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ABSTRACT. In three-dimensional numerical ice-sheet models that use finite-difference schemes, the
position of ice margins is poorly represented with a regular quadratic grid. As a result, in a centered
difference scheme, the surface gradient term and the flux divergence term computed for the gridpoints
next to the ice margin may be inaccurate. In this paper, an improved scheme is presented that computes
the horizontal gradients at the ice-sheet margin using an asymmetric (upstream) second-order
difference scheme in order to avoid using information from the zero-thickness gridpoints. The model is
applied to an idealized synthetic geometry to obtain a steady-state ice-sheet topography. The improved
model shows a realistically smooth thickness distribution near the margin. Thermomechanical coupling
is found to enhance the error near the margin. The error in simulated thicknesses with the centered-
difference method was significantly reduced with the new upstream scheme.

1. INTRODUCTION

Several studies have reported that, compared with the
analytical solution, there are significant errors in the
simulated ice thickness near the margin in numerical ice-
sheet models that use finite-difference schemes (Hindmarsh
and Payne, 1996; Huybrechts and others, 1996). Since the
ice flux near the ice margin, which depends on the ice
thickness, may control the total mass balance of the ice
sheet, a better representation of the ice-sheet marginal area
is required to realistically simulate the ice-sheet topography.

The errors in three-dimensional numerical ice-sheet
models are caused by the poor representation that results
from using a regular quadratic grid of the ice margin’s
location. When using a centered difference scheme, the
computed surface gradient at a gridpoint located next to the
ice margin can differ significantly from the corresponding
true gradient. The errors in the gradient lead to errors in the
horizontal ice flux near the margin and, consequently, to
errors in the simulated thickness.

In order to reduce the error at the ice margin, Van den
Berg and others (2006) suggested that a ‘slope correction
formula’ be used. This scheme, which is an alternative to the
centered difference operator, is a forward operator using a
Taylor expansion that does not use any points beyond the ice
margin. When the slope correction formula is introduced
into the scheme in a vertically integrated (thermomechan-
ically uncoupled) ice-sheet model under ideal boundary
conditions, the formula strongly influences the simulated
thickness, area, and timescale of volume change. Van den
Berg and others (2006) also showed that feedback between
the surface mass balance and height further enhances the
error resulting from inaccurate surface gradients.

Furthermore, these errors affect not only the thickness but
also the temperature distribution. Saito and others (2006)
discuss the possibility that the errors in the topography near

the margin may cause errors in the temperature field in the
interior. The European Ice Sheet Modelling Initiative
(EISMINT) intercomparison study addressed the effects of
thermomechanical coupling with a series of experiments
modeling an ice sheet with radially symmetric boundary
conditions (Payne and others, 2000). The study found that
there was the loss of radial symmetry for a range of low
temperatures (see Payne and Baldwin, 2000, for further
information). Saito and others (2006) have demonstrated that
the errors in the numerical calculation of the velocity field
near the margin result from the errors in computing the
surface gradient. This in turn may lead to the observed
spokes in the basal temperature distribution.

In this paper, we present an improved scheme to compute
the horizontal gradients in the continuity equation at the ice-
sheet margin by using an asymmetric (upstream) second-
order difference scheme in addition to the ‘slope correction
formula’ given by Van den Berg and others (2006). The
model was applied to the synthetic EISMINT geometry of
Payne and others (2000). Solutions of the improved model
for the distributions of thickness, ice velocity and tempera-
ture are discussed not only for the marginal area, but also for
the interior part of the ice sheet. To focus on the thermo-
mechanical coupling in ice sheets and its influence on the
simulated thickness and temperature, the feedback between
the surface mass balance and elevation as mentioned by Van
den Berg and others (2006) was excluded.

We show that, using the new scheme, the simulated
thickness is significantly improved compared to the ana-
lytical solution. Thermomechanical coupling was shown to
enhance the error in the result obtained with the old
scheme. Uncertainties in the simulated thickness near the
margin using numerical models were reduced with our
scheme.

The upstream method proposed is similar to the scheme
presented by Van den Berg and others (2006) except for one
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key difference: while Van den Berg and others’ (2006)
scheme improves only the surface gradients in the diffusion
term (Equation (13)), our method improves the horizontal
gradient in the flux term as well (Equations (12) and (13)).
The correction in the diffusion term given by Van den Berg
and others (2006) is equivalent to that used in our method
except that it only applies for models with type II or 13-point
schemes (Huybrechts and others, 1996; Saito and Abe-
Ouchi, 2005). In this paper, a type I or nine-point scheme is
applied, which has been shown to work better than a type II
scheme (Van den Berg and others, 2006). As well, the
present method can easily be implemented with a type II
scheme by introducing a few modifications.

Our method is similar to that presented by Hindmarsh
and Le Meur (2001), Le Meur and Hindmarsh (2001) and
Vieli and Payne (2005). However, the proposed model does
not include the dynamics of ice shelves and grounding lines.
At grounding lines, in the aforementioned papers, upstream
differences are used for the surface gradient and flux
divergence. Furthermore, these models are classified as
‘moving-grid models’, in which the horizontal coordinates
are scaled by the time-dependent ice-sheet extension. In the
moving-grid method, the grids can be adjusted such that the
points of the grounding line (or exact margin) coincide with
the corresponding gridpoints. Although the moving-grid ap-
proach is very efficient in a two-dimensional model, it is
very difficult to use in a three-dimensional model. The ap-
proach presented in this paper uses a ‘fixed grid scheme’, in
which the coordinates are fixed throughout the time
domain. In our proposed method, zero-thickness positions
are not explicitly represented. The main disadvantage of our
approach, besides neglecting ice-shelf/grounding-line dy-
namics, is the application of numerical schemes of only
second-order accuracy for computing surface gradients.
The previously mentioned papers have used a fifth-order
difference scheme.

2. MODEL DESCRIPTION
In all experiments presented in this paper, the ice-sheet
model IcIES (Ice sheet model for Integrated Earth system
Studies) was used. It is a standard three-dimensional,
shallow-ice approximation model based on the model
presented in Saito and Abe-Ouchi (2004, 2005), which
corresponds to the models described in detail by Payne and
others (2000). The model computes the evolution of ice
thickness, basal topography and ice temperatures under
prescribed climate-forcing conditions.

Generally, numerical ice-sheet models solve the con-
tinuity equation,

@H
@t
¼ �r �~q þM , ð1Þ

where H is the ice thickness,~q is the ice flux vector and M is
the surface mass-balance term (accumulation minus ab-
lation). In some models, Equation (1) is rewritten in a
diffusion form,

@H
@t
¼ �r � ðDrHÞ � r � ðDrbÞ þM , ð2Þ

~q ¼ DrðH þ bÞ , ð3Þ
where b is the bedrock elevation and D is a non-linear dif-
fusion term calculated using the shallow-ice approximation
(Hutter, 1983),
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where � is the ice density, g is the acceleration due to gravity,
h is the surface elevation and A is the temperature-
dependent rate factor. To obtain Equation (4), the constitu-
tive equation in the shallow-ice approximation is applied:

1
2
@u
@z
¼ AðT Þ �2

xz þ �2
yz

� �n�1
2
�xz , ð5Þ
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, ð6Þ

where �xz and �yz are the horizontal shear stress com-
ponents. Equations (2) and (4) both contain the horizontal
gradient of the surface elevation.

In this paper, the ‘CM method’ (central difference on
margin) uses a centered difference scheme in the continuity
equation for both the interior parts, as well as at the margin.
This is in agreement with the model used by Saito and Abe-
Ouchi (2004). The type I or nine-point scheme (Huybrechts
and others, 1996; Saito and Abe-Ouchi, 2005) is applied for
computing the diffusion term D. The semi-implicit scheme
(Hindmarsh and Payne, 1996) is applied for solving the
continuity equation (2).

The ‘UM method’ (upstream difference on margin) in this
paper is the same as the CM method, except for an upstream
finite-difference formulation at the last gridpoints before the
margin. To simplify the notation, we present the corres-
ponding numerical derivatives in one dimension (x). At
interior gridpoints,
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The surface and bedrock geometry terms, h and b, are
evaluated using cubic spline interpolation at the staggered
gridpoints i þ 1

2, by assuming that the second derivative is

Table 1. List of the experiments in this paper. The two margin
schemes, UM and CM, are explained in the text

Experiment Margin scheme Rate factor Advection scheme

UU UM Constant Second-order
CU CM Constant Second-order
UA UM T-dependent Second-order
CA CM T-dependent Second-order
UA1 UM T-dependent First-order
CA1 CM T-dependent First-order

Saito and others: An improved scheme for the ice-sheet margin88

https://doi.org/10.3189/172756407782871594 Published online by Cambridge University Press

https://doi.org/10.3189/172756407782871594


zero at the marginal gridpoints. The horizontal gradient
terms at the gridpoint i þ 1

2 are evaluated by

@h
@x

����
iþ1

2

¼ hiþ1 � hi
�x

: ð11Þ

For the interior part, the procedure is the same for the
normal type I or nine-point scheme (Huybrechts and others,
1996; Saito and Abe-Ouchi, 2005).

At the marginal gridpoints, we applied the asymmetric
difference scheme. We defined the zeroth gridpoints as the
last gridpoint before the margin; positive-numbered grid-
points are interior gridpoints, while negative-numbered
gridpoints are zero-thickness (exterior) gridpoints.

Applying the Taylor expansion and omitting all terms
with second and higher derivatives, we obtain an upstream
finite-difference scheme for the derivative of q at i ¼ 0,

@q
@x

����
0
¼

9q1
2
� 8q0 � q3

2

3�x
: ð12Þ

The terms q 1
2
and q3

2
are evaluated as shown in Equation (7).

In addition, q at i ¼ 0, which is not at a staggered point but
at a regular point, is required at the marginal gridpoint for
evaluating the gradient of the flux q.

Thus, it is not necessary to evaluate q at the negative-
numbered gridpoints. The surface gradients in Equation (3)
are evaluated using an asymmetric second-order difference
scheme, with terms at the gridpoints numbered 0, 1 and 2:

q0 ¼ D0
@h
@x

����
0
¼ D0

4h1 � h2 � 3h0
2�x

: ð13Þ

The diffusion term D0 is also computed on the regular grid:

D0 ¼ F0 rhj0 � rhj0
� �n�1

2 , ð14Þ
where

F0 ¼ �2ð�gÞn
Z h0
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dz

Z z
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dz0 AðT Þ h0 � z 0ð Þn : ð15Þ

Again, D0 includes the surface gradient terms, which are
computed based on Equation (13). If the gridpoint is also a
last gridpoint before the margin in the y direction, then the
y gradient terms are also computed using the asymmetric
scheme. In this case, interpolation is not required for
evaluating the terms at i ¼ 0. The surface gradient at the
marginal gridpoints is evaluated using the same asymmetric
second-order difference scheme as given in Equation (13). In
this formulation, a total of nine gridpoints is used to compute
the thickness evolution at either one marginal gridpoint or
one interior gridpoint.

The numerical expressions for the horizontal flux
gradients q in the two-dimensional form at the interior and
marginal gridpoints become
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All of the equations only require information from gridpoints
with strictly positive ice thickness. No information from
gridpoints with zero thickness is required.

Horizontal gradients of the term q in the y direction are
derived correspondingly. Using the semi-implicit scheme
(Hindmarsh and Payne, 1996), the evolution of the thickness
at all gridpoints (Equation (2)) requires the solution of a
linear system of equations,

C1
i, jHi, j�1 þ C2

i, jHi�1, j þ C3
i, jHi, j þ C4

i, jHiþ1, j þ C5
i, jHi, jþ1

¼ C0
i, j , interior,

C1
i, jHi, j�1 þ C2

i, jHi�1, j þ C3
i, jHi, j þ C4

i, jHiþ1, j þ C7
i, jHi, j�2

¼ C0
i, j , y upper margin,

C1
i, jHi, j�1 þ C2

i, jHi�1, j þ C3
i, jHi, j þ C6

i, jHi�2, j þ C5
i, jHi, jþ1

¼ C0
i, j , x right margin,

C1
i, jHi, j�1 þ C2

i, jHi�1, j þ C3
i, jHi, j þ C6

i, jHi�2, j þ C7
i, jHi, j�2

¼ C0
i, j , top-right corner.

ð18Þ

For the other margin and corner points, Equation (18) is
modified as necessary. It should be noted that the terms Cm

are coefficients computed using Equations (16) and (17). A
conjugate gradient method in combination with a sparse-
matrix storage scheme is applied for solving the system of
linear equations, Equations (18). In principle, the upstream
method can be used throughout the ice sheet, but the
convergence of the conjugate gradient method may be slow.
We applied the upstream method to only the last gridpoints
before the margin.

The temperature distribution is calculated using the
thermodynamic equation with the prescribed surface tem-
peratures and geothermal heat flux as boundary conditions,

@T
@t
¼ kI

�cp
r � rT � ð~v � rÞT þ �

�cp
þ L
�cp

, ð19Þ

where kI ¼ 2.1Wm–1 K–1 and cp ¼ 2009 J kg–1 K–1 are the
thermal conductivity and specific heat capacity of ice, � is
strain heating and L is a phase change term. The main
difference in the numerical scheme between the present
paper and Saito and others (2006) is the difference in
computing the temperature advection term. In this paper,
the model uses a second-order upstream difference scheme
to compute the temperature advection term, while in Saito
and others (2006) a first-order upstream scheme was used.
This difference significantly influences the results, espe-
cially the temperature distribution, which is explained in
section 4.2.

3. EXPERIMENTAL DESIGN
An overview of all six experiments performed in this paper is
shown in Table 1. All experiments were performed using the
same boundary conditions as in experiment A of the
EISMINT model intercomparison experiments (Payne and
others, 2000). The bedrock topography is flat (b ¼ 0 on all
gridpoints) and kept constant throughout the time domain.
The boundary conditions at the base of the ice sheet include
the no-slip condition and matching geothermal heat flux.
The computed temperature is constrained such that it does
not exceed the local pressure-melting temperature. The
surface temperature Ts and surface mass balance M are
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functions of the horizontal distance R from the center:

Ts ¼ Tmin þ STR, ð20Þ
M ¼ min Mmax, SbðRel � RÞ½ �, ð21Þ

where Tmin is the surface temperature at the center, ST is the
radial surface temperature gradient, Mmax is the upper limit
for the accumulation rate, Sb is the radial mass-balance
gradient and Rel is the radial distance of the equilibrium line

Fig. 1. Steady-state solution for surface elevation, basal temperature (below pressure-melting point), vertical surface velocity component and
flux divergence of all gridpoints as a function of distance from the center of the ice sheet, for experiments UU (left) and CU (right). The solid
lines in (a) and (b) correspond to the analytical solution of the steady-state surface elevation. (c–h) contain only non-zero thickness
gridpoints. The range of the vertical axis is the same at left and right, except for the vertical velocity plots (e, f).
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from the center. The parameters in Equations (20) and (21)
are set to Sb ¼ 10–2m a–1 km–1, Rel ¼ 450 km, Mmax ¼
0.5ma–1, ST ¼ 1.67�10–2 K km–1, Tmin ¼ 238.15K. The
geothermal heat flux is uniform at 42mWm–2 in all of the
model experiments.

In all of the experiments, the grid resolution is 25 km in
both horizontal coordinate directions. The vertical grid is
divided into 26 levels. The time-step is 2 years for the surface
evolution and the velocity field, and 10 years for the
temperature field. The models are executed for 200 000
model years to reach steady state.

The first letter of an experiment name indicates the
numerical scheme that was used. Experiments UU, UA and
UA1 were executed using the model with the new margin
scheme (UM method), and experiments CU, CA and CA1
used the old margin scheme (CM method).

The second letter of an experiment name indicates the
experimental configuration. Experiments UU and CU are
thermomechanically uncoupled experiments, in which the
rate factors are kept constant at A ¼ 1.0�10–16ma–1. These
experiments are the same as the ‘moving-margin’ experi-
ment presented in Huybrechts and others (1996), except for
a doubled horizontal resolution.

ExperimentsUA and CA are thermomechanically coupled
experiments. The dependence of ice rheology on the
computed ice temperature for these experiments is given by

AðT 0Þ ¼ a exp � Q
RT 0

� �
, ð22Þ

where T 0 ¼ T – Tm(p)þ T0 is the absolute temperature
corrected for the dependence of the melting temperature
Tm(p) on pressure p, and T0 ¼ 273.15K is the triple-point
temperature of water. The values for the coefficients a and Q
were taken from Huybrechts (1992), as follows:

a ¼ 3:61� 10�13 Pa�3 s�1

Q ¼ 6:0� 104 Jmol�1

)
if T 0 < 263:15 K , ð23Þ

a ¼ 1:73� 103 Pa�3 s�1

Q ¼ 13:9� 104 Jmol�1

)
if T 0 � 263:15 K : ð24Þ

These experiments apply the same configuration as in

experiment A of the EISMINT model intercomparison
experiments (Payne and others, 2000).

Experiments UA1 and CA1 are the same thermomechan-
ically coupled experiments as UA and CA, except that they
use a first-order upstream scheme for computing the
temperature advection term. These experiments were used
to demonstrate the difference between the methods pre-
sented in this paper and in Saito and others (2006).

According to Huybrechts and others (1996), the ana-
lytical margin position of the steady-state topography for all
of the experiments in their paper is R ¼ 579.81 km, which is
obtained analytically by integrating Equation (1).

4. RESULTS

4.1. Thermomechanically uncoupled model
Figure 1 shows the steady-state results for experiments UU
and CU, which omit the effects of thermomechanical
coupling. The simulated thicknesses are almost the same
for experiments CU andUU except near the margin. Figure 1
shows the simulated thicknesses obtained by UM and CM
methods near the margin. The result of CU shows splitting
solutions around a distance of 570 km. In some directions,
measured azimuthally from the center, the thickness is as
much as 800m, while in other directions the thickness is
zero. This divergence does not occur in the results obtained
from UU. The margin in UU is smoother than in CU. Thus,
the improved UM method maintains the circular symmetry
better than the CM method. The reason for the asymmetry in
the ice-thickness distribution at the margin using the CM
method is that it depends on the numerically computed
surface gradient at the last gridpoint before the margin.
However, the variability at the surface depends on the
azimuthal direction from the center, since a quadratic grid
system was used.

Compared to the analytical solution, the thickness is still
overestimated by as much as 300m (Fig. 2). However,
compared with the CM method, the simulated thickness
obtained by using the UM method is closer to the analytical
solution by 300m. On the other hand, the ice-sheet
extension obtained by the UM method coincides with the
analytical solution, while that obtained by the CM method is
about 10 km smaller.

Fig. 2. Surface elevation as a function of distance from the center of
the ice sheet, for experiments UU (circle) and CU (triangle). Only
the marginal area is shown. The solid line corresponds to the
analytical solution of the steady-state surface elevation. The dashed
line corresponds to the analytical margin position (579.81 km).
Note that the plots from 537 to 552 km overlap each other.

Fig. 3. Difference in the basal temperature (below pressure-melting
point) as a function of distance from the center of the ice sheet. The
result of UU minus that of CU is shown.
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Figure 1c and d show the steady-state basal temperature
distribution simulated by experiments UU and CU. The
basal temperatures differ between –0.03 and 0.08K (Fig. 3).
In the region near the center, UU yields a lower temperature
than CU. However, away from the center, the differences are
both positive and negative.

As shown in Saito and others (2006), the vertical velocity
component at the surface computed using CM methods
shows a large scatter near the ice margin (Fig. 1f). This is
because the vertical component of the velocity is related to
the surface gradient, which is poorly represented near the
margin in regular grids. Although some scattering is still
present in theUMmethods, this feature is strongly reduced by
using the improved scheme (Fig. 1e). The gap in the vertical
velocity at a distance 570 km in Figure 1e is possibly caused
by the change in the scheme from central to upstream.

At steady state, the flux divergence term r�~q in Equa-
tion (1) must equal the surface mass-balance term M.
Figure 1g and h show that, in both methods, the flux
divergence term agrees with Equation (21) at all model
gridpoints. The simulated and analytical solutions cannot be
distinguished in the figures.

4.2. Thermomechanically coupled model (EISMINT
experiment)
For the thermomechanically coupled experiments, UA, CA,
UA1 and CA1, no analytical solution is available except for
the position of the margin. Therefore, only a comparison be-
tween UM and CM methods can be shown. First, we present

the influence of the temperature advection scheme on the
temperature distribution. The thermomechanically coupled
experimentsUA andCA are repeatedwith amodel that uses a
first-order advection scheme. These experiments are denoted
byUA1 andCA1. With both the UM and CMmethods using a
second-order advection scheme, the ‘spoke pattern’ reported
in Payne and others (2000) is reduced (see Fig. 4). On the
other hand, the results of UA1 and CA1 show that the UM
scheme does not completely eliminate the spoke pattern.

Thus, despite Saito and others (2006), the ill-conditioning
of the numerical calculation of the velocity field near the
margin due to the error in computing the surface gradient
is not the only cause for the observed spokes in the basal
temperature distribution. Experiment F of Payne and others
(2000) with colder surface temperatures at Tmin ¼ 223.15K
is repeated using both the UM and CM methods. The results
show that spokes similar to those observed by Payne and
others (2000) can be seen in both the UM and CM methods,
as well as with a second-order advection scheme. At
present, the reason for the poor performance of experiment
F compared to experiment A is unknown. One possibility,
suggested by Payne and others (2000), is that the spatial
location of the boundary separating the cold basal ice from
that at the melting point lies closer to the steep surface
slopes of the ice-sheet margin, where the effects of feedback
between temperature and flow are important due to the
large strain heating.

However, the reduction in the spoke patterns for both the
UM and CM methods in experiment A shows that the new

Fig. 4. Steady-state solutions of the basal temperature (below pressure-melting point) obtained by experiments (a) UA, (b) CA, (c) UA1 and
(d) CA1. (c) and (d) correspond to the results from a model with a first-order advection scheme. Shaded area indicates that the base is at the
pressure-melting point. The contour interval is 2 K. Due to symmetry, only one-quarter of the sheet is shown.

Saito and others: An improved scheme for the ice-sheet margin92

https://doi.org/10.3189/172756407782871594 Published online by Cambridge University Press

https://doi.org/10.3189/172756407782871594


scheme is better at determining the topography and tem-
perature field.

Figure 5 shows the steady states simulated by experiments
UA and CA using a second-order scheme to compute the
temperature advection term. The irregularities in the ice

thickness at the margin (Fig. 5b, at 520 km) are enhanced
compared with that shown in Figure 1b.

Figure 6 shows the simulated topography obtained by the
UM and CM methods near the margin. There is a dis-
crepancy of up to 1200m around the distance of 570 km,

Fig. 5. Surface elevation, basal temperature (below pressure-melting point), vertical surface velocity component, and the flux divergence as a
function of distance from the center of the ice sheet, for experiments UA (left) and CA (right). The range of the vertical axis is the same at left
and right, except for the vertical velocity plots (e, f).
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which stems from the result of CA. The margin in experiment
UA is smoother than that of CA, which is similar to the
results obtained in section 4.1 for the uncoupled experi-
ments. The simulated thickness is corrected by as much as
600m in the marginal zone in the UA experiment. Thus,
using the UM method, the computed topography near the
margin becomes realistically smooth. The differences in
simulated thicknesses between experiments UA and CA
became smaller closer to the center of the ice sheet: 200m
at 500m, 100m at 350 km, and 40m at the center. In
addition, the improved UM method maintains the circular
symmetry better than the CM method. The simulated
thickness obtained for experiment UA at the analytical
position of the ice margin is about 400m. Therefore, the
remaining error in the thickness is thought to be 400m at
most. However, the error in the simulated thickness obtained
using the UMmethod is expected to be reduced significantly
as compared to that using the CM method.

Figure 5c shows the steady-state basal temperature dis-
tribution simulated by experiment UA, which shows more
scattering compared to the results from experiment CA
(Fig. 5d). Figure 7 shows the difference in basal temperature,
which is at most 0.6 K, but this is more than in the
thermomechanically uncoupled case. While there is scatter-
ing in the interior part, the extent of the basal melting region
is not affected. In the region near the center, UA shows lower
temperatures than CA, while away from the center, UA
shows both higher and lower temperature than CA.

As discussed in Saito and others (2006), the vertical
velocity component at the surface computed by the CM
method shows a large scatter near the ice margin, which is
reflected in the error of the computed surface gradient. This
error in the velocity affects the temperature distribution near
the margin, which in turn affects the velocity and mass flux,
creating an error propagation feedback loop. Thus, the
scattering in the thickness distribution may be enhanced by
the thermomechanical coupling. Since the basal tempera-
ture distribution does not show the spoke pattern in
experiment CA, it seems that this error in thickness is not
propagated into the interior part in this experiment. In these
cases, as in experiments UU and CU, the flux divergence
r �~q shows good agreement with the prescribed surface
mass-balance term M at all the model gridpoints.

The difference in thickness in the coupled case is larger

than in the uncoupled case, which can be explained as
follows. The shear stress �xz , the shear strain rate "xz and the
strain heating � can be expressed in the shallow-ice
approximation by

�xz / H
@H
@x

,

"xz / @u
@z
/ AðT ÞHn @H

@x

� �n

,

� / "xz�xz / AðT ÞHnþ1 @H
@x

� �nþ1
:

ð25Þ

Thickness gradient @H=@x can decrease while thickness H
increases. The net effect of changes in H and @H=@x on the
shear stress �xz depends on the topography. Figure 8 shows a
comparison between the results of the two methods UA and
CA at the gridpoint (525 km, 0 km). In this case, an increase
in @H=@x dominates, such that bottom shear stress is larger
in UA than in CA at the deep part, though the thickness is
smaller. Larger shear stress at the deep part results in larger
strain heating. Through the temperature-dependent rate
factor (Equation (22)), the corresponding horizontal velocity
increases as shown in Figure 8, and thus the thickness
decreases.

The vertical velocity component also becomes smaller in
experiment UA. At steady state, the surface boundary
condition for the vertical velocity component is

ws � �M þ us
@H
@x

: ð26Þ
Since the horizontal velocity increases, and the surface
becomes steeper, ws becomes smaller in experiment UA.
Due to the decrease in the vertical velocity, heat advection
from the deeper part towards the surface is also decreased.
However, this lowers the temperature only in the upper part.
Consequently, thermomechanical coupling positively feeds
back on the decrease in ice thickness. Thus, the CM method
significantly overestimates the thickness near the margin in
the case of thermomechanical feedback.

5. CONCLUSIONS AND PROSPECTS
In this paper, an upstream finite-difference scheme that
solves the continuity equation at the margin is presented.
This method improves the representation of the margin,

Fig. 6. Surface elevation as a function of distance from the center of
the ice sheet, for experiments UA (circles) and CA (triangles). Only
the marginal area is shown. The dashed line corresponds to the
analytical margin position (579.81 km).

Fig. 7. Differences in the basal temperature (below pressure-melting
point) as a function of the distance from the center of the ice sheet.
The result of UA minus that of CA is shown.
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compared to a method that uses a centered finite-difference
scheme. This new method was applied to an idealized
ice-sheet configuration. Comparisons were made between
the upstream and central difference methods, focusing on
the steady-state topography and temperature distribution.
The results show that a smoother margin topography and a
realistic ice thickness near the margin can be obtained by
using the upstream scheme, though simulated ice thickness
is still overestimated as compared to the analytical solution.
In the UM method, the thickness of the interior part is only
corrected by a few tens of meters, while the difference
between the simulated and analytical solutions reaches a
few hundred meters near the margin, due to thermomech-
anical feedback. The temperature distribution is not affected
significantly. Since these errors are reduced in the marginal
region in the UM method, we recommend that the upstream
difference scheme be used. The results indicate that the
errors in the computed velocity field near the margin, which
resulted from errors in the computed surface gradient, did
not contribute to breaking the radial symmetry of the basal
temperature distribution as was originally suspected in Saito
and others (2006). Based on the EISMINT configuration, the
temperature distribution in the interior part is not affected by
using the improved scheme.

The remaining errors in thickness near the margin in
solving the continuity equation may be reduced by using a
higher-order difference scheme. Le Meur and Hindmarsh
(2001) explain that the accuracy is substantially increased
by using a fifth-order formula. They applied their scheme to
a two-dimensional ice-sheet model. Although in a three-
dimensional model the procedure for building the matrix
equation will be more complex and the convergence will be
much slower, it is nevertheless desirable to increase the
order of the scheme.

It is beyond the scope of this paper to repeat the experi-
ments with different schemes. Implementation of a similar
method on the 13-point scheme can be done by replacing
all the D terms at the staggered points in Equations (16)
and (17) with the average of those at the regular grids. We
expect that a similar improvement (e.g. in a realistically
smooth thickness distribution near the margin) could be
obtained with the 13-point scheme configuration.

The surface mass-balance forcing used in this paper is a
function of position only and independent of the surface
elevation, since we focused on thermomechanical coupling.
For realistic ice sheets, the surface mass balance and melting

are most likely dependent on surface elevation. Through
such elevation–melting feedback, the difference in the
simulated thickness distribution between the old and the
improved model is expected to increase. Thus, an ice sheet
simulated by the improved model is expected to be more
sensitive to changes in climate forcing than one simulated
with the old model. Using a thermomechanically uncoupled
ice-sheet model, Van den Berg and others (2006) showed
that the effect of an inaccurate gradient in those cases would
be much larger. It is expected that thermomechanical coup-
ling would further enhance this feedback.

The focus in this paper is on steady-state solutions.
Transient behavior, such as margin advancing or retreating,
will need to be investigated. The response time may be
affected by the chosen scheme, as presented by Van den
Berg and others (2006). The test suite presented in Bueler
and others (2005) for isothermal ice sheets would be useful
to determine the effects of a chosen scheme on the response
time. In addition, the numerical scheme in this paper can be
applied for the transformed version of the ice-sheet equation
in Bueler and others (2005), which will further decrease the
errors near the ice margin.
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