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Introduction

Let % denote the icosahedral group and let £> be the normalizer of a

Sylow 5-subgroup of 9I5. Then the index of ξ> in % equals six. Let us represent

2l5 as a permutation group A on the set of residue classes of ξ> with respect

to 2l5. Then it is clear that A is doubly transitive of degree 6 and order 60

= 2 5 6. Since ϊί5 is simple, A does not contain a regular normal subgroup.

Next let SL(2, 8) denote the two-dimensional special linear group over the

field GF{8) of eight elements, and let s be the automorphism of GF{8) of order

three such that s(x) = x2 for every element x of GF{8). Then s can be con-

sidered in a usual way as an automorphism of SL(2, 8). Let SL*(2,8) be the

splitting extension of SL(2, 8) by the group generated by s. Moreover let ©

be the normalizer of a Sylow 3-group of SL*(2, 8). Then it is easy to see

that the index of ξ> in SL*(2, 8) equals twenty eight. Let us represent SL* (2,

8) as a permutation group S on the set of residue classes of £> with respect

to SL*(2, 8). Then it is easy to check that S is doubly transitive of degree

28 and order 1,512 = 2.27.28. Since SL(2, 8) is simple, S does not contain a

regular normal subgroup.

The purpose of this paper is to prove the converse of these facts, namely

to prove the following

THEOREM. Let Ω be the set of symbols 1, 2, . . . , n. Let ® be a doubly

transitive group on Ω of order 2{n-l)n not containing a regular normal sub-

group. Then © is isomorphic to either A or S.

1. Let ξ> be the stabilizer of the symbol 1 and let it be the stabilizer of

the set of symbols 1 and 2. Then fl is of order 2 and it is generated by an

involution K whose cycle structure has the form (1) ( 2 ) . . . . Since ® is doubly
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transitive on Ω, it contains an involution / with the cycle structure ( 1 2 ) . . . .

Then we have the following decomposition of (S:

Since I is contained in the normalizer Ns$ of $ in (S and since $ has order

two, 1 and K are commutative with each other. Hence for each permutation

H of £> the residue class %>IH contains just two involutions, namely H~ιIH and

H^KIH. Let g(2) and h(2) denote the numbers of involutions in © and £>,

respectively. Then the following equality is obtained:

(1)

2. Let $ keep i (i >2) symbols of Ω, say 1, 2, . . . , iy unchanged. Put

3 = {1, 2, . . . , *}. Then by a theorem of Witt ((4), Theorem 9.4) Ns®/8 can

be considered as a doubly transitive permutation group on Q. Since every

permutation of Ns®/$ distinct from $ leaves by the definition of $ at most

one symbol of 3 fixed, Ns$/$ is a complete Frobenius group on S- Therefore

i equals a power of a prime number, say pm

y and the order of £> Π NsR/$ is

equal to < - 1. Since the order of $ is two, NsSt coincides with the centralizer

of $ in ©. Therefore there exist (n — l)n/(i — l)i involutions in © each of

which is conjugate to K.

At first, let us assume that n is odd. Let h*(2) be the number of involu-

tions in £> leaving only the symbol 1 fixed. Then from (1) and the above

argument the following equality is obtained:

(2) h*(2)n+ (n - 1)Λ/(I - l)ί = (n - l)/(* - 1) + Λ*(2) +2(n - 1).

Since i is less than n, it follows from (2) that &*(2)<;i. Thus two cases

are to be distinguished: (A) A*(2) = 1 and (B) h*(2) =0. The following equa-

lities are obtained from (2) for cases (A) and (B), respectively:

(2. A) n = i2 =p2m, (p : odd).

and

(2. B) n = i(21 - 1) = pm(2 pm~l)y (p : odd).

Next let us assume that n is even. Let ^*(2) be the number of involutions

in © leaving no symbol of Ω fixed. Then corresponding to (2) the following

equality is obtained from (1) '<
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(3) £*(2) + (n-l)n/{i-l)i= (n - l ) / ( * - l) + 2(n~ l).

Let J be an involution in ® leaving no symbol of Ω fixed. Let CsJ be the

centralizer of / in (S. Assume that the order of CsJ is divisible by a prime factor

q of n-l. Then Cs/ contains a permutation 0 of order q. Since w - 1 , and

therefore q, is odd, Q must leave just one symbol of Ω fixed. But this shows

that Q cannot be commutative with /. This contradiction implies that #*(2)

is a multiple of n - 1. Now it follows from (3) that £*(2) ^n - 1. Thus again

two cases are to be distinguished: (C) g*(2)=n-l and (D) g*(2) - 0. The

following equalities are obtained from (3) for cases (C) and (D), respectively:

(3. C) n = i* = 22m,

and

(3. D) n = ί(2 ί - 1) = 2m(2m+1 - l).

3. Case (A). Let ψ be a Sylow ^-subgroup of NsR. Let Nsψ and Csψ

denote the normalizer and the centralizer of ψ in (S, respectively. Then, since

Ns$/8 is a Frobenius group of degree pm, ψ is elementary abelian of order

pm and normal in NsS. Thus Csφ contains 8φ. Now let $ be a Sylow p-

subgroup of Nsψ. Then it follows from an elementary property of i>-groups

that φ is greater than ψ. This implies that Csψ is greater than £$'. In

fact, if Csψ = lϊφ', then, since βψ is a direct product of ff and $', I? would

be normal in iVs '̂ and it would follow that φ = φ'. Let </ ( * 2, i)) be a prime

factor of the order of Csψ and let Q be a permutation of Cs$' of order q.

Then # must divide n-l and hence Q must leave just one symbol of Ω fixed.

But ψ does not leave any symbol of Ω fixed and therefore Q cannot belong to

Csψ. Assume that the order of Csψ is divisible by four. Let © be a Sylow

2-subgroup of Csψ. Then @ leaves just one symbol of Ω fixed. This, as above,

shows that © cannot be contained in Csψ. Thus the order of Csψ must be

of the form 2pm*m' with m>m'>0.

Now let ψ1 be a Sylow ^-subgroup of Csψ. Then clearly ψf is normal

in Nsψ. Let 55 be a Sylow ^-complement of Ns®, which is a stabilizer in Ns®

of a symbol of 3. Then decompose all the permutations ( # 1) of ψf into $-

conjugate classes. If P # l is a permutation of Sβ" and if Csty denotes the cen-

tralizer of P in (S, then it can be seen, as before, that the order of $ Π
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equals at most two. Thus every 55-conjugate class contains either pm - 1 or

2{pm — l) permutations and the following equality is obtained:

This implies in turn that

x=l (mod. pm) a n d * > l ; x = ypm + 1 and jy>0;

pm' = (y - l) (pm - l) +pm v = l and finally m' = m.

Thus $" is a Sylow i>-subgroup of ©.

Now since the order of NsSt equals 2(pm - l)pm, ® is not contained in the

center of any Sylow 2-subgroup of (S. But obviously Ns® contains a central

element of some Sylow 2-subgroup of ©. Let / be such a *'central" involution

in iVsfi (and of iVsφ"). Then / leaves just one symbol of Ω fixed and therefore,

as before, / is not commutative with any permutation (^ 1) of φ". Thus ψf

must be abelian. By assumption ψ1 cannot be normal in ®. Let © be a

maximal intersection of two distinct Sylow ^-subgroups of ©, one of which

may be assumed to be φ". Assume that 3)^1 and let NsQ and C5© denote

the normalizer and the centralizer of © in ©, respectively. Then, as it is well

known, any Sylow i>-subgroup of NsQ cannot be normal in it. On the other

hand, since ψf is abelian, it is contained in CsQ. Moreover, as before, the

prime to p part of the order of CsΊ) is at most two. This implies that ψ' is

normal in NsQ. Thus it must hold that ® = 1. Using Sylow's theorem the

following equality is now obtained:

2{n - l)nlxn = yn + 1.

This implies that y = l, x=l and n = 3.

Thus there exists no group satisfying the conditions of the theorem in Case

(A).

4. Case (B). Likewise in Case (A) let $ be a Sylow i>-subgroup of Ns®.

Then, as before, φ is elementary abelian of order pm and normal in Ns®.

Since, however, n = pm(2pm -1) in this case, φ is a Sylow i>-subgroup of ®.

Let Nsty and Csty denote the normalizer and the centralizer of $ in (§, res-

pectively. Let the orders of Ns$ and Cs<$ be 2 (pm - l)pmx and 2pmy9 res-

pectively. If x=l, then from Sylow's theorem it should hold that (2pm-l)

(2pm + l) = 1 (mod. jp), which, since p is odd, is a contradiction. Thus # is
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greater than one. If y = l, then $ would be normal in ΛΦβ, and this would

imply that x = 1. Thus y is greater than one. Now y is prime to 2 p. In

fact, y is obviously prime to p. If y is even, then let © be a Sylow 2-subgroup

of Cs^S. Since then the order of © must be greater than two, © leaves just

one symbol of Ω fixed. Hence © cannot be contained in Cs^. Thus y must

be odd. Therefore by a theorem of Zassenhaus ((5), p. 125) Cs*$ contains a

normal subgroup ?) of order y. φ is normal even in Ns%

Now likewise in Case (A) let 55 be a Sylow ^-complement of Ns® and let

us consider the subgroup $55. Since φ is a subgroup of Csty, any permutation

( ^ 1) of ?) does not leave any symbol of i2 fixed. In particular, every prime

factor of the order of φ must divide 2 / 7 Z - L Since pm-l and 2 / " - l are

relatively prime, it follows that every permutation (=*F1) of 55 is not com-

mutative with any permutation (=^ 1) of ?). This implies that y is not less

than 2pm-l. Thus it follows that y = 2pm-l and that all the permutations

(#1) of ?) are conjugate under 55. Therefore 2pm—l must be equal to a

power of a prime, say </, and $ must be an elementary abelian #-grouρ. Let

TVs?) and Csty denote the normalizer and the centralizer of φ in ©, respectively.

Then it can be easily seen that Csty = φd- Hence Nsty is contained in Nsφ

and therefore we obtain that NsΊ) = Ns^. On the other hand, it is easily seen

that the index of Ns^ in ® is equal to 2pm+l. But then we must have that

2pm + lΞ=2 (mod q), which contradicts the theorem of Sylow.

Thus there exists no group satisfying the conditions of the theorem in

Case (B).

5. Case (C). Since n = 22m, ξ> contains a normal subgroup 11 of order n — 1.

Let 33 be a Sylow 2-complement of Nsξ> leaving the symbol 1 fixed. Then 55

is contained in 11. Since Ns®/& is a complete Frobenius group of degree 2m,

all the Sylow subgroups of 55 are cyclic. Let / be the least prime factor of

the order of 55. Let 2 be a Sylow /-subgroup of 55. Let Ns2 and Cs2 denote

the normalizer and the centralizer of S in ©. Then 2 is cyclic and clearly

leaves only the symbol 1 fixed. Hence Ns2 is contained in ξ>. Because Cs2

contains if, using Sylow's theorem, we obtain that Ns2= Cs2(Ns® Π Ns2) =

Cs2 (̂ 55 n Ns2). Then it is easily seen that Ns2 = Cs2. By the splitting theorem

of Burnside (§ has the normal /-complement. Continuing in the similar way,

it can be shown that © has the normal subgroup ©, which is a complement
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of 55. In particular, S n i I = Φ is a normal subgroup of 11, which is a comple-

ment of 55 and has order 2m + 1. Consider the subgroup ©ft. Then since every

permutation ( # 1) of © leaves just one symbol of Ω fixed, K is not commutative

with any permutation (#1) of ©, and therefore S) is abelian. © is the product

of © and a Sylow 2-subgroup of ®. Hence ©, and therefore ®, is solvable

((3)). Then ® must contain a regular normal subgroup.

Thus there exists no group satisfying the conditions of the theorem in

Case (C).

6. Case (D). If m=l, then it can be easily checked that ® = A. Hence it

will be assumed hereafter that m is greater than one.

Let S be a Sylow 2-subgroup of JVsft of order 2m+1. Then, since # =

2 w (2 m + 1 - l) in this case, © is a Sylow 2-subgroup of ®. Let 55 be a Sylow 2-

complement of NsSt of order 2m - 1. Then, since iVsft/ft is a complete Frobenius

group of degree 2m, ©/ft is elementary abelian and normal in Ns®/$. Fur-

thermore, all the elements (=¥ 1) of ©/ft are conjugate under 55ft/ft. Since /

and K are commutative involutions, © contains an involution S distinct from

K. Thus every permutation (#1) of © can be represented uniquely in the

form either V~ιSV or F " 1 SVK, where V is any permutation of 55. In fact,

assume that V~ιSV= V^SV^K, where V and F* are permutations of 55.

Then it follows that F*F~ 1SFI/*- 1= S/f and ( F ^ F " " 1 ) ^ ! / ^ * " 1 ) 2 ^ S. But

F F * " 1 has an odd order, and this implies that F = F* and K= 1. This is a

contradiction. Therefore © is elementary abelian.

Let NsΈ> denote the normalizer of © in ©. All the involutions of © are

conjugate in ® because of g*(2) - 0. Hence they are conjugate already in NsΈ>

((5), p. 133). Since NsS contains Nsft, it follows that the index of NsΛ in

NsΈ> equals 2m+1 - 1. Let 31 be a Sylow 2-complement of Λfc© of order (2m + 1 - 1)

(2m - 1). Then it follows that ©55 = ©(91 Π ©55). By a theorem of Zassenhaus

((5), p. 126) 55 and 31 Π ©55 are conjugate in ©55. Hence we can assume that

55 is contained in 3ί. Now every permutation (^ l) of 55 leaves just one symbol

of Ω fixed, and all the Sylow subgroups of 55 are cyclic. Therefore likewise

in Case (C) it can be shown that 31 has the normal subgroup 33 of order 2m + 1 — 1.

Every permutation (^1) of 55 leaves no symbol of Ω fixed, hence it is not

commutative with any permutation (Φl) of 55. Let B be a permutation of 35

of a prime order, say q. Then all the permutations ( # 1) of S3 are conjugate
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to either B or BΓι under 33. This implies that 35 is an elementary abelian q-

group of order, say qb. Then it follows that 2m+1- 1 = qb. This implies that

b = 1 and 33 is cyclic of order q. Hence 35 is also cyclic.

Let Nsΐβ denote the normalizer of 35 in @. Noticing that 2m - 1 = ^ ( q - 1),

let the order of JVS35 be equal to -^x(q- ϊ)q. Since n- -H-tfte + l), 23 cannot

be transitive on £, and hence it cannot be normal in @. Therefore x is less

than (<7 + l)(ζf + 2). Now using the theorem of Sylow we obtain the following

congruence:

=Ξl (mod. q).

This implies that (q+ϊ)(q + 2) = x(yq + l), where, since x is less than (q + 1)

(q -f 2), y is positive. Then we obtain that x = zq + 2, where 2, since # is greater

than two, is non-negative. Finally we obtain that (q + l) (q + 2) = (z<j + 2) (jy#

-hi). This implies that z is not greater than one. If 2=1, then the order

of JVsS equals -g- (# — ϊ)q(q + 2). Hence there will be a permutation JY"(#l)

of order dividing qJr2i which belongs to the centralizer of 23. But X leaves

just one symbol of Ω fixed. Then X cannot be contained in the centralizer of

33. This contradiction implies that z = 0, x = 2 and v = -~- (q + 3). In particular,

35 coincides with is own centralizer, and the order of Ns¥5 equals (q-ί)q.

If © is solvable, then (S must have a regular normal subgroup, which is

an elementary abelian group of a prime-power order. Since n- ^-^(^ + l),it

is impossible. Thus % must be nonsolvable.

Let 9Ϊ be the least normal subgroup of © such that ®/9ϊ is solvable. Then

since 9? is transitive on i2, 9ί contains 35 and an involution. Since all the

involutions of ® are conjugate, 9? contains ©. Using Sylow's theorem, we

obtain that ®= (JVs35)ς)ΐ. Therefore the order of % is divisible by q + 2. Let

the order of Ή be equal to xq(q + ϊ)(q + 2). Then the order of 9Ϊ Π ΛfcSS is

equal to 2 ##. Thus the number of Sylow g-subgroups of 9ί is equal to -^Q(Q

+ 3) H-1. On the other hand, since the order of 35 equals q, it can be easily

shown that 91 is a simple group. Therefore by a theorem of Brauer ((l)) 91

is isomorphic to the two-dimensional special linear group LF (2, q +1) over

the field of q-\-l = 2mhι elements. In particular, it follows that x=l.

Using Sylow's theorem, we obtain that ©•= ΏUVs9ϊ). Therefore there exist
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q -f 2 distinct Sylow 2-subgroups in (§. Let Γ be the set of all the Sylow 2-

subgroups of ©. Then, in a usual manner, we represent © as a permutation

group on Γ. As it is well known, 9ΐ, and therefore (§, is triply transitive on

Γ. Let 2B be the stabilizer of some two symbols of Γ. Then the order of 2δ

is equal to -«-(<? ~ l)#, and hence a Sylow ^-subgroup of 3B is normal in it.

Therefore we can assume that 2B = %. Thus 35 is the stabilizer of some three

symbols of Γ. Let 3J*(#l) be any subgroup of 35, and put ©*= 3ί35*. Then

(S* is triply transitive on Γ, and 35* is the stabilizer of the above three symbols

of Γ in ®*. Let / be the number of symbols in the subset Δ of Γ, each symbol

of which is left fixed by 35*. Then by a theorem of Witt ((4), Theorem 9.4)

©* Π iVs35* is triply transitive on Δ. Therefore 31 Π ®*Λfe3** has an orbit in Δ

of length / - 2. But we already know that 51 Π JVs3S* = 95. Thus it follows

that 91 Π ®* z> JVsSβ* = 35*. This implies that / = 3 and that Ns%*/?& is isomorphic

to the symmetric group of degree three.

Now let U be the Sylow 2-complement of © of order -ψ (q - l) (q + 2). Then

we can assume that 35 is contained in U. Since m is greater than one, it fol-

lows that # = 2 m + 1 - l is not less than seven. Hence the order <?+2 of 91ΓΊ U

is divisible by 3. Since 9Ϊ Π It is cyclic, it contains only subgroup % of order

three. % is normal in U. On the other hand, since γ(q-ΐ) is odd, 2 is con-

tained in the centralizer of SS.% Thus it follows that UfliVs9S*= 355:. If <?-f-2

has a prime factor / distinct from 3, then let 2 be the Sylow /-subgroup of

Ή 0 II of order, say f. Then f is not greater that (<? + 2)/3. Now the above

argument shows that f - 1 is a multiple of -g (<?-l). This contradiction im-

plies that <7 + 2 is equal to a power of 3, say, 3α. Thus finally we obtain the

following equality:

This implies that a =2, m = 2 and #=7. Then it is easy to check that (S is

isomorphic to S.

Remark. Holyoke ((2)) proved a special case of the theorem: if ξ) is a

dihedral group, then © is isomorphic to A.
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