </> is a pure embedding. However, p±(f) and p2<f> {pl9p^: 
NxN->N the projection maps) are not one-one, and hence N is pure-reducible. 

Now, the homomorphic images of N are precisely those X0-semilattices which 
are isomorphic either to N or to a finite chain. Thus if/:N->II5,

i (i G I) is an em
bedding of N into a product of pure-irreducibles S{ such that, for each /, the 
composite off with the zth projection map is onto Si9 then each S{ is a finite chain, 
and hence TLSj (i e /) has a largest element, $, say. But then the homomorphism 
NK*}]-*!!^ over/which maps x to s contains {(n A x9 n ) \ n e N} in its kernel, 
whereas the existence of a homomorphism N[{x}]->iVr over N containing {(n A x9 

n) | n e N} in its kernel would imply that N had a largest element. It follows that 
the Pure Representation Theorem (Taylor, [5, Theorem 3.6]) does not hold in S. 

2. Injectivity. Recall that S G S is injective (in S) iff every homomorphism from 
a sub-X0"semilattice R of an X0-semilattice Tinto S has an extension to a homomor
phism T->S. Also, an extension T of an X0-semilattice S is essential iff every 
homomorphism/: T-+R in S whose restriction to S is one-to-one is itself one-to-
one, and T is an injective hull of S iff it is an essential, injective extension of S. 
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Bruns and Lakser [2] showed that a semilattice C is injective (in the class of all 
semilattices) iff it is a complete lattice and satisfies <z A V X= V {a A x \ x e X} 
for dllaeA and X^A. A simple modification of their proofs yields the following 
characterization of injective X0-semilattices. 

PROPOSITION 1. An ^-semilattice S is injective (in S) iff it is a complete lattice 
and satisfies 

(*) for all countable families (M^iB(ù of subsets ofS, 

AVM,= V A#0 
iea> <j>eJlMiie(o 

Proof. If S is injective in S then it is an absolute retract in S, and hence, by the 
remarks in §1, a retract of a power of 2. Every power of 2 is a complete, completely 
distributive lattice and hence in particular satisfies (*); since S-homomorphisms 
preserve countable meets, it follows by an argument analogous to the proof 
of [2, Lemma 2] that every retract of a complete lattice satisfying (*) is also a 
complete lattice satisfying (*). 

Conversely, if S e S satisfies the conditions of the Proposition, and if R is a 
sub-X0-semilattice of TE S axidf:R-+S, then an argument analogous to the proof 
of [2, Lemma 1] shows that g:T-+S given by g(t)=V {f(r) \ r<t, r eR} is a 
homomorphism extending/. 

COROLLARY. S has enough injectives. 

In an equational class of unitary algebras which has enough injectives, every 
algebra which has no proper essential extensions is injective [1]. That this is not the 
case in the class of X0-semilattices is seen in the next proposition. 

PROPOSITION 2. For an HQ-semilattice S> the following are equivalent; 

(1) S has no proper essential extensions (in S). 
(2) The underlying semilattice of S is an injective semilattice. 
(3) S is a retract of every extension which is singly generated over S. 

Proof. (1)=>(2): For any X0-semilattice S, the canonical semilattice embedding 
of S into its semilattice-injective hull given in Bruns-Lakser [2] preserves arbitrary 
(existing) meets, and hence is an X0-embedding; since it is essential as a semilattice 
homomorphism it is essential as an N0-semilattice homomorphism. Thus if S 
has no proper essential extensions then it is equal to its semilattice-injective hull. 

(2)=>(3): Suppose that ̂ satisfies (2), and that T^. Sis an X0-semilattice extension 
generated over S by {a}. Then T=S U {u A a | u e 5}. Let X={s e S \ s<a) and 
let è=V# X, where V^ denotes join in S. If, for u9v e S, u A a=v A a then for 
all s G X, u A s=u A s A a—v A s A a=v A s, and consequently u A b=u A V^ X= 
V# {u A s | s e X}=WS {v As\se X}=v A V# X=v A b. In particular, for ue S, 
if u A a e S then u A a=(u A a) A b=u A b. Thus we can define a function/: T-+S 
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by f(u)=u for u e S and/(w A a)=u A b for u e S. It is easy to check that/preserves 
all at most countable meets, and hence is a retraction of Tto S. 

(3)=>(1) : Suppose S is a retract of each of its extensions which is singly generated 
over S. Let T be ^ proper extension of S, and let R^ T be a proper extension of S 
which is singly generated over *S. Let F be an injective extension of S. The retraction 
of R onto S followed by the embedding S-+V is a homomorphism/:R-^V which 
is one-one on S but not one-one on R. By the injectivity of F , / h a s an extension 
/ : T->V, and then/ is one-one on S, and not one-one on T, which implies that Tis 
not an essential extension of S. Thus S has no proper essential extensions. 

COROLLARY. Not every ^-semilattice has an injective hull (in S). 

Proof.. Any X0-semilattice which is not injective in S, but whose underlying 
semilattice is injective as a semilattice, has no injective hull in S. An example of 
such an K0-semilattice is the MacNeille completion M of the free Boolean algebra 
on countably many generators; every complete Boolean algebra is injective as a 
semilattice but it is easy to see that M does not satisfy the distributivity condition 
of Proposition 1. 

3. Equational Compactness. An algebra A of characteristic m is equationally 
compact (see Nelson [4]) iff every subset 2ç^ t [Z ] 2 is contained in the kernel of a 
homomorphism A [X\->A over A whenever every subset of 2 with fewer than m 
elements already has this property (where A [X] is the free extension of A by the 
set X in any equational class containing A). In particular, SeS is equationally 
compact iff every subset S ç S[X]2 (S[X] the free extension of S in S by the set X) 
is contained in the kernel of a homomorphism S[X]->S over S whenever every at 
most countable subset of S has this property. 

Grâtzer and Lakser showed that a semilattice A is equationally compact iff 
every non-empty subset of A has a meet, every up-directed subset of A has a join, 
and for every up-directed subset X^ A and all a e A, a A V X= V {a A x \ x G X}. 
A modification of their techniques yields the following characterization of equa
tionally compact X0-semilattices (where a partially ordered set is called X r up-
directed iff every at most countable subset has an upper bound) : 

PROPOSITION 3. S e S is equationally compact iff 
(1) every non-empty subset of S has a meet in S 
(2) every ^-up-directed subset of S has a join in S 
(3) for all countable families (M^)ie(û of ^-up-directed subsets ofS, 

AVM,= V rA#0-
ieco 4>eIlMiieco 

Proof. Suppose S e S is equationally compact, and JTÇ S is a non-empty subset. 
Then every at most countable subset of 

S = {(* A x, x) | t e T} u {(u A x, u) | u < t for all teT} Œ S[{x}f 
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is contained in one of the form 

2 T , = {(t A x, x) 11 G T'} U {(u A x, w) | u < t for all t e T} 

where T is a non-empty, at most countable, subset of T. Since the homomor-
phism 5[{^}]->5' over S which maps xto /\T' contains 2 r , in its kernel, it follows 
that there exists a homomorphism/: S [{*}]->AS over S with 2 g K e r / , and then 

/(*)=A r. 
A similar argument shows that every Xrup-directed subset of S has a join. 
If (M^ien is a countable family of Xrup-directed subsets of S then {Aie© ̂ (01 ^ G 

HM{} is Ni-up-directed and hence has a join, a, say. Let 

S = U {fa A m, m) | m G Mt} U {(a A A **, A *,-)} £ S[*]2 

tec» teco iem 

where X={X-1 i e co} is a countable set disjoint from S. 
If, for each /, M[ is a countable subset of Mi9 then in view of the Xi-up-directed-

ness of Mt there exists mt- G Mt- with m{>m for each #z G M'im Also /\i6to ^»<^-
Thus the homomorphism/: S IXj-^S over 5 with/(^)=/w f contains AtecoU** A 

m,m)\me M{} U {(# A /\ teû) x,-, /\i€(0 x{)} in its kernel. Thus every at most 
countable subset of S is contained in the kernel of a homomorphism S f Z ] - ^ over 
S. By the equational compactness of S, there exists a homomorphism h:S[X]-*S 
over S with Ï Ç Ker A, and then f\i£(u \J M f ^ A<««> Kxi)<al the reverse inequality 
is trivial, and thus S satisfies (3). 

For the converse, suppose SeS satisfies (1)—(3) and that S^SfX]2 such 
that every at most countable subset of 2 is contained in the kernel of a homomor
phism S[X]-+S over S. Then the X0-semilattice Sx also satisfies (1)—(3). For each 
</> G Sx

9 let $:S[X]-*S be the homomorphism over S extending <j>. Then for any 
Xx-up-directed subset I g sx, the mapping (f>K : 5[Z]-^*Sgiven by <f>K(p)=W^eK^ip) 
is a homomorphism (this follows from the distributivity condition (3)) over S 
and hence, since its restriction to X is V K, <f>K=\J K. Consequently, for any 
(/?, q) G S[X]2, if K^ Sx is an Xrup-directed subset such that (p, q) G Ker(^) for 
each <f> G K then (p, ç) G Ker(V^). 

Similarly if i£ç S x is a non-empty subset with (p,q) e Ker(<£) for each <f>eK 

then 0 , #) G Ker(7v^). 
Now, by assumption, for each at most countable 7 ^ 2 , KT={<f> G SX \ T^ 

Ker((^)}^0. It follows from the above remark that T^KQT(/\KT). Let <f>T= 
f\KT. Then, for each (/?,#) G 2 , {<f>T \ (p,q) e T ç S , | r |<N 0 } is an N rup-
directed subset of Sx and (/?, q) e Ker(^T) for each at most countable T^ 2 with 
(p,q)eT, and hence, by the above remarks, (p, q) e Ker(<£) where <£= 
M {IT I (/>> ?) e T ç 2,1 r | < X0}. However, for each (p, j ) e S , 

V { ^ | ( p ^ ) G T e 2 , | T K X 0 } = V { ^ | r e 2 , | r i < X 0 } 
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(this follows essentially from the fact that if T is at most countable so is TU 
{(p,q)}) and hence S^Ker^y where y>:S[X]->S is the homomorphism over S 
whose restriction to Xis V ( ^ T | 3TSS, |T1<K0}. Thus S is equationally compact. 

NOTE. The above methods can be used to show that S e S is (in the terminology 
of Grâtzer-Lakser [3]), 1-equationally compact (i.e. every subset £££[{x}]2 is 
contained in the kernel of a homomorphism *S[{x}]->*S' over S whenever every at 
most countable subset has this property) iff it satisfies (1) and (2) of Proposition 2, 
and s A V r = V {s A t\t G T} fov all seS, all Krup-directed T^S. Thus, in 
contrast to the situation for semilattices, 1-equationally compact is not equivalent 
to equationally compact in S. 

COROLLARY 1. Every at most countable H0-semilattice is equationally compact. 

COROLLARY 2. Every ^Qsemilattice of at most countable height in which every 
non-empty subset has a meet is equationally compact. 

Note added in proof: All of the foregoing works just as well with X0 replaced 
by any infinite cardinal^, giving characterizations of the injective and theequation-
ally compact ̂ -semilattices. By combining these results, or by analagous argu
ments, one concludes that the injectives in the category of all complete semilattices 
are precisely the complete, completely distributive semilattices, and hence (since 
the latter condition is self-dual) these also coincide with the projective complete 
semilattices. These results on complete semilattices were presented by A. Waterman 
in a seminar at McMaster in 1966, and also appeared in Crown [Math. Annalen. 
187 (1970) 295-299]. 
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