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Abstract

This paper deals with two-species convolution diffusion-competition models of
Lotka–Volterra type with delays which describe more accurate information than
the Laplacian diffusion-competition models. We first investigate the existence of
travelling wave solutions of a class of nonlocal convolution diffusion systems with
weak quasimonotonicity or weak exponential quasimonotonicity by a cross-iteration
technique and Schauder’s fixed point theorem. When the results are applied to the
convolution diffusion-competition models with delays, we establish the existence of
travelling wave solutions as well as asymptotic behaviour.
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1. Introduction

The theory of travelling wave solutions for Laplacian diffusion equations has attracted
much attention due to its significant nature in biology, chemistry, epidemiology and
physics (see [7, 13, 22, 24, 26]). Recently, many researchers have focused on the
existence of travelling wave solutions for Laplacian diffusion equations with discrete
time delays (see [2, 10, 11, 18, 19]) and spatiotemporal or nonlocal delays (see [6,
15, 23, 25] and the references therein). Despite the popularity of Laplacian diffusion
models, they have some drawbacks. One important shortcoming for ecological
and epidemiological models is that Laplacian diffusion is a local operator where
individuals in the population can only influence their immediate neighbours. With
diffusion models there is some disconnection between the experimentally collected
data and the limited number of parameters that are available to fit that data. One
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method in overcoming these problems with the Laplacian operator is to describe
these models concerning spatial migration by integral equations, such as the diffusion
system with the convolution operator

∂u(x, t)

∂t
= D[(J ∗ u)(x, t)− u(x, t)] + f (u(x, t)), (1.1)

where ∗ is the spatial convolution operator and

(J ∗ u)(x, t)=
∫

R
J (y)u(x − y, t) dy.

Lee et al. [9] argue that, for processes where the spatial scale for movement is large
in comparison with its temporal scale, nonlocal models using integro-differential
equations may allow for a better estimation of the parameters from the data and
provide more insight into the biological system. In (1.1) if the diffusion kernel
J (x)= δ(x)+ δ′′(x), where δ is the Dirac delta (see Medlock and Kot [12]), then (1.1)
reduces to the traditional reaction-diffusion model

∂

∂t
u(x, t)= D

∂u2(x, t)

∂x2 + f (u(x, t)). (1.2)

For the nonlocal convolution diffusion model (1.1) without delays, one can refer
to [1, 3–5] and the references cited therein. Delays are incorporated into (1.1) by
the authors in [17] and [16] with the quasimonotone condition and the exponential
quasimonotone condition, respectively. Unfortunately, it is quite common for the
reaction terms in some systems arising from a practical problem to not satisfy the
above conditions; for example, this is true for the following nonlocal convolution
diffusion competitive models with delays:

∂

∂t
u1(x, t)= d1[(J1 ∗ u1)(x, t)− u1(x, t)]

+ r1u1(x, t)[1− a1u1(x, t)− b1u2(x, t − τ1)],
∂

∂t
u2(x, t)= d2[(J2 ∗ u2)(x, t)− u2(x, t)]

+ r2u2(x, t)[1− b2u1(x, t − τ2)− a2u2(x, t)]

(1.3)

and 

∂

∂t
u1(x, t)= d1[(J1 ∗ u1)(x, t)− u1(x, t)]

+ r1u1(x, t)[1− a1u1(x, t − τ1)− b1u2(x, t − τ2)],
∂

∂t
u2(x, t)= d2[(J2 ∗ u2)(x, t)− u2(x, t)]

+ r2u2(x, t)[1− b2u1(x, t − τ3)− a2u2(x, t − τ4)].

(1.4)

Here ui (t, x), i = 1, 2, are the densities of the populations of two species at location x
and time t . With a diffusion rate di , i = 1, 2, individuals move from their current
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location x and instantaneously arrive at some new location y. This process is
represented by integro-differential equations (1.3) and (1.4): the second terms on
the right-hand sides, −di ui , i = 1, 2, represent individuals leaving location x , while
the first terms, the convolutions di Ji ∗ ui , i = 1, 2, represent the total number of
individuals arriving at x from all possible locations y. Here ri , i = 1, 2, are net birth
rates, 1/bi , i = 1, 2, are carrying capacities, ai , i = 1, 2, are competition coefficients
and the delays τi , i = 1, . . . , 4, are nonnegative constants. In particular, letting
J1(x)= J2(x)= δ(x)+ δ′′(x), (1.3) and (1.4) reduce to the corresponding Laplacian
diffusion competition systems which are investigated in [10, 18, 24]. In addition, if
τi = 0, i = 1, . . . , 4, (1.3) and (1.4) reduce to competition systems used to describe
the local interaction between the externally introduced gray squirrel and the indigenous
red squirrel in Britain [8, 14] (see also [20, 21]).

In order to focus on the mathematical ideas, we will discuss the following general
convolution diffusion systems with delays:

∂

∂t
u1(x, t)= d1[(J1 ∗ u1)(x, t)− u1(x, t)] + f1(u1,t (x), u2,t (x)),

∂

∂t
u2(x, t)= d2[(J2 ∗ u2)(x, t)− u2(x, t)] + f2(u1,t (x), u2,t (x)),

(1.5)

where di > 0, ui,t (x)(θ)= ui (x, t + θ), −τ ≤ θ ≤ 0, τ denotes the maximal time
delay [24], fi : R2

→ R is a continuous function and Ji : R→ R are nonnegative
functions with

∫
R Ji (y) dy = 1, for i = 1, 2. Applying the method developed

in [10], we prove the existence of travelling wave solutions of (1.5) with nonlocal
dispersal. If we take J1(x)= J2(x)= δ(x)+ δ′′(x) in (1.5), then (1.5) reduces to
the Laplacian reaction diffusion equations with weak quasimonotonicity or weak
exponential quasimonotonicity, which were investigated in [10]. Thus, our results
contain those of [10].

This paper is organized as follows. Section 2 is devoted to preliminary and abstract
results. More precisely, we investigate the existence of travelling wave solutions
of a class of nonlocal convolution diffusion systems with weak quasimonotonicity
(WQM) or weak exponential quasimonotonicity (WQM*) by applying the method
developed in [10]. In Section 3, we apply our main results to the convolution
diffusion-competition systems (1.3) and (1.4) and prove the existence of travelling
wave solutions by constructing a pair of suitable upper–lower solutions. Because of
the introduction of nonlocal diffusion, it is more difficult to construct and verify upper–
lower solutions. Thus we choose a pair of suitable upper–lower solutions which make
a slight difference to our calculations from those in [10] (see Remark 1).

2. Preliminary and abstract results

We first introduce the usual notation for the standard ordering in R2. That is,
for u = (u1, u2) and v = (v1, v2), we denote u ≤ v if ui ≤ vi , i = 1, 2, and u < v
if u ≤ v but u 6= v. In particular, we denote u� v if u ≤ v but ui 6= vi , i = 1, 2.
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If u ≤ v, we also denote (u, v] = {w ∈ R2, u <w ≤ v}, [u, v)= {w ∈ R2, u ≤ w < v}
and [u, v] = {w ∈ R2, u ≤ w ≤ v}. Let | · | denote the Euclidean norm in R2 and ‖ · ‖
denote the supremum norm in C([−τ, 0], R2). A travelling wave solution of (1.5) is
a special translation invariant solution of the form u1(x, t)= φ(x + ct), u2(x, t)=
ψ(x + ct), where (φ, ψ) ∈ C1(R, R2) are the profiles of the wave that propagates
through the one-dimensional spatial domain at a constant velocity c > 0. Substituting
u1(x, t)= φ(x + ct), u2(x, t)= ψ(x + ct) into (1.5), then (φ, ψ) satisfies{

cφ′(t)= d1(J1 ∗ φ)(t)− d1φ(t)+ f c
1 (φt , ψt ),

cψ ′(t)= d2(J2 ∗ ψ)(t)− d2ψ(t)+ f c
2 (φt , ψt ),

(2.1)

where f c
i (φ, ψ) : C([−τ, 0], R2)→ R is defined by fi (φ

c, ψc), i = 1, 2, and
φc(s)= φ(cs) and ψc(s)= ψ(cs), for s ∈ [−τ, 0].

Motivated by the background of travelling wave solutions, we also require that
(φ, ψ) satisfies asymptotic boundary conditions

lim
t→−∞

(φ(t), ψ(t))= (0, 0), lim
t→∞

(φ(t), ψ(t))= (k1, k2), (2.2)

where (0, 0) and (k1, k2) are two equilibria of (2.1).
In this paper we are interested in travelling wave solutions of (2.1) and (2.2) when

the reaction terms satisfy the following WQM or WQM* conditions.

DEFINITION 2.1. Suppose that for any φ1(s), φ2(s), ψ1(s), ψ2(s) ∈ C([−τ, 0], R)
such that

0≤ φ2(s)≤ φ1(s)≤ M1, 0≤ ψ2(s)≤ ψ1(s)≤ M2 for s ∈ [−τ, 0], (2.3)

there exist two positive numbers β1 and β2 such that

f1(φ1(s), ψ1(s))− f1(φ2(s), ψ1(s))+ (β1 − d1)(φ1(0)− φ2(0))≥ 0,

f1(φ1(s), ψ1(s))− f1(φ1(s), ψ2(s))≤ 0,

f2(φ1(s), ψ1(s))− f2(φ1(s), ψ2(s))+ (β2 − d2)(ψ1(0)− ψ2(0))≥ 0,

f2(φ1(s), ψ1(s))− f2(φ2(s), ψ1(s))≤ 0.

(2.4)

Then the reaction terms have the property of WQM.
Suppose that for any φ1(s), φ2(s), ψ1(s), ψ2(s) ∈ C([−τ, 0], R) satisfying (2.3)

there exist two positive numbers β1 and β2 such that (2.4) holds and eβ1s
[φ1(s)−

φ2(s)] and eβ2s
[ψ1(s)− ψ2(s)] are nondecreasing in s ∈ [−τ, 0]. In this case, the

reaction terms have the property of WQM*.

For 0= (0, 0) and M= (M1, M2), let

C[0,M](R, R2)=
{
(φ, ψ) ∈ C(R, R2) | 0≤ φ(s)≤ M1, 0≤ ψ(s)≤ M2, s ∈ R

}
.

Define the operator H = (H1, H2) : C[0,M](R, R2)→ C(R, R2) by

H1(φ, ψ)(t) = f c
1 (φt , ψt )+ d1(J1 ∗ φ)(t)+ (β1 − d1)φ(t),

H2(φ, ψ)(t) = f c
2 (φt , ψt )+ d2(J2 ∗ ψ)(t)+ (β2 − d2)ψ(t),

(2.5)
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and the operator F= (F1, F2) : C[0,M](R, R2)→ C(R, R2) by
F1(φ, ψ)(t)=

1
c

e−β1t/c
∫ t

−∞

eβ1s/c H1(φ, ψ)(s) ds,

F2(φ, ψ)(t)=
1
c

e−β2t/c
∫ t

−∞

eβ2s/c H2(φ, ψ)(s) ds.

(2.6)

Then the problem is changed into investigating whether the fixed point of F, which is a
travelling wave solution of (1.5) connecting 0= (0, 0) and K= (k1, k2), satisfies (2.2).

In the following we introduce the exponential decay norm. For 0< µ<
min{β1/c, β2/c}, define

Bµ(R, R2)=
{
8 |8(t) ∈ C(R, R2) and supt∈R|8(t)|e

−µ|t | <∞
}
.

It is easy to check that Bµ(R, R2) is a Banach space equipped with the norm | · |µ
defined by |8|µ = supt∈R |8(t)|e

−µ|t | for 8 ∈ Bµ(R, R2).
We make the following assumptions concerning (1.5) throughout this paper:

(A1) fi (0, 0)= fi (k1, k2)= 0 for i = 1, 2;
(A2) there exist two positive constants L1 and L2 such that

| fi (φ1, ψ1)− fi (φ2, ψ2)| ≤ L i‖8−9‖, i = 1, 2,

for8= (φ1, ψ1),9 = (φ2, ψ2) ∈ C([−τ, 0], R2)where 0≤ φi (s),ψi (s)≤ Mi ,
s ∈ [−τ, 0] and Mi > ki is positive constant, i = 1, 2;

(A3) Ji : R→ R is a nonnegative function with
∫

R Ji (y) dy = 1, i = 1, 2;
(A4)

∫
R Ji (y)eλy dy <∞, i = 1, 2 for any λ ∈ R.

2.1. The WQM case In this subsection, we consider the existence of travelling wave
solutions of (2.1) when the delayed reaction terms f1 and f2 are WQM.

DEFINITION 2.2. The two functions 8= (φ, ψ) and 8= (φ, ψ) ∈ C(R, R2) are
called the upper and lower solutions of (2.1), respectively, if there exists T= {Ti |

i = 1, . . . , m} such that 8 and 8 are once continuously differentiable in R\T and
satisfy {

cφ
′
(t)≥ d1(J1 ∗ φ)(t)− d1φ(t)+ f c

1 (φt , ψ t
)

cψ
′
(t)≥ d2(J2 ∗ ψ)(t)− d2ψ(t)+ f c

2 (φt
, ψ t )

in R\T (2.7)

and {
cφ′(t)≤ d1(J1 ∗ φ)(t)− d1φ(t)+ f c

1 (φt
, ψ t )

cψ ′(t)≤ d2(J2 ∗ ψ)(t)− d2ψ(t)+ f c
2 (φt

, ψ t )
in R\T. (2.8)

We assume that (2.1) has an upper solution 8 and a lower solution 8 satisfying the
following hypotheses:

(P1) (0, 0)≤ (φ(t), ψ(t))≤ (φ(t), ψ(t))≤ (M1, M2);
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(P2)
limt→−∞(φ(t), ψ(t))= (0, 0),

limt→+∞(φ(t), ψ(t))= limt→+∞(φ(t), ψ(t))= (k1, k2).

Now we formulate our main result as follows.

THEOREM 2.1. Assume that (A1)–(A4) and WQM hold. If (2.1) has an upper solution
(φ(t), ψ(t)) ∈ C[0,M](R, R2) and a lower solution (φ(t), ψ(t)) ∈ C[0,M](R, R2) such
that (P1) and (P2) hold, then (2.1) has a travelling wave solution satisfying (2.2).

PROOF. Assume that8 and8 ∈ C(R, R2) are a pair of upper–lower solutions of (2.1)
satisfying (P1) and (P2). Define the wave profile set 0 by

0
(
[φ, ψ], [φ, ψ]

)
=

{
(φ, ψ) ∈ C(R, R2)

∣∣∣ φ(t)≤ φ(t)≤ φ(t), ψ(t)≤ ψ(t)≤ ψ(t), t ∈ R
}
.

Obviously, 0([φ, ψ], [φ, ψ]) is a nonempty, closed and bounded convex set.
Similarly to the proof in [10, 16, 17], it is easily seen that

F= (F1, F2) : C[0,M](R, R2)→ C(R, R2)

is continuous with respect to the norm | · |µ in Bµ(R, R2) and

φ ≤ F1(φ, ψ)≤ F1(φ, ψ)≤ φ, ψ ≤ F2(φ, ψ)≤ F2(φ, ψ)≤ ψ.

Moreover, F
(
0([φ, ψ], [φ, ψ])

)
⊂ 0([φ, ψ], [φ, ψ]) and the map F is compact with

respect to the decay norm | · |µ. By Schauder’s fixed point theorem, there exists a fixed
point (φ∗, ψ∗) ∈ 0([φ, ψ], [φ, ψ]), so it is a solution of (2.1).

Next, we need to verify the asymptotic boundary condition (2.2). By (P2) and

0≤ (φ(t), ψ(t))≤ (φ∗(t), ψ∗(t))≤ (φ(t), ψ(t))≤ (M1, M2),

we see that limt→−∞(φ
∗(t), ψ∗(t))= (0, 0) and limt→+∞(φ

∗(t), ψ∗(t))= (k1, k2).
This completes the proof. 2

2.2. The WQM* case We assume that (2.1) has an upper solution 8= (φ, ψ) and
a lower solution8= (φ, ψ) not only satisfying the hypotheses (P1) and (P2) but also:

(P3) eβ1t
[φ(t)− φ(t)] and eβ2t

[ψ(t)− ψ(t)] are nondecreasing for t ∈ R.

Define the set 0∗ consisting of wave profiles by

0∗([φ, ψ], [φ, ψ])

=


(φ, ψ) ∈ C[0,M](R, R2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) φ(t)≤ φ(t)≤ φ(t), ψ(t)≤ ψ(t)≤ ψ(t),

t ∈ R,

(ii) eβ1t
[φ(t)− φ(t)], eβ1t

[φ(t)− φ(t)],

eβ2t
[ψ(t)− ψ(t)], eβ2t

[ψ(t)− ψ(t)]

are nondecreasing for t ∈ R


.
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Obviously, 0∗([φ, ψ], [φ, ψ]) is nonempty. In fact, by (P3), (φ, ψ), (φ, ψ) satisfy
(i) and (ii) of 0∗([φ, ψ], [φ, ψ]). Moreover, 0∗([φ, ψ], [φ, ψ]) is a closed and
bounded convex set. Thus, we have the following result.

THEOREM 2.2. Assume that (A1)–(A4) and WQM* hold. Suppose that (2.1) has
an upper solution (φ(t), ψ(t)) ∈ C[0,M](R, R2) and a lower solution (φ(t), ψ(t)) ∈

C[0,M](R, R2) such that (P1), (P2) and (P3) hold. Then, for any c ≥ 1, (2.1) has a
travelling wave solution in 0∗([φ, ψ], [φ, ψ]) satisfying (2.2).

PROOF. Letting (φ, ψ) ∈ 0∗([φ, ψ], [φ, ψ]), it is easy to see that

φ ≤ F1(φ, ψ)≤ F1(φ, ψ)≤ F1(φ, ψ)≤ φ and

ψ ≤ F2(φ, ψ)≤ F2(φ, ψ)≤ F2(φ, ψ)≤ ψ.

This implies that F(φ, ψ)= (F1(φ, ψ), F2(φ, ψ)) satisfies statement (i) of
0∗([φ, ψ], [φ, ψ]).

Now we need to prove that (F1(φ, ψ), F2(φ, ψ)) satisfies statement (ii) of
0∗([φ, ψ], [φ, ψ]). Letting F1(φ, ψ)= φ1 for (φ, ψ) ∈ 0∗([φ, ψ], [φ, ψ]), we then
have

eβ1t
[φ(t)− φ1(t)] =

1
c

e(β1−β1/c)t
∫ t

−∞

eβ1s/c{
[cφ
′
(s)+ β1φ(s)]

− [cφ′1(s)+ β1φ1(s)]
}

ds

=
1
c

e(β1−β1/c)t
∫ t

−∞

eβ1s/c{
[cφ
′
(s)+ β1φ(s)− H1(φ, ψ)(s)]

− [cφ′1(t)+ β1φ1(t)− H1(φ, ψ)(s)]
}

ds

=
1
c

e(β1−β1/c)t
∫ t

−∞

eβ1s/c
[cφ
′
(s)+ β1φ(s)− H1(φ, ψ)(s)] ds.

Hence, for c ≥ 1, we have, for t ∈ R,

d

dt

{
eβ1t
[φ(t)− φ1(t)]}

=
1
c

(
β1 −

β1

c

)
e(β1−β1/c)t

∫ t

−∞

eβ1s/c
[cφ
′
(s)+ β1φ(s)− H1(φ, ψ)(s)] ds

+
1
c

eβ1t
[cφ
′
(t)+ β1φ(t)− H1(φ, ψ)(t)]

≥
1
c

(
β1 −

β1

c

)
e(β1−β1/c)t

∫ t

−∞

eβ1s/c
[cφ
′
(s)+ β1φ(s)− H1(φ, ψ)(s)] ds

+
1
c

eβ1t
[cφ
′
(t)+ β1φ(t)− H1(φ, ψ)(t)] ≥ 0.

Thus, eβ1t
[φ(t)− F1(φ, ψ)(t)] is nondecreasing for t ∈ R.
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Similarly, we can prove that eβ2t
[ψ(t)− F2(φ, ψ)(t)], eβ2t

[F2(φ, ψ)(t)− ψ(t)]
and eβ1t

[F1(φ, ψ)(t)− φ(t)] are nondecreasing in t ∈ R. Thus

F
(
0∗([φ, ψ], [φ, ψ])

)
⊂ 0∗([φ, ψ], [φ, ψ])

and, similar to the proof in [10, 16, 17], F is compact with respect to the decay
norm | · |µ. Therefore, there exists (φ∗(t), ψ∗(t)) satisfying the asymptotic boundary
condition (2.2). This completes the proof. 2

3. Convolution diffusion-competition models

In this section, we apply Theorems 2.1 and 2.2 to establish the existence of
travelling wave solutions for Systems (1.3) and (1.4).

3.1. Model (1.3) We consider the existence of travelling wave solutions for the
nonlocal diffusion-competition system (1.3), where di > 0, ai > 0, bi > 0, τi ≥ 0,
i = 1, 2 are constants. Suppose that J1 and J2 are even functions which satisfy (A3)
and (A4).

Let c > 0. A travelling wave solution (φ(x + ct), ψ(x + ct)) of (1.3) must satisfy{
cφ′(t)= d1(J1 ∗ φ)(t)− d1φ(t)+ r1φ(t)(1− a1φ(t)− b1ψ(t − cτ1)),

cψ ′(t)= d2(J1 ∗ ψ)(t)− d2ψ(t)+ r2ψ(t)(1− b2φ(t − cτ2)− a2ψ(t)).
(3.1)

As with the theory established in Section 2, we are interested in the solution of (3.1)
with asymptotic boundary conditions

lim
t→−∞

(φ(t), ψ(t))= (0, 0), lim
t→+∞

(φ(t), ψ(t))= (k1, k2),

where

k1 =
a2 − b1

a1a2 − b1b2
> 0, k2 =

a1 − b2

a1a2 − b1b2
> 0,

provided that
a1 > b2, a2 > b1. (3.2)

For φ, ψ ∈ C([−τ, 0], R) where τ =max{τ1, τ2}, denote

f1(φ, ψ)= r1φ(0)[1− a1φ(0)− b1ψ(−τ1)],

f2(φ, ψ)= r2ψ(0)[1− b2φ(−τ2)− a2ψ(0)].

Obviously, (A1) and (A2) hold. We now verify that F= ( f1, f2) is WQM.

LEMMA 3.1. The function F= ( f1, f2) is WQM.

PROOF. Take (φ1(s), φ2(s)), (ψ1(s), ψ2(s)) ∈ C([−τ, 0], R2) where

0≤ φ2(s)≤ φ1(s)≤ M1, 0≤ ψ2(s)≤ ψ1(s)≤ M2 for s ∈ [−τ, 0].
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According to M1 > k1 and M2 > k2, we have β1 := r1(2a1 M1 + b1 M2 − 1)+ d1 > 0
and

2a1 M1 + b1 M2 − 1> 2a1k1 + b1k2 − 1= a1k1 > 0.

Then, defining ϒ = [φ1(0)− φ2(0)], we have

f1(φ1, ψ1)− f1(φ2, ψ1)

= r1φ1(0)[1− a1φ1(0)− b1ψ1(−τ1)] − r1φ2(0)[1− a1φ2(0)− b1ψ1(−τ1)]

= r1ϒ − r1a1(φ
2
1(0)− φ

2
2(0))− r1b1ψ1(−τ1)ϒ

≥ r1ϒ(1− 2a1 M1 − b1 M2)

=−r1(2a1 M1 + b1 M2 − 1)ϒ − d1ϒ + d1ϒ =−β1ϒ + d1ϒ.

So, f1(φ1, ψ1)− f1(φ2, ψ1)+ (β1 − d1)[φ1(0)− φ2(0)] ≥ 0 and

f1(φ1, ψ1)− f1(φ1, ψ2)

= r1φ1(0)[1− a1φ1(0)− b1ψ1(−τ1)] − r1φ1(0)[1− a1φ1(0)− b1ψ2(−τ1)]

= −r1b1φ(0)[ψ1(−τ1)− ψ2(−τ1)] ≤ 0.

In a similar way, we can prove that f2 is WQM. This completes the proof. 2

Define

11(λ, c)= d1 J1 ∗ eλ· − d1 − cλ+ r1, (3.3)

12(λ, c)= d2 J2 ∗ eλ· − d2 − cλ+ r2. (3.4)

We can easily obtain the following conclusions.

LEMMA 3.2.

(i) There exists a c∗1 > 0 such that (3.3) has two distinct positive roots, λ1(c) and
λ2(c), with λ1(c) < λ2(c) for any c > c∗1 .

(ii) There exists a c∗2 > 0 such that (3.4) has two distinct positive roots, λ3(c) and
λ4(c), with λ3(c) < λ4(c) for any c > c∗2 .

(iii) There exists a c′ ≤min{c∗1, c∗2} such that (3.3) and (3.4) have no real root if
c < c′.

For fixed

η ∈

(
1,min

{
2,
λ2(c)

λ1(c)
,
λ4(c)

λ3(c)
,
λ1(c)+ λ3(c)

λ1(c)
,
λ2(c)+ λ4(c)

λ2(c)

})
, (3.5)

where c > c∗ =max{c∗1, c∗2} and we have a large constant q > 0, we consider the
functions l1(t)= eλ1(c)t − qeηλ1(c)t and l3(t)= eλ3(c)t − qeηλ3(c)t . It is easy to see
that l1(t) and l3(t) have global maxima m1 > 0 and m3 > 0, respectively.
Then there exist t1 and t3 such that l1(t1)= m1 and l3(t3)= m3, where ti =
[1/(ηλi − λi )] ln(1/(qη)) < 0, i = 1, 3, and ti (i = 1, 3) is large and negative enough
for large enough q . Furthermore, l ′i (t)≥ 0 for t ≤ ti and l ′i (t)≤ 0 for t ≥ ti (i = 1, 3).
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Then, for any given λ > 0, there exist ε2 > 0 and ε4 > 0 such that

k1 − ε2e−λt1 = l1(t1)= m1 and k2 − ε4e−λt3 = l3(t3)= m3.

According to (3.2), there exist ε0, ε1 and ε3 such that{
a1ε1 − b1ε4 > ε0, a2ε3 − b2ε2 > ε0,

a1ε2 − b1ε3 > ε0, a2ε4 − b2ε1 > ε0.
(3.6)

For the above constants and for suitable constants t2 and t4, we can define continuous
functions as follows:

φ(t)=

{
eλ1(c)t , t ≤ t2,

k1 + ε1e−λt , t ≥ t2,
ψ(t)=

{
eλ3(c)t , t ≤ t4,

k2 + ε3e−λt , t ≥ t4,

and

φ(t)=

{
eλ1(c)t − qeηλ1(c)t , t ≤ t1,

k1 − ε2e−λt , t ≥ t1,
ψ(t)=

{
eλ3(c)t − qeηλ1(c)t , t ≤ t3,

k2 − ε4e−λt , t ≥ t3,

where q > 0 is large enough and λ > 0 is small enough. It is easy to see that M1 =

supt∈R φ(t) > k1, M2 = supt∈R ψ(t) > k2, φ(t), ψ(t), φ(t) and ψ(t) satisfy (P1)
and (P2), since ti = [1/(ηλi − λi )] ln(1/(qη)) < 0, i = 1, 3, are small enough and

min{t2, t4} − c max{τ1, τ2} ≥max{t1, t3}

for sufficiently large q > 0 and sufficiently small λ > 0. We now prove that the
continuous functions (φ(t), ψ(t)) and (φ(t), ψ(t)) are an upper solution and a lower
solution of (3.1), respectively.

REMARK 1. The ti , i = 1, 3, used here are different from ti =max{t | li (t)= mi/2},
i = 1, 3, in [10]. In the current paper li (t) i = 1, 3 are nondecreasing for t ≤ ti ,
i = 1, 3, and li (t) i = 1, 3, are nonincreasing for t ≥ ti , i = 1, 3, where ti , i = 1, 3, are
negative and −ti , i = 1, 3, are large enough. In the current paper the lower solutions
are increasing functions but they are not monotone in [10].

LEMMA 3.3. Assume that (A3), (A4) and (3.2) hold and that J1 and J2 are even
functions. Then (φ(t), ψ(t)) is an upper solution of (3.1).

PROOF. For (φ(t), ψ(t)) ∈ C(R, R2), if t ≤ t2, then ψ(t − cτ1)≥ 0, φ(t)= eλ1(c)t

and

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)[1− a1φ(t)− b1 ψ(t − cτ1)]

= d1

(∫ t2

−∞

J1(t − s)φ(s) ds +
∫
∞

t2
J1(t − s)φ(s) ds

)
− d1φ(t)− cφ

′
(t)

+ r1φ(t)[1− a1φ(t)− b1ψ(t − cτ1)]

= d1(J1 ∗ (e
λ1(c)·))(t)+ d1

∫
∞

t2
J1(t − s)[k1 + ε1e−λs

− eλ1s
] ds

− d1φ(t)− cφ
′
(t)+ r1φ(t)[1− a1φ(t)− b1ψ(t − cτ1)]. (3.7)
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The expression (3.7) is less than or equal to

d1(J1 ∗ (e
λ1(c)·))(t)+ d1

∫
∞

t2
J1(t − s)[k1 + ε1e−λt2 − eλ1t2] ds

− d1φ(t)− cφ
′
(t)+ r1φ(t)[1− a1φ(t)− b1ψ(t − cτ1)]

≤ d1(J1 ∗ (e
λ1(c)·))(t)− d1eλ1(c)t − c(eλ1(c)t )′ + r1eλ1(c)t

= [d1(J1 ∗ (e
λ1(c)·))− d1 − cλ1(c)+ r1]e

λ1(c)t = 0.

Similarly,

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ
′
(t)+ r2ψ(t)[1− b2φ(t − cτ2)− a2ψ(t)] ≤ 0.

If t ≥ t2, then t − cτ1 ≥ t2 − cτ1 ≥ t3 and ψ(t − cτ1)= k2 − ε4e−λ(t−cτ1). For any
t ∈ R, we have that 0< φ(t) < k1 + ε1, and it follows that

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)[1− a1φ(t)− b1ψ(t − cτ1)]

≤ d1(J1 ∗ (k1 + ε1))− d1(k1 + ε1e−λt )− c((k1 + ε1e−λt ))′

+ r1(k1 + ε1e−λt )[1− a1(k1 + ε1e−λt )− b1(k2 − ε4e−λ(t−cτ1))]

= d1(J1 ∗ (k1 + ε1))− d1(k1 + ε1e−λt )+ cε1λe−λt

+ r1(k1 + ε1e−λt )[1− a1(k1 + ε1e−λt )− b1(k2 − ε4e−λ(t−cτ1))] =: I (λ).

Obviously,

I (0) = d1 J1 ∗ (k1 + ε1)− d1(k1 + ε1)

+ r1(k1 + ε1)(1− a1k1 − b1k2 − a1ε1 + b1ε4)

= d1(k1 + ε1)− d1(k1 + ε1)+ r1(k1 + ε1)(b1ε4 − a1ε1)

= r1(k1 + ε1)(b1ε4 − a1ε1).

Since a1ε1 − b1ε4 > ε0, we have I (0) <−r1(k1 + ε1)ε0 < 0, and there exists a λ∗1 > 0
such that I (λ) < 0 for λ ∈ (0, λ∗1). Thus,

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)(1− a1φ(t)− b1ψ(t − cτ1))≤ 0.

Similarly, there exists a λ∗2 > 0 such that, for λ ∈ (0, λ∗2),

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ
′
(t)+ r2ψ(t)[1− b2φ(t − cτ2)− a2ψ(t)] ≤ 0.

This completes the proof. 2

LEMMA 3.4. Assume that (A3), (A4) and (3.2) hold and, in addition, J1, J2 are even
functions. Then (φ, ψ) is a lower solution of (3.1).
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PROOF. Equation (3.5) implies that λ1(c) < ηλ1(c) < λ2(c), 2λ1(c) > ηλ1(c),
λ3(c)+ λ1(c) > ηλ1(c) and 11(ηλ1(c), c) < 0.

For t ≤ t1,

d1(J1 ∗ φ)(t)− d1φ(t)− cφ′(t)+ r1φ(t)(1− a1φ(t)− b1 ψ(t − cτ1))

= d1

(∫
∞

t1
J1(t − s)φ(s) ds +

∫ t1

−∞

J1(t − s)φ(s) ds

)
− d1φ(t)− cφ′(t)

+ r1φ(t)(1− a1φ(t)− b1ψ(t − cτ1))

= d1

{
J1 ∗ [e

λ1(c)· − qeηλ1(c)·](t)

+

∫
∞

t1
J1(t − s)[k1 − ε2e−λs

− (eλ1(c)s − qeηλ1(c)s)] ds

}
− d1[e

λ1(c)t − qeηλ1(c)t ] − c[eλ1(c)t − qeηλ1(c)t ]′

+ r1[e
λ1(c)t − qeηλ1(c)t ]

{
1− a1[e

λ1(c)t − qeηλ1(c)t ] − b1eλ3(c)(t−cτ1)
}

≥ d1

{
J1 ∗ [e

λ1(c)·]

}
(t)− d1[e

λ1(c)t ] − cλ1(c)e
λ1(c)t + r1eλ1(c)t

−

{
d1 J1 ∗ [qeηλ1(c)·](t)− d1qeηλ1(c)t − cqηλ1(c)e

ηλ1(c)t + r1qeηλ1(c)t
}

+ d1

∫
∞

t1
J1(t − s)[k1 − ε2e−λt1 − (eλ1(c)t1 − qeηλ1(c)t1)] ds

− r1[e
λ1(c)t − qeηλ1(c)t ]

{
a1[e

λ1(c)t − qeηλ1(c)t ] + b1eλ3(c)(t−cτ1)
}

=11(λ1(c), c)eλ1(c)t −11(ηλ1(c), c)qeηλ1(c)t

− r1[e
λ1(c)t − qeηλ1(c)t ]

{
a1[e

λ1(c)t − qeηλ1(c)t ] + b1eλ3(c)(t−cτ1)
}

≥−11(ηλ1(c), c)qeηλ1(c)t − r1eλ1(c)t [a1eλ1(c)t + b1eλ3(c)t ]

= −qeηλ1(c)t
{
11(ηλ1(c), c)+

r1

q
[a1e(2λ1(c)−ηλ1(c))t + b1e(λ3(c)+λ1(c)−ηλ1(c))t ]

}
≥−qeηλ1(c)t

{
11(ηλ1(c), c)+

r1

q
[a1e(2λ1(c)−ηλ1(c))t1 + b1e(λ3(c)+λ1(c)−ηλ1(c))t1]

}
≥−qeηλ1(c)t

{
11(ηλ1(c), c)+

r1

q
[a1e(2λ1(c)−ηλ1(c))α + b1e(λ3(c)+λ1(c)−ηλ1(c))α]

}
≥ 0 for large enough q,

where α = (ln(1/ηq))/(λ1(c)(η − 1)).
By a similar argument,

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ ′(t)+ r2ψ(t)
(

1− b2φ(t − cτ2)− a2ψ(t)
)
≥ 0.
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If t > t1 and −t1 is large enough, then for any ε′(0< ε′ < r1ε0/d1) there exists a large
enough T (q) > 0 such that t1 <−T (q) and∫

∞

t1
J1(s) ds >

∫
∞

−∞

J1(s) ds − ε′ = 1− ε′.

By the definition of ψ(t), it is easy to verify that 0<ψ(t)≤ k2 + ε3 for any t ∈ R.
Then,

d1(J1 ∗ φ)(t)− d1φ(t)− cφ′(t)+ r1φ(t)(1− a1φ(t)− b1ψ(t − cτ1))

≥ d1(J1 ∗ φ)(t)− d1(k1 − ε2e−λt )+ cλe−λt

+ r1(k1 − ε2e−λt )[1− a1(k1 − ε2e−λt )− b1(k2 + ε3)]

= d1

∫ t1

−∞

J1(t − s)[eλ1(c)s − qeηλ1(c)s] ds + d1

∫
∞

t1
J1(t − s)(k1 − ε2e−λs) ds

− d1(k1 − ε2e−λt )+ cλe−λt

+ r1(k1 − ε2e−λt )[1− a1(k1 − ε2e−λt )− b1(k2 + ε3)]

≥ d1

∫
∞

t1
J1(t − s)(k1 − ε2e−λs) ds − d1(k1 − ε2e−λt )+ cλe−λt

+ r1(k1 − ε2e−λt )[1− a1(k1 − ε2e−λt )− b1(k2 + ε3)] =: Ĩ (λ).

Thus,

Ĩ (0) = d1

∫
∞

t1
J1(t − s)(k1 − ε2) ds − d1(k1 − ε2)+ r1(k1 − ε2)(a1ε2 − b1ε3)

≥ d1(k1 − ε2)(1− ε′)− d1(k1 − ε2)+ r1(k1 − ε2)ε0

= −d1(k1 − ε2)ε
′
+ r1(k1 − ε2)ε0 > 0,

which implies that there exists a λ∗3 > 0 such that Ĩ (λ) > 0 for λ ∈ (0, λ∗3). Thus,

d1(J1 ∗ φ)(t)− d1φ(t)− cφ′(t)+ r1φ(t)(1− a1φ(t)− b1ψ(t − cτ1))≥ 0.

Similarly, there exists a λ∗4 > 0 such that, for λ ∈ (0, λ∗4),

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ ′(t)+ r2ψ(t)(1− b2φ(t − cτ2)− a2ψ(t))≥ 0.

This completes the proof. 2

By Theorem 2.1 and Lemmas 3.3 and 3.4, the following result holds.

THEOREM 3.5. Assume that (A3), (A4) and (3.2) hold and, in addition, J1, J2
are even functions. Then, for every c > c∗, Model (3.1) has a travelling wave
solution (φ(x + ct), ψ(x + ct)), which connects (0, 0) and (k1, k2). Furthermore,
limξ→−∞ φ(ξ)e−λ1ξ = limξ→−∞ ψ(ξ)e−λ3ξ = 1.

3.2. Model (1.4) Next we consider the existence of travelling wave solutions for
the nonlocal diffusion-competition model (1.4) with delays, where all constants and
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assumptions are the same as the above arguments in Model (1.3) and τi ≥ 0, i =
1, 2, 3, 4.

Letting c > 0, the corresponding wave profile equations of (1.4) are{
cφ′(t)= d1(J1 ∗ φ)(t)− d1φ(t)+ r1φ(t)(1− a1φ(t − cτ1)− b1ψ(t − cτ2)),

cψ ′(t)= d2(J2 ∗ ψ)(t)− d2ψ(t)+ r2ψ(t)(1− b2φ(t − cτ3)− a2ψ(t − cτ4)).

(3.8)
For φ, ψ ∈ C([−τ, 0], R), where τ =max{τ1, τ2, τ3, τ4}, denote

f1(φ, ψ)= r1φ(0)(1− a1φ(−τ1)− b1ψ(−τ2)),

f2(φ, ψ)= r2ψ(0)(1− b2φ(−τ3)− a2ψ(−τ4)).

It is obvious that (A1) and (A2) hold.

LEMMA 3.6. For τ1 and τ4 small enough, the function F= ( f1, f2) is WQM*.

PROOF. Take (φ1(s), φ2(s)), (ψ1(s), ψ2(s)) ∈ C([−τ, 0], R2) where:

(i) 0≤ φ2(s)≤ φ1(s)≤ M1, 0≤ ψ2(s)≤ ψ1(s)≤ M2, for s ∈ [−τ, 0]; and
(ii) eβ1s

[φ1(s)− φ2(s)] and eβ1s
[ψ1(s)− ψ2(s)] are nondecreasing in s ∈ [−τ, 0].

If τ1 is small enough, then we can choose β1 > 0 such that

r1(a1 M1 + b1 M2 + a1 M1eβ1τ1 − 1)+ d1 < β1.

Thus, we have

f1(φ1, ψ1)− f1(φ2, ψ1)

= r1φ1(0)(1− a1φ1(−τ1)− b1ψ1(−τ2))

− r1φ2(0)[1− a1φ2(−τ1)− b1ψ1(−τ2)]

= r1ϒ − r1a1(φ1(0)φ1(−τ1)− φ2(0)φ2(−τ1))− r1b1ψ1(−τ2)ϒ

≥ (r1 − r1b1 M2)ϒ − r1a1φ1(0)[φ1(−τ1)− φ2(−τ1)] − r1a1φ2(−τ1)ϒ

≥−r1(a1 M1 + b1 M2 − 1)ϒ − r1a1φ1(0)eβ1τ1e−β1τ1[φ1(−τ1)− φ2(−τ1)]

≥ −r1(a1 M1 + b1 M2 + a1 M1eβ1τ1 − 1)ϒ ≥−β1ϒ + d1ϒ.

So, f1(φ1, ψ1)− f1(φ2, ψ1)+ (β1 − d1)[φ1(0)− φ2(0)] ≥ 0 and

f1(φ1, ψ1)− f1(φ1, ψ2) = r1φ1(0)[1− a1φ1(−τ1)− b1ψ1(−τ2)]

− r1φ1(0)[1− a1φ1(−τ1)− b1ψ2(−τ2)]

= −r1b1φ(0)[ψ1(−τ2)− ψ2(−τ2)] ≤ 0.

Similarly, f2 is WQM* if τ4 is small enough. This completes the proof. 2

Now we define φ(t), ψ(t), φ(t) and φ(t) as in Model (1.3), where c > c∗ =
max{c∗1, c∗2, 1} and

min{t2, t4} − c max{τ1, τ2, τ3, τ4} ≥max{t1, t3}.

It is easy to see that φ(t), ψ(t), φ(t) and φ(t) satisfy (P1)–(P3). In fact, (P3) holds for
λ small enough and β > λ.
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LEMMA 3.7. Assume that (A3), (A4) and (3.2) hold and, in addition, J1 and J2 are
even functions. If τ1 and τ4 are small enough, then (φ(t), ψ(t)) is an upper solution
and (φ(t), ψ(t)) is a lower solution of (3.8).

PROOF. First, we prove that (φ(t), ψ(t)) ∈ C(R, R2) is an upper solution. For
t ≥ t2 + cτ1 or t ≤ t2, the proof is similar to that of Lemma 3.3. If t ≤ t2, it follows
that

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)[1− a1φ(t − cτ1)− b1ψ(t − cτ2)]

≤ d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)

≤ d1(J1 ∗ (e
λ1(c)·))(t)− d1eλ1(c)t − c(eλ1(c)t )′ + r1eλ1(c)t

= [d1(J1 ∗ (e
λ1(c)·))− d1 − cλ1(c)+ r1]e

λ1(c)t = 0.

Similarly, we can obtain

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ
′
(t)+ r2ψ(t)(1− b2φ(t − cτ3)− a2ψ(t − cτ4))≤ 0.

For t ≥ t2 + cτ1, then t − cτ2 ≥ t3 and ψ(t − cτ2)= k2 − ε4e−λ(t−cτ2). Since
0< φ(t)≤ k1 + ε1 for any t ∈ R, then

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)(1− a1φ(t − cτ1)− b1 ψ(t − cτ2))

≤ d1(J1 ∗ (k1 + ε1))− d1(k1 + ε1e−λt )− c(k1 + ε1e−λt )′

+ r1(k1 + ε1e−λt )[1− a1(k1 + ε1e−λ(t−cτ1)− b1(k2 − ε4e−λ(t−cτ2))]

= d1(J1 ∗ (k1 + ε1))− d1(k1 + ε1e−λt )+ cε1λe−λt

+ r1(k1 + ε1e−λt )[1− a1(k1 + ε1e−λ(t−cτ1))− b1(k2 − ε4e−λ(t−cτ2))]

=: I1(λ).

Obviously,

I1(0) = d1 J1 ∗ (k1 + ε1)− d1(k1 + ε1)

+ r1(k1 + ε1)[1− a1k1 − b1k2 − a1ε1 + b1ε4]

= d1(k1 + ε1)− d1(k1 + ε1)+ r1(k1 + ε1)(b1ε4 − a1ε1)

= r1(k1 + ε1)(b1ε4 − a1ε1).

Since a1ε1 − b1ε4 > ε0, we have I1(0) <−r1(k1 + ε1)ε0 < 0, and there exists a
λ
∗

1 > 0 such that I1(λ) < 0 for λ ∈ (0, λ
∗

1). Thus,

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)(1− a1φ(t − cτ1)− b1ψ(t − cτ2))≤ 0.

Similarly, there exists a λ
∗

2 > 0 such that, for λ ∈ (0, λ
∗

2),

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ
′
(t)+ r2ψ(t)(1− b2φ(t − cτ3)− a2ψ(t − cτ4))≤ 0.

For t2 + cτ1 > t > t2, then φ(t)= k1 + ε1e−λt , φ
′
(t)=−ε1λe−λt and φ(t − cτ1)

= eλ1(t−cτ1).

https://doi.org/10.1017/S1446181109000406 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000406


64 Z.-X. Yu and R. Yuan [16]

Since 0< φ(t)≤ k1 + ε1 for any t ∈ R, then

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)(1− a1φ(t − cτ1)− b1ψ(t − cτ2))

≤ d1(J1 ∗ (k1 + ε1))− d1(k1 + ε1e−λt )+ cε1λe−λt

+ r1(k1 + ε1e−λt )[1− a1eλ1(t−cτ1)− b1(k2 − ε4e−λ(t−cτ2))]

≤ d1(k1 + ε1)− d1(k1 + ε1e−λt )+ cε1λe−λt

+ r1(k1 + ε1e−λt )[1− a1eλ1(t2−cτ1) − b1(k2 − ε4e−λ(t−cτ2))]

= d1(k1 + ε1)− d1(k1 + ε1e−λt )+ cε1λe−λt

+ r1(k1 + ε1e−λt )[1− a1e−λ1cτ1(k1 + ε1e−λt2)− b1(k2 − ε4e−λ(t−cτ2))]

=: I2(λ).

For enough small τ1, there exists an ε∗ (0< ε∗ < ε0/a1(k1 + ε1)) such that
e−λ1cτ1 > 1− ε∗. Thus,

I2(0) = r1(k1 + ε1)[1− a1e−λcτ1(k1 + ε1)− b1k2 + b1ε4]

= r1(k1 + ε1)[a1k1 − a1e−λcτ1(k1 + ε1)+ b1ε4]

≤ r1(k1 + ε1)[a1k1 − a1(1− ε∗)(k1 + ε1)+ b1ε4]

= r1(k1 + ε1)[b1ε4 − a1ε1 + a1(k1 + ε1)ε
∗
]

< r1(k1 + ε1)[−ε0 + a1(k1 + ε1)ε
∗
]< 0.

Thus, there exists a λ
∗

3 > 0 such that for λ ∈ (0, λ
∗

3),

d1(J1 ∗ φ)(t)− d1φ(t)− cφ
′
(t)+ r1φ(t)(1− a1φ(t − cτ1)− b1ψ(t − cτ2))≤ 0.

Similarly, there exists a λ
∗

4 > 0 such that, for λ ∈ (0, λ
∗

4),

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ
′
(t)+ r2ψ(t)(1− b2φ(t − cτ3)− a2ψ(t − cτ4))≤ 0.

Next, we prove that (φ(t), ψ(t)) ∈ C(R, R2) is a lower solution of (3.8).
For t ≤ t1 and t ≥ t1 + cτ1, the proof of a lower solution (φ(t), ψ(t)) of (3.8) is

similar to that of Lemma 3.4.
Now, for t1 < t < t1 + cτ1, it is easy to see that φ(t)= k1 − ε2e−λt , φ(t − cτ1)=

eλ1(t−cτ1) − qeηλ1(t−cτ1) and ψ(t − cτ2)= eλ3(t−cτ2). Then

d1(J1 ∗ φ)(t)− d1φ(t)− cφ′(t)+ r1φ(t)(1− a1φ(t − cτ1)− b1ψ(t − cτ2))

= d1(J1 ∗ φ)(t)− d1(k1 − ε2e−λt )+ λε2e−λt

+ r1(k1 − ε2e−λt )
{

1− a1[e
λ1(t−cτ1) − qeηλ1(t−cτ1)] − b1eλ3(t−cτ2)

}
≥ d1

∫
∞

t1
J1(t − s)(k1 − ε2e−λs) ds − d1(k1 − ε2e−λt )+ λε2e−λt

+ r1(k1 − ε2e−λt ){1− a1[e
λ1t1 − qeηλ1t1] − b1eλ3t4}
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= d1

∫
∞

t1
J1(t − s)(k1 − ε2e−λs) ds − d1(k1 − ε2e−λt )+ λε2e−λt

+ r1(k1 − ε2e−λt ){1− a1(k1 − ε2e−λt1)− b1(k2 + ε3e−λt4)} =: I3(λ).

Thus

I3(0) = d1

∫
∞

t1
J1(t − s)(k1 − ε2) ds − d1(k1 − ε2)

+ r1(k1 − ε2)[1− a1(k1 − ε2)− b1(k2 + ε3)]

≥ d1(k1 − ε2)(1− ε′)− d1(k1 − ε2)+ r1(k1 − ε2)(a1ε2 − b1ε3)

≥ −d1(k1 − ε2)ε
′
+ r1(k1 − ε2)ε0 > 0.

Hence, there exists a λ
∗

5 > 0 such that, for λ ∈ (0, λ
∗

5),

d1(J1 ∗ φ)(t)− d1φ(t)− cφ′(t)+ r1φ(t)(1− a1φ(t)− b1 ψ(t − cτ2))≥ 0.

In a similar way, there exists a λ
∗

6 > 0 such that for λ ∈ (0, λ
∗

6),

d2(J2 ∗ ψ)(t)− d2ψ(t)− cψ
′
(t)+ r2ψ(t)(1− b2φ(t − cτ3)− a2 ψ(t − cτ4))≥ 0.

This completes the proof. 2

By Theorem 2.2 and Lemma 3.7, we have the following result.

THEOREM 3.8. Assume that (A3), (A4) and (3.2) hold and, in addition, J1, J2 are
even functions. If τ1 and τ4 are small enough, then, for every c > c∗, Model (3.8) has
a travelling wave solution (φ(x + ct), ψ(x + ct)), which connects (0, 0) and (k1, k2).
Furthermore, limξ→−∞ φ(ξ)e−λ1ξ = limξ→−∞ ψ(ξ)e−λ3ξ = 1.
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