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1. Several papers on the subject of spatial distance in General
Relativity appeared a few years ago, and a simple extension of this
idea to any pair of points in any Riemannian space was given by me
in a thesis1. A distance invariant was defined, and this was found to
depend upon a certain two-point invariant which was first introduced
by H. S. Ruse in a study of Laplace's Equation2. This invariant,
now written p and defined in (3), has lately re-appeared3, and it may
now be of interest to publish the results found earlier. These include
a geometrical interpretation of p, a simple method of calculation, and
an expansion as a power series in the geodesic arc. The dependence
of p upon the geodesic arc is also considered.

2. The distance invariant, O, for two points P, P' in a Riemannian
space Vn is defined as follows:

If the geodesic PP' is not null, consider a thin cone of geodesies
passing through P and near P'. Then <D is proportional to the
(n — l)-dimensional volume of cross-section of this cone at P', i.e. the
section orthogonal to PP', and the constant of proportionality is
chosen so that $ ~ s""1 when s -> 0, s being the geodesic arc measured
from P . When the geodesic PP' is null, a cone of null geodesies is
drawn to pass through P and near P'. Then O is proportional to the
(a — 2)-dimensional volume of cross-section at P' and is such that
<1> — on~2 when a—> 0, a being a special parameter measured from P.
In this case, any section at P' gives the same volume4.

We shall now prove that
<D = P5»-1 (1)

when PP' is not null, and that
<S = po»-2 (2)

1 For the Senior Mathematical Scholarship, Oxford, 1934.
2 Proc. Edinburgh Math. Soc. (2), 2 (1931), 137.
3 Copson and Ruse, Proc. Royal Soc. Edinburgh, 60 (1940), 117.
4 This theorem on null geodesies was given by me in Quart. J. of Math., 4

{1933), 72, and has since been generalised by Prof. G. Temple, Proc. Royal foe. A, 168
<1938), 122.
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DISTANCE INVARIANT AND THE CALCULATION OF RUSE'S INVARIANT 17

when PP' is null, where p is Ruse's invariant for the points P, P',
defined in (3) below.

Let y{ be a set of normal coordinates with origin at P, the
fundamental tensor then being ati. Then if the geodesic PP' is in the
direction A* (a unit vector) at P, the coordinates of P' are yi = sA*.
It is well known that the element of volume of Vn at P' in the

^/-coordinate system is V ± i a I dyA • • • • dyn, where j a j denotes the
determinant |atj,|. If now we transform to a geodesic-polar system
with P as origin, then, from y{ = sA*, it follows that the volume
element is of the form dVn = \ / ± | a\ sn~1dsdto where da> is inde-
pendent of s. Now if dVn_1 is the volume of cross-section of a thin
cone with vertex at P, then dVn = ds . dVn_1, whence we see that
along any cone, dVn-X x sn~1 V ± a,. Since O oc dVn_i, the constant
being such that O ~ sn~1 when s -¥ 0, we finally have

the suffixes denoting the points at which | a. | is evaluated. Passing
now to a general coordinate system, with fundamental tensor gtj, Ruse
has shown how the coefficient of sn~1 above, which we call p, can be
expressed in an invariant form. If xl, x'1 are the coordinates of P
and P', and if | s 2 is expressed in terms of these coordinates, then

The relation (1) has now been established, and (2) can similarly
be verified. Details of the latter proof will not be given here, but an
equation equivalent to (2) was obtained by Etherington1 in the case
of 4-space with signature — 2.
3. In order to apply the above formulae it is necessary either to find
s in terms of the end points or to find a system of normal coordinates.
These calculations are rarely easy, and we shall give another method
for calculating p which has already been applied by the author to
various spaces of General Relativity.

Let PP' be a non-null geodesic traced by the point x((s), s being
the arc measured from P, and let Xj,., p = 1, 2, . . . . . n — 1, be unit
vectors displaced by parallel transport along PP', these vectors being

1 Phil. Mag. (7), 15 (1933), 761.
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18 A. G. WALKER

orthogonal to each other and to the unit tangent vector A' = dx^ds at
each point of the curve. Now write

T* = epRhijk AJ, A*, A* Â , ep = gtj A-, A>, = ± 1, (4)

where Rhijk is the curvature tensor, so that y£ are functions of s
along PP'. Then it has been shown1 that if z1, z2, . . . . . z n - 1 are small,
the point x1 + zp Xj, ( traces out a geodesic as 5 varies if the z's satisfy
the equations

& = Yf zq

where dots denote differentiations with respect to s. For a geodesic
which passes through P, z* = 0 when 5 = 0, and the general solution
subject to this restriction is of the form zp = <f>p a9, where the a's are
n — 1 arbitrary constants. Using matrix notation, y = (yj) and
<f> = (<£p are square matrices of order n — 1, and <j> satisfies the
equations

£ = Y * . W)o=0. (5)
Consider now a thin cone of geodesies passing through P and lying

near PP'. The small constants a.3" can be regarded as coordinates in
the cross-section, and from the definition of the z's it follows that the

volume of cross-section is ^ ' da1 . . . . dan~1 = 1̂ 1 da1 . . . . dan~1, i.e.
d(a)

is proportional to | <£ | since the limits of the cone are determined by
constant values of the a's. Since each element of <f> vanishes when
s = 0, we have | <jj \ — \ <j> |0 s'1'1 a s s - ^ 0 . Thus finally,

where <f> is any solution of (5).
As an example, let Vn be a space of constant curvature K. Then

Rhijk = K (ghj gik — ghk g^),

And from (4),

Yf = - eK8», e = ^ A' X̂ .

Thus (5) becomes j> + eiT^ = 0, and this equation can at once be
integrated to give

4> — A sin

A. G. Walker, Proc. Royal Soc. Edinburgh, 52 (1932), 351.
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with (<£)o = 0, A being a constant non-singular matrix. Hence from (6)

= /

As expected from the definition, it is seen that p -» 1 as s -> 0.
In flat space, K = 0 and we have p = 1 for any pair of points.
A formula similar to (6) holds when PP' is null, but in this case

there are only n — 2 vectors Aj,,, and y and <f> are square matrices of
order n — 2. The important case of a F4 with signature — 2 is fully
dealt with elsewhere by the author1. In any space of constant
curvature, e = 0 in the above equations when PP' is null, so that
Y = 0 and finally p = 1 as in flat space.

4. An advantage of the above method is that the required quantities
concern only the geodesic PP', unlike methods requiring normal
coordinates or the integrated form for £s2. The use of vectors A*
given by parallel transport along PP' leads to the remarkably
simple form of equation (5), but these vectors can be avoided
when the transport equations cannot be solved easily. For if
i/jj= 2 eq <f>^ Aj,| A?ij-, then the ip's satisfy equations

p, Q

M=nfi. $A'=0 , $ * , = (>, ($)o=O, (9)
where ip\ denotes ^] u A* A', and

If now Z*|, a = 1, 2, . . . . , n — 1, are unit vectors orthogonal to each
other and to X\ and if

then \&*\ is independent of the choice of Ẑ  and is therefore equal to
\<f>^\- Thus we have:

/ / tfii is any solution of equations (9), and if 6% is given by (11), then

(12)

5. We shall now consider the expansion of p in powers of s, the
point P and the direction PP' at P being fixed. For this purpose we
shall find the following lemma useful:

1 Quart. J. of Math., 4 (1933), 71, and Monthly Notices R.A.S., 94(1934), 159.
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20 A. G. WALKER

Lemma. If the elements of a square matrix F are functions of s so
that F can be expanded in a series of powers of s with matrix
coefficients, and if the first term is the unit matrix, then

log | I1 | = t r ( l og f ) (13)

where tr A denotes the trace, i.e. the sum of the diagonal elements,
of the matrix A. The log on the right is to be expanded in the
ordinary way in powers of 5, the order of the matrices in each product
being unimportant since tr (AB) = tr (BA).

To prove this lemma1, we note that the rule for differentiating a

determinant can be written — \ F • = \F \ tr {F~l F) where F = —-,
as as

whence

^ log | F | = tr ( J - i F) = tr (£ log F) = ^-tv (log F). (14)

Equation (13) is now given by integrating both sides of (14), since the
term independent of s in F is assumed to be the unit matrix.

This method of obtaining the expansion of a determinant can be
applied to any matrix provided the first term is non-singular. For
if / = / 0 4- sfx + s2/2 4- . . . . . then we can write F = f^f and so obtain
log | F |, which is equal to log (|/ |/ |/o | )•

One method for expanding p is to return to normal coordinates
and expand the fundamental tensor atj in powers of s. The above
lemma can then be applied to (3) to give any desired number of terms
in the expansion of p. The coefficients in the series for a^ in powers
of s are well known as the affine extensions of the fundamental tensor2,
and they can be expressed in terms of the curvature tensor and its
derivatives. The final result can thus be expressed in invariant form
applicable to any coordinate system. The great disadvantage of this
method is that the extensions of the fundamental tensor require
laborious calculations; it would be no easy matter to reach terms
beyond s4 in the expansion of p. Fortunately the method for
calculating p given in this paper leads to a quite different method for
finding the required expansion, this being so simple that any number
of terms can be quickly calculated and expressed in invariant form.

1 This proof, which replaces a longer one of my own, is due to H. S. Ruse.

"See, for example, Veblen, "Invariants of Quadratic Differential Forms,"
Cambridge Tract, 24 (1927), 94.
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6. We shall now expand p, or rather log p, in powers of 5 by means
of (5) and (6), and for this purpose we first require a recurrence
relation for the matrix coefficients in the expansion of <f>. From (5)
we see that the rth derivative of <f> can be expressed in the form

where br, cr are matrices, and on differentiating this equation, we find

K+l = br + cr 7. cr+l = °r + K-

Eliminating the 6's, we finally have

cr+2 = 2 cr+1 — cr + cr y, co = O, c1 = I, (15)

which is a recurrence relation for the c's. Putting 5 = 0, it follows

that ( —— ) = cT (<£)0 where cT is now evaluated at P, and we have
\ dsT Jo

^ ( 4 - i = S / + ~c2 + ̂ c 3 +

Hence from (13), since p = la"1 <f> (^)j"1! from (6),

l o g p = t r log (I+£y c2 + ^cz+ . . . . ) . (16)

This, together with (15), enables us to calculate quickly any number
of terms in the expansion of log p and hence of p. For convenience
we shall write

log,= £ . + £,•+£«.+ (17)

Although y involves A£( it can be verified that these vectors
disappear in the coefficients in (17) in consequence of the identities

S« f AJ|A£,=p«-eA<A'. (18)
v

I t can in fact be seen that the W's are unaltered when y is replaced
by F defined in (10), the derivatives being

H = R\ikt i A* V A', q = Bijk lM X" V Xi A", etc.

This substitution avoids continual application of (18).
From (15) the first few c's are c0 = 0 , Cx = / , c2 = 0,

C3 = Y. C4 = 2y, c5 = 3y + y2, c6 = 4y + 4yy + 2yy, etc.

https://doi.org/10.1017/S0013091500024251 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024251


22 A. G. WALKER

Substituting in (16) and writing F in place of y, we find

H'j = 0, W2 = tr r , W3 = 2 tr f,

WA = tr (3r - 5 T2), W& = 4 tr ("f - IT), etc. (19)

These coefficients can at once be expressed in terms of the curvature
tensor Rhiik and the contracted tensor B^, and we finally have

W2 = Ri} A< A*, TF8 = 2JB0> t A' A* A*,
Wi = (3iJy, „ - % Rh

if
m Rmm) AWA*A', etc. (20)

These coefficients must all be evaluated at P, the vector A1' giving the
direction of the geodesic PP' at P.

7. In the above series we regard p, defined by two points P, P', as
determined by space elements evaluated at P, the direction A* at P, .
and the geodesic arc s (or parameter cr) from P to P'. If now we
keep P fixed and allow P' to vary, an obvious question presents
itself: In what class of spaces is p dependent only upon s, i.e.
independent of A* ? Copson and Ruse have shown that such spaces
are of considerable importance in the study of the generalised Laplace
Equation; these spaces have been called centrally harmonic when the
above requirement holds about one particular base-point P, and
completely harmonic when it holds about every point of the space.

The conditions that a space shall be centrally harmonic about P
have been given as an infinite set of equations to be satisfied by the
fundamental and curvature tensors and their extensions at P. These
conditions can be derived more simply from the expansion of the
present paper, for from (17) we require that Wr, r = 1, 2, . . . . shall
be independent of A% this being possible since the A's satisfy
<7y A* X; = constant. I t is easily seen that Wr is of the form

Wr= Wtl_ir A'- . . . . \*r

where the coefficients on the right, assumed symmetric in the suffixes,
are functions of the fundamental and curvature tensors and their
derivatives. The required conditions are therefore

Wu , =0 , r = 1, 3, 5

WiZ'.il = K^ guu gitit• • • -9ir_lir> r = 2, 4, 6, . . . . <21>

where the fc's are scalars, the sum being taken to give an expression
symmetric in the suffixes. Any desired number of conditions can
now be found and expressed directly in terms of the curvature tensor
without involving the normal tensors.
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When the above conditions are satisfied at P, then for any point
P' it appears that p is a function of s, the arc PP', and is expressed as
a power series in s2. This is not strictly true except in space with
positive definite metric, for the value of g^ A* A3 changes sign when P'
crosses the null cone with vertex at P. It follows from (21) that,
strictly, p is a function of e.s2 where e = gtj X

1 AJ' = ± 1 or 0.
We already know that p —> 1 when s -> 0, and this value is

reached again when e = 0, i.e. when PP' is null, for then Wr = 0,
r — 1, 2 from (21), whence p = 1 from (17). Thus, if a space is
centrally harmonic about P and if the geodesic PP' is null, then p = 1.

8. When a space is completely harmonic, conditions (21) are satisfied
at every point. Since p is now a function of e.s2 about each point of
the space, then by alternatively keeping P fixed and moving P' and
then keeping P' fixed and moving P, etc., it is easily seen that, in
general, the form of p as a function of e.s2 must be the same for all base-
points. I t follows that the scalars kr in (21) are all constants, but we
shall not assume this result in later calculations.

From (7) we see that any space of constant curvature is com-
pletely harmonic. This formula is an illustration of p as a function
of e.s2 throughout space.

Copson and Ruse have mentioned the possibility that spaces of
constant curvature are the only spaces which are completely
harmonic, and they have shown this to be the case for Vn when

(i) n = 2 or 3.
We shall now prove that this is the case also when

(ii) Vn is conformal to flat space;
(iii) n = 4, and the signature of F4 is ± 2.

From (20) and (21) the condition given by r = 2 is

Rij = h9ij, (22)

showing that Vn must be an Einstein space. When r = 3, it is easily
seen from (20), (21) and (22) that lc2 must be constant for n ^ 2.
This latter result at once deals with the case (i) for n = 2 since Jc2 is
then the Gaussian curvature, and the result for n = 3 follows from
the well known fact that an Einstein space F3 has constant curvature.
The case (ii) above follows from the fact that an Einstein space
conformal to flat space has constant curvature.

Case (iii) above is of some importance since the 4-spaces of
General Relativity have signature ± 2. The proof is not as simple as
for the other cases and we require the next condition, given by r = 4.
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Since tr T = 0, it follows that tr F = 0, and the condition becomes

S fir""' g»« i ? m i > J ? m W = kt S flry £ „ , (23)

where £ denotes the sum obtained by rearranging i, j , k, I in all
possible ways. These equations with (22) restrict the curvature
tensor, and we shall prove that the space must have constant
curvature when n = 4 and the signature is ± 2. It is more convenient
to deal with quantities defined by

(ijkl) = \ (Rm + Rm) + h (gik gjl + ga gjk - 29i i gkl). (24)

From the identities satisfied by the curvature components it is
easily seen that these quantities satisfy

(ijkl) = (jikl) = (ijlk) = (klij)
(ijkl) + (iklj) + (iljk) = 0.

The algebra is now simplified by choosing a coordinate system so that,
at any particular point P , gtj = 0, i=$=j, and gu = gu = et = ± 1.
Then (22) and (23) become

S ea (aaij) = 0, (26)

S ea eb {(abij) (abkl) + (abik) (ablj) + (abil) (abjk)}
a,b (27)

= * (9ij9ki + 9ik9u + 9u9.jk),
where i, j , k, I take values 1, 2, 3, 4 and k is a scalar given by k2

and k4.
From (26) and (25) we get a number of equations of the form

e i e 2 (1122) =e 3 e 4 (3344), (28.1)

e2 (1122) + e3 (1133) + e4 (1144) = 0, (28.2)

ex (1134) + e 2 (2234) = 0, (28.3)

etc., and from (27) and (25) we have, for i =j = k = I,

2e2 ea (1123)2 + 2e2 e4 (1124)* + 2e3 e4 (1134)2

= fc-(1122)2 - (1133)2-(1144)2, ( - )

etc. Subtracting from (28.4) the similar equation found by inter-
changing 1 and 2, we find after using (28.1) and (28.3),

e2e3 (1123)2 - et e4 (2214)2 = ex e3 (2213)2 - e2 e4 (1124)2. (28.5)

Interchanging 1 and 3, and also 2 and 4 in (28.5) and using (28.3), we
get (28.5) again but with the signs changed on the right-hand side.
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Thus each side of this equation must vanish, and we have a number
of equations such as

(1123)2=eie2e3e4(2214)2.

When the signature of F4 is ± 2, then e1 e2 e3 e4 = — 1, and since all
the above quantities are real, we have

(iijk) = O, i,j,k^=. (28.6)

Equation (28.4) now becomes

A = (1122)2 + (1133)2 + (H44)2. (28.7)

Returning to (27) with k = i, I =j, i=$=j, we now find

(1234)2-£(1122)2-£e3e4(1133) (1144) = - k,

etc. Permuting 2, 3, 4 and adding,

(1234)2 + (1342)2 + (1423)* + 3k
= \{e2 (1122) + e3 (11*33) + e4 (1144)}2 = 0

from (28.2). Hence, since k is a sum of squares from (28.7), we finally
have, with (25), (28.1) and (28.6),

(ijkl) = O, i,j;k, I =1,2, 3, 4. (29)

This equation is in invariant form and therefore holds in all coordinate
systems. It is also required to hold at all Jpoints of the space. I t
can easily be verified that (29) and (24) lead to

k
RMJ = - Y (9u 9jk —9a ffki),

and since this holds at all points, we have that the space must be
of constant curvature.

9. Another special class of spaces, which we shall call simply
harmonic, consists of those spaces which are completely harmonic and
in which p = 1 for every pair of points. From (17), p = 1 only when
WT = 0 for all A's, so that the conditions for a simply harmonic space
are

^ , . . . . ^ = 0, r = l , 2 (30)

These equations must be satisfied at all points of the space.
It has already been shown that flat space is simply harmonic,

and it is probable that flat spaces are the onty spaces which are
simply harmonic. This is certainly the case under any set of
conditions for which it is known that a space which is completely
harmonic must have constant curvature. For a simply harmonic
space is a special type of completely harmonic space, and (7) reduces
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to p = 1 only when K = 0, since e is not zero in all directions. We
know therefore that a simply harmonic space Vn which satisfies (i),
(ii) or (iii) of § 8 must be flat. In addition we can prove that : (iv)
/ / a real simply harmonic space has positive definite metric, then it is
flat.

Since Wr = 0 at all points of a simply harmonic space, we have
from (19) that t r F = 0 whence tr F = 0 and t r f = O. The next
condition is therefore tr F2 = 0 , i.e.

gik gjl r y r« = o, rtj = R
miin

If the metric is positive definite we can choose a coordinate system so
that g^ = g'i = 8j at any one point P. At this point the above
condition becomes 2 (Fy)2 = 0, and since F,-3- is real, it follows that

F,-j — 0. This must hold for all A's, whence Rmijn + Bnijm = 0, and it
is easily verified that these equations lead to Riikl = 0. The curvature
tensor thus vanishes at P and hence at every point of the space since
P can take any position. The space is therefore flat, as stated.

T. Y. Thomas and E. W. Titt1 have recently stated that the
determinant of the fundamental tensor of a Vn is constant in every
system of normal coordinates only when Vn is flat. From (3) we see
that this is equivalent to saying that a space is simply harmonic only
when it is flat, and although Thomas and Titt claim to have proved
the theorem generally, they have in fact assumed that the metric is
positive definite, i.e. they have proved no more than the theorem (iv)
proved above. I t is still possible, though I believe it improbable, that
there are simply harmonic spaces with indefinite metrics which are
not flat.

1 Journal de Math., 18 (1939), 225.
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