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DIFFUSION THEORY CAN BE APPLIED TO ANTIBODIES
ATTACHING TO LIGAND SITES
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Abstract

Humoral immunity is that aspect of specific immunity that is mediated by B lymphocytes
and involves the neutralising of disease-producing microorganisms, called pathogens, by
means of antibodies attaching to the pathogen's binding sites. This inhibits the pathogen's
entry into target cells. We present a master equation in both discrete and in continuous form
for a ligand bound at n sites becoming a ligand bound at m sites in a given interaction time.
To track the time-evolution of the antibody-ligand interaction, it is shown that the process
is most easily treated classically and that in this case the master equation can be reduced to
an equivalent one-dimensional diffusion equation. Thus well-known diffusion theory can
be applied to antibody-ligand interactions. We consider three distinct cases depending on
whether the probability of antibody binding compared to the probability of dissociation is
relatively large, small or comparable, and numerical solutions are given.

1. Introduction

Antibodies bind to, and block, ligand sites on a pathogen (an infectious foreign
agent) affecting its capacity to attach to target cell receptors. As a consequence, the
ability of the pathogen to enter a target cell is inhibited. In addition, antigen-bound
antibodies produce a signal that activates specific white blood cells, the macrophages,
which then engulf and destroy the bound pathogen. Since viruses and many bacteria
reproduce within cells, blocking the cell attachment would limit such pathogens
from replicating. The time-dependent dissociation and recombination of complexes
formed by antibodies attaching to the surface of ligands is a fundamental process
in mathematical immunology in general, and in the study of humoral immunity, in
particular, and is the topic of investigation in this paper. The aim here is to provide a
novel way of estimating the time-evolution of the distribution of the specific number
of bound antibodies (we track a cohort of pathogen-antibody aggregates).
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Two approaches have been used to calculate the aggregate size distribution. The
first approach, the obvious one, is to write down differential equations in the form
of chemical rate equations for the concentrations of all possible ligand-receptor ag-
gregates [3]. However, a complete description requires the solution of a large set
of coupled ordinary differential equations [12], one for each aggregate. While this
system is straightforward to formulate, the order of the system is very large. For
example, rat basophilic leukemia cells have approximately 105 receptors per cell and a
chlamydial elementary body has approximately 2.86 x 104 receptors. If this approach
is used to estimate a time-dependent aggregate distribution size the set of equations
must be truncated [3,14]. A second approach is less general, but can be used to obtain
the complete time-dependent aggregate size distribution by solving just two coupled
nonlinear differential equations [11]. The kinetics of the ligand-receptor complexes
distribution are presented in the form of a series [1,10]. Although this works well
for relatively small numbers of binding sites (1-100), a simpler mathematical ap-
proximation would be very useful for a system when the number of binding sites is
significantly greater [21]. Here we develop another approach to obtain the complete
time-dependent aggregate size distribution for multivalent ligands (cell surfaces with
many receptors) bound by molecules that bind at one receptor only. It involves solv-
ing a single diffusion equation. One example of such a binding molecule is the Fab
fragment of an antibody, comprising one arm of the full Y-shaped antibody. While
this restricts the model's applicability to antibody-pathogen interactions in general,
there are many systems for which this assumption is appropriate. For example, the
pent-valent adenovirus requires full occupancy by antibodies to achieve neutralisation.
This can be achieved by Fabs but not by whole antibodies (IgG molecules in this case)
[19]. A similar phenomenon has been found in antibody-Chlamydia interactions [20].
We also assume that all binding sites are equivalent and we assume that adsorbed
particles do not interact, that is, the binding of a molecule at one site does not block
the binding at a neighbouring site.

Our theory is similar to that used by Keck and Carrier [6], who investigated tech-
niques for solving master equations for the coupled vibration-dissociation-recombina-
tion process for molecules and atoms.

2. Modelling antibody attachment numbers on a pathogen

Consider a pathogen bound at n sites by antibodies. We assume that there is a
probabilistically inferred rate at which the pathogen bound at n sites can become a
pathogen bound at m sites. The discrete version of any such model is of the form

,r) - K(n,m)A(n,t)], (2.1)
at

m=0
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where A(n, t) is the concentration of pathogens with n antibodies attached and N is
the maximum number of antibodies that can be bound to a pathogen simultaneously.
This equation states that pathogens bound by n antibodies may leave this state by
making transitions to pathogens bound by m antibodies, gaining or losing antibodies,
at a rate K{n, m)A(«, t). We expect transitions from n antibodies to n — 1 or n + 1
antibodies on a pathogen to dominate the rate function, K.

The discrete equation (2.1) for the dynamics of the pathogen-antibody concentra-
tions has an analogous continuous version,

dE(x, t) _ r k(x>^E(xl^_k(XX>)E(x^dx>t (2.2)
at Jo

where k(x,x') is the probabilistically inferred rate of undergoing a transition from
state x to state x' per unit time and/ is the maximum number of antibodies on average
that can attach to the surface of the pathogen simultaneously.

In the absence of immune clearance and cell infection the pathogen-antibody con-
centrations, E(x, t), have a non-trivial equilibrium distribution, which we denote
by Ee{x). At equilibrium dE(x, t)/dt is zero, and the requirement for detailed bal-
ancing [8] leads to the condition

x') = k(x,x')Ee(x) = R{x, x').

We use the equilibrium distribution to introduce the non-dimensionalised concentra-
tion

(2.3)

which is the ratio of the concentration of pathogens with x antibodies attached to the
associated equilibrium concentration. Then (2.2) can be written in the symmetrical
form

= [ R(x,x')[X(x',t)-X(x,t)]dx'. (2.4)
Jo

E e ( x ) f
ot Jo

3. Transformation to the diffusion equation

We now transform the master equation, (2.4), to an equivalent diffusion equation.
The transformation assumes the integrand in (2.4) can be expanded in a Taylor series
about x' = x and we assume that the kernel, R(x, x'), is separable, and is large only
for x' « x. We can then anticipate that the solution of (2.4) can be well approximated
by the solution of

dX(l) = [°° R(x,x') [X(x', t) -X(x, t)]dx'.
JOt
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Expanding X(x', t) about x' — x, we obtain the partial differential equation

at
where

= /

dx 2 dx2

R(x,x')(x'-x)ndx'

(3-D

is the nth moment of the change in antibody level (x' — x) with respect to R(x, x').
Observing symmetry of R(x, x') on interchange of* and x' requires that

R(x,x') = S(x, |A|),

where x = (x'+x)/2 is the mean of the initial and final antibody levels and A = x'—x
is the change in the antibody levels. Assuming S(x, | A|) is sharply peaked at A = 0,
we expand about A = 0 and obtain

Jo d*
f°° 95

Jo dx

A2dA+-
353

and

mix) 5(^

/.OO

= 2 / S(x,\A\)A2dA
Jo

A2dA+ 0(A4)

so that

2

and substituting (3.2) into (3.1) results in

( J_X__d_(ti1{x)dX\
AX) dt ~ dx \ 2 dx)'

(3.2)

(3.3)

a one-dimensional diffusion equation. The boundary conditions necessary to deter-
mine X(x, t) uniquely are

dX

37 x=0
= 0 and

dX

dx
= 0,

*=f

since a pathogen cannot have a negative number of antibodies and will not have more
than the maximum of / antibodies. We also require an initial condition which we
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define as X(x,0) = f\S(x), x > 0, where S(x) is the Dirac delta function. Here
we let there be an initial concentration of magnitude, / i , on the boundary at x — 0
and zero concentration for x > 0. This specifies that there are no attached antibodies
initially. When we solve the diffusion equation numerically we let

We note that (3.3) can be written as

F , ^dX _ ix2(x)dX 1
e{X) dt ~ 2 dx*+2Jxdx

and thus there are two components indicating how the distribution will change with
time, namely, X will diffuse in the direction of least antibodies, and will be balanced by
what the equilibrium should be according to the probability distribution that influences
the moment, /j,2-

4. Probability distribution for change in the number of antibodies

To solve the diffusion equation we require a form for R(x,x'). Consider the
quantum version of antibody-pathogen interactions. In a time characteristic of the
interaction of an antibody with an antigen, of duration 8,, a bound site may dissociate
with probability q or remain bound with probability 1 — q. Here q is related to the
antibody's dissociation constant, kD. Also, an antibody may attach to an unbound site
with probability p or an unbound site may remain unbound with probability 1 — p.
Here p is related to the antigen-antibody association rate, kA. Then, if v(i) is an
integer, it is straightforward to show that

E
=max{«-;,0|

(• 1.'l J ( 1V*1 -<7)'-V-+*(i -/>r(i)-°-'+t\

where P(i,j) denotes the probability that a pathogen bound at i sites becomes a
pathogen bound at j sites in one interaction time and X]f=o P('>J) — 1 a s required.
The function, v(z), represents the valency of the pathogen that has / bound sites.
Hlavacek et al. define the valence of the ith state, v(i), to be the number of sites that
are available for receptor binding on a ligand that is bound at i sites averaged over all
possible microscopic states of the ligand [5]. Steric effects of ligand-receptor binding
can decrease the effective number of available sites. However, here we neglect steric
effects and take the valence of the ith state to be given by v(i) = f — i.
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FIGURE 1. A typical probability distribution for moving from one antibody level to another. Here we
illustrate the probability of a pathogen bound with 18 antibodies becoming a pathogen bound by x
antibodies in one interaction time. Here p = 0.005, q = 0.003 and/ = 100.

Since F(n + 1) = n\, we take the analogous probability distribution for the approx-
imate continuous distribution, namely,

P(x,x') =
min[f — x',x\

max I*— x',0|

where C(x,x') is the number of ways a pathogen bound at x sites can become a
pathogen bound at x' sites, and can be expressed as

C(x,x') =
F(f -

r(f - x ' - ore*' -
An example of the probability distribution is illustrated in Figure 1.

Then k(x,x') = kxP(x,x'), where k\ is a rate parameter that incorporates the
interaction time 8,. The equilibrium distribution, Ee(x), can now be determined by
ensuring P(x',x)Ee(x') = P(x,x')Ee(x), leading to

(4.1)

Integrating both sides of (4.1) over the interval x' = ( 0 , / ) and noting that because
we are not considering any source or loss, the number of pathogens will remain at a
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FIGURE 2. Plots of the equilibrium distribution, Ee(x). We take f\ =f = 100. (a) Binding probability
low relative to dissociation probability (p = 0.00005, q = 0.03). (b) Binding probability comparable
to dissociation probability (p = 0.005, q = 0.003). (c) Binding probability high relative to dissociation
probability (p = 0.05, q = 0.0003).

jffixed level, jjf Ee(x') dx' = Eo, then we obtain

which is illustrated in Figure 2 for various probabilities, p and q.
In the limiting case as p —> 0 (that is, antibodies do not attach to unbound sites

because the antibody and ligand site are not complementary), Ee(x) = E08(x).
Although the reaction of ligand-receptor binding is reversible, in particular cases of
specific binding the dissociation reaction can be neglected [21]. Then in the limiting
case as q —> 0 (that is, irreversible binding), Ee(x) = E08(x — / ) .

5. Numerical solution

Given that we now have an expression for R(x, x'), an expression for the kernel
of our diffusion equation can be determined. The magnitude of the kernel function
varies considerably with the probabilities for binding and dissociation. This greatly
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FIGURE 3. Sequence of numerical solutions for E(x), the pathogen concentration of antibody distribution,
for various times. Here p = 0.005 and q = 0.003.

influences the time for diffusion. We employ a fully implicit vertex-centred finite
volume method [9] to obtain numerical solutions to the one-dimensional diffusion
equation, (3.3), and then use (2.3) to revert to the solution for E(x, r), the concentration
of pathogens with x antibodies attached at time t. Figures 3 and 4 illustrate the
solutions for E at various times, for two different expressions of the kernel, fai*),
corresponding to relative medium and large probabilities of antibody attachment. We
do not display the solution for E when the probability of antibody attachment is small
because there is little change from the initial distribution.

6. Discussion

The humoral arm of the immune system is crucial in neutralising many infectious
agents. The mechanisms by which humoral immunity is effective have been studied
experimentally [2,15,16] and theoretically [13,17,18]. Humoral immunity is medi-
ated by B lymphocytes through the release of antibodies specific for attachment to a
pathogen's binding sites. Increasing the level of antibodies attached to a pathogen's
surface binding sites inhibits cell infection and increases pathogen clearance. The
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FIGURE 4. Sequence of numerical solutions for E(x), the pathogen concentration of antibody distribution,
for various times. Here p = 0.05 and q = 0.0003.

central theoretical problem associated with the binding of multivalent ligands is to
predict the aggregate size distribution, from which all quantities of interest can be
calculated [12]. When comparing theory with experiment it is often important to
know this distribution because some types of cells respond differently to different size
aggregates. For example, small numbers of IgE antibodies are relatively ineffective at
stimulating degranulation of rat basophilic leukemia cells (RBL) cells, whereas larger
aggregates are quite effective [4]. Human basophil cells also display large sensitivity
to aggregate size [7]. However, predicting the aggregate size distribution requires the
solution of a very large number of coupled ordinary differential equations. We have
presented the master equation for pathogen-antibody levels in discrete and classical
forms and shown how the classical master equation can be transformed to an equiva-
lent diffusion equation in a non-dimensional variable. Thus we have reduced a system
of N (N usually very large) coupled ordinary differential equations to a diffusion
equation. The diffusion equation is much easier to work with and the theory of such
an equation is well known. We developed a probabilistically inferred rate of transition
between antibody levels for the pathogen which influenced the non-constant coeffi-
cient of the diffusion equation. We determined equilibrium distributions and solved

https://doi.org/10.1017/S1446181100009640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009640


504 D. P. Wilson and D. L. S. McElwain [10]

the one-dimensional diffusion equation numerically for solutions tending towards the
equilibrium distributions. The theory may be generally applicable to any extracellular
infectious agent.

References

[1] J. Bentz, S. Nir and D. G. Covell, "Mass action kinetics of virus-cell aggregation and fusion",
Biophys. J. 54 (1988) 449-462.

[2] M. Cogne, "Humoral immunity. B lymphocytes; immunoglobulins (structure, diversity, function);
clinical practice investigations; concept of humoral immunity deficiency", La Revue Du Praticien
51 (2001) 193-202.

[3] M Dembo and B. Goldstein, "Theory of equilibrium binding of symmetric bivalent haptens to
cell surface antibody: Application to histamine release from basophils", J. Immunol. 121 (1978)
345-353.

[4] C. Fewtrell and H. Metzger, "Larger oligomers of IgE are more effective than dimers in stimulating
rat basophilic leukemia cells", J. Immunol. 125 (1980) 701-710.

[5] W. S. Hlavacek, R. G. Posner and A. S. Perelson, "Steric effects on multivalent ligand-receptor
binding: Exclusion of Iigand sites by bound cell surface receptors", Biophys. J. 76 (1999) 3031-
3043.

[6] J. Keck and G. Carrier, "Diffusion theory of nonequilibrium dissociation and recombination", J.
Chem. Phys. 43 (1965) 2284-2298.

[7] D. W. MacGlashan, S. P. Peters, J. Warner and L. M Lichtenstein, "Characteristics of human
basophil sulfide peptide leukotriene release: Releasability defined as the ability of the basophil to
respond to dimeric cross-links", J. Immunol. 136 (1986) 2231-2239.

[8] C. S. McKee, "Detailed balancing", Applied Catalysis A: General 154 (1997) N2-N3.
[9] M. Ohlberger and C. Rohde, "Adaptive finite volume approximations for weakly coupled convec-

tion dominated parabolic systems", IMA J. Numerical Anal. 22 (2002) 253-280.
[10] A. S. Perelson, "A model for antibody mediated cell aggregation: rosette formation", in Mathe-

matics and computers in biomedical applications (eds. J. Eisenfeld and C. DeLisi), (Elsevier, New
York, 1985)31-37.

[11] A. S. Perelson and C. DeLisi, "Receptor clustering on a cell surface. I. Theory of receptor cross-
linking by ligands bearing two chemically identical functional groups", Math. Biosci. 49 (1980)
87-110.

[12] R. G. Posner, C. Wofsy and B. Goldstein, 'The kinetics of bivalent ligand-bivalent receptor
ggregation: ring formation and the breakdown of the equivalent site approximation", Math. Biosci.
126(1995)171-190.

[13] A. Rundell, R. DeCarlo, H. HogenEsch and P. Doerschuk, 'The humoral immune response to
haemophilus influenzae Type b: A mathematical model based on T-zone and germinal center
B-cell dynamics",/ Theor. Biol. 194(1998)341-381.

[14] R. Schweitzer-Stenner, I. Licht, I. Luscher and I. Pecht, "Dimerization kinetics of the IgE-class
antibodies by divalent haptens. II. The interaction between intact IgE and haptens", Biophys. J. 63
(1987)563-568.

[15] M. K. Slifka, "Mechanisms of humoral immunity explored through studies of LCMV infection",
Current Topics in Microbiology and Immunology 263 (2002) 67-81.

[16] M. K. Slifka, R. Antia, J. K. Whitmire and R. Ahmed, "Humoral immunity due to long-lived
plasma cells", Immunity 8 (1998) 363-372.

https://doi.org/10.1017/S1446181100009640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009640


[II] Diffusion theory of antibody attachmeni 505

[17] O. A. Smirnova, "Study of cyclic kinetics of immunity by mathematical modeling methods",
Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina 25 (1991) 53-56.

[18] I. Sobottka. F. Iglauer, T. Schulcr, C. Schmetz, G. S. Visvesvara, H. Albrecht, D. A. Schwartz,
N. J. Pieniuzck, K. Bartscht, R. Laufs and J. Schottelius, "Acute and long-term humoral immu-
nity following active immunization of rabbits with inactivated spores of various Encephalitozoon
species", Parasitology Research 87 (2001) 1-6.

[19] P. L. Stewart, C. Y. Chiu, S. Huang, T. Muir, Y. Zhao, B. Chait, P. Mathias and G. R. Nemerow,
"Cryo-EM visualization of an exposed RGD epitope on advenovirus that escapes antibody neu-
tralization", EMBOJ. 16 (1997) 1189-1198.

[20] H. Su, G. J. Spangrude and H. D. Caldwell, "Expression of Fc-yRIII on Hela 229 cells: possible
effect on in vitro neutralization of chlamydia trachomatis". Infect. Immun. 59 (1991) 3811-3814.

[21] I. V. Suiovtsev, I. A. Razumov, V. M. Nekrasov, A. N. Shvalov, J. T. Soini, V. P. Maltsev, A. K.
Pctrov, V. It. Loktcv and A. V. Chernyshev, "Mathematical modeling the kinetics of cell distribution
in the process of ligand-receptor binding", J. Theor. Biol. 206 (2000) 407-417.

https://doi.org/10.1017/S1446181100009640 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009640

