ON DOUBLY TRANSITIVE GROUPS OF DEGREE n AND ORDER 2(n-1)n

NOBORU ITO

Dedicated to the memory of Professor TADASI NAKAYAMA

Introduction

Let \mathfrak{A}_5 denote the icosahedral group and let \mathfrak{H} be the normalizer of a Sylow 5-subgroup of \mathfrak{A}_5 . Then the index of \mathfrak{H} in \mathfrak{A}_5 equals six. Let us represent \mathfrak{A}_5 as a permutation group \mathbf{A} on the set of residue classes of \mathfrak{H} with respect to \mathfrak{A}_5 . Then it is clear that \mathbf{A} is doubly transitive of degree 6 and order 60 = 2.5.6. Since \mathfrak{A}_5 is simple, \mathbf{A} does not contain a regular normal subgroup.

Next let SL(2, 8) denote the two-dimensional special linear group over the field GF(8) of eight elements, and let *s* be the automorphism of GF(8) of order three such that $s(x) = x^2$ for every element *x* of GF(8). Then *s* can be considered in a usual way as an automorphism of SL(2, 8). Let $SL^*(2,8)$ be the splitting extension of SL(2, 8) by the group generated by *s*. Moreover let \mathfrak{H} be the normalizer of a Sylow 3-group of $SL^*(2, 8)$. Then it is easy to see that the index of \mathfrak{H} in $SL^*(2, 8)$ equals twenty eight. Let us represent $SL^*(2, 8)$ as a permutation group \mathfrak{S} on the set of residue classes of \mathfrak{H} with respect to $SL^*(2, 8)$. Then it is easy to check that \mathfrak{S} is doubly transitive of degree 28 and order 1,512 = 2.27.28. Since SL(2, 8) is simple, \mathfrak{S} does not contain a regular normal subgroup.

The purpose of this paper is to prove the converse of these facts, namely to prove the following

THEOREM. Let Ω be the set of symbols $1, 2, \ldots, n$. Let \mathcal{G} be a doubly transitive group on Ω of order 2(n-1)n not containing a regular normal subgroup. Then \mathcal{G} is isomorphic to either A or S.

1. Let \mathfrak{H} be the stabilizer of the symbol 1 and let \mathfrak{K} be the stabilizer of the set of symbols 1 and 2. Then \mathfrak{K} is of order 2 and it is generated by an involution K whose cycle structure has the form (1)(2)... Since \mathfrak{G} is doubly

Received June 30, 1965.

NOBORU ITO

transitive on Ω , it contains an involution I with the cycle structure (12).... Then we have the following decomposition of \mathfrak{G} :

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H} \mathfrak{H}.$$

Since I is contained in the normalizer NsR of R in S and since R has order two, I and K are commutative with each other. Hence for each permutation H of S the residue class SIH contains just two involutions, namely $H^{-1}IH$ and $H^{-1}KIH$. Let g(2) and h(2) denote the numbers of involutions in S and S, respectively. Then the following equality is obtained:

(1)
$$g(2) = h(2) + 2(n-1).$$

2. Let \Re keep i $(i \ge 2)$ symbols of Ω , say $1, 2, \ldots, i$, unchanged. Put $\Im = \{1, 2, \ldots, i\}$. Then by a theorem of Witt ((4), Theorem 9.4) $Ns\Re/\Re$ can be considered as a doubly transitive permutation group on \Im . Since every permutation of $Ns\Re/\Re$ distinct from \Re leaves by the definition of \Re at most one symbol of \Im fixed, $Ns\Re/\Re$ is a complete Frobenius group on \Im . Therefore i equals a power of a prime number, say p^m , and the order of $\Im \cap Ns\Re/\Re$ is equal to i-1. Since the order of \Re is two, $Ns\Re$ coincides with the centralizer of \Re in \Im . Therefore there exist (n-1)n/(i-1)i involutions in \Im each of which is conjugate to K.

At first, let us assume that n is odd. Let $h^*(2)$ be the number of involutions in \mathfrak{D} leaving only the symbol 1 fixed. Then from (1) and the above argument the following equality is obtained:

(2)
$$h^*(2)n + (n-1)n/(i-1)i = (n-1)/(i-1) + h^*(2) + 2(n-1).$$

Since *i* is less than *n*, it follows from (2) that $h^*(2) \leq 1$. Thus two cases are to be distinguished: (A) $h^*(2) = 1$ and (B) $h^*(2) = 0$. The following equalities are obtained from (2) for cases (A) and (B), respectively:

(2. A)
$$n = i^2 = p^{2m}$$
, $(p : odd)$.

and

(2. B)
$$n = i(2i-1) = p^m(2p^m-1), (p: odd).$$

Next let us assume that n is even. Let $g^*(2)$ be the number of involutions in \mathfrak{G} leaving no symbol of \mathcal{Q} fixed. Then corresponding to (2) the following equality is obtained from (1):

(3)
$$g^{*}(2) + (n-1)n/(i-1)i = (n-1)/(i-1) + 2(n-1).$$

Let J be an involution in \mathfrak{G} leaving no symbol of \mathfrak{Q} fixed. Let CsJ be the centralizer of J in \mathfrak{G} . Assume that the order of CsJ is divisible by a prime factor q of n-1. Then CsJ contains a permutation Q of order q. Since n-1, and therefore q, is odd, Q must leave just one symbol of \mathfrak{Q} fixed. But this shows that Q cannot be commutative with J. This contradiction implies that $g^*(2)$ is a multiple of n-1. Now it follows from (3) that $g^*(2) \leq n-1$. Thus again two cases are to be distinguished: (C) $g^*(2) = n-1$ and (D) $g^*(2) = 0$. The following equalities are obtained from (3) for cases (C) and (D), respectively:

(3. C)
$$n = i^2 = 2^{2m}$$

and

(3. D)
$$n = i(2i-1) = 2^m(2^{m+1}-1).$$

3. Case (A). Let \mathfrak{P}' be a Sylow *p*-subgroup of Ns \mathfrak{R} . Let Ns \mathfrak{P}' and Cs \mathfrak{P}' denote the normalizer and the centralizer of \mathfrak{P}' in \mathfrak{G} , respectively. Then, since Ns \mathbb{R}/\mathbb{R} is a Frobenius group of degree p^m , \mathfrak{P}' is elementary abelian of order p^m and normal in NsR. Thus CsP' contains \mathfrak{RP}' . Now let \mathfrak{P} be a Sylow psubgroup of $Ns\mathfrak{P}'$. Then it follows from an elementary property of *p*-groups that \mathfrak{P} is greater than \mathfrak{P}' . This implies that $Cs\mathfrak{P}'$ is greater than \mathfrak{RP}' . In fact, if $Cs\mathfrak{P}'=\mathfrak{RP}'$, then, since \mathfrak{RP}' is a direct product of \mathfrak{R} and \mathfrak{P}' , \mathfrak{R} would be normal in $Ns\mathfrak{P}'$ and it would follow that $\mathfrak{P} = \mathfrak{P}'$. Let $q \ (\neq 2, p)$ be a prime factor of the order of $Cs\mathfrak{P}'$ and let Q be a permutation of $Cs\mathfrak{P}'$ of order q. Then q must divide n-1 and hence Q must leave just one symbol of Ω fixed. But \mathfrak{P}' does not leave any symbol of \mathfrak{Q} fixed and therefore Q cannot belong to Cs \mathfrak{P}' . Assume that the order of Cs \mathfrak{P}' is divisible by four. Let \mathfrak{S} be a Sylow 2-subgroup of $Cs\mathfrak{P}'$. Then \mathfrak{S} leaves just one symbol of \mathfrak{Q} fixed. This, as above, shows that \mathfrak{S} cannot be contained in $Cs\mathfrak{P}'$. Thus the order of $Cs\mathfrak{P}'$ must be of the form $2 p^{m+m'}$ with $m \ge m' > 0$.

Now let \mathfrak{P}'' be a Sylow *p*-subgroup of $Cs\mathfrak{P}'$. Then clearly \mathfrak{P}'' is normal in $Ns\mathfrak{P}'$. Let \mathfrak{V} be a Sylow *p*-complement of $Ns\mathfrak{R}$, which is a stabilizer in $Ns\mathfrak{R}$ of a symbol of \mathfrak{F} . Then decompose all the permutations (± 1) of \mathfrak{P}'' into \mathfrak{V} conjugate classes. If $P \pm 1$ is a permutation of \mathfrak{P}'' and if $Cs\mathfrak{P}$ denotes the centralizer of P in \mathfrak{G} , then it can be seen, as before, that the order of $\mathfrak{V} \cap Cs\mathfrak{P}$

NOBORU ITO

equals at most two. Thus every \mathfrak{P} -conjugate class contains either $p^m - 1$ or $2(p^m - 1)$ permutations and the following equality is obtained:

$$p^{m+m'} - 1 = x(p^m - 1).$$

This implies in turn that;

$$x \equiv 1 \pmod{p^m}$$
 and $x > 1$; $x = yp^m + 1$ and $y > 0$;
 $p^{m'} = (y-1)(p^m-1) + p^m$; $y = 1$ and finally $m' = m$.

Thus \mathfrak{P}'' is a Sylow *p*-subgroup of \mathfrak{G} .

Now since the order of NsR equals $2(p^m - 1)p^m$, R is not contained in the center of any Sylow 2-subgroup of \mathfrak{G} . But obviously $Ns\mathfrak{R}$ contains a central element of some Sylow 2-subgroup of \mathcal{B} . Let J be such a "central" involution in $Ns\Re$ (and of $Ns\Re''$). Then J leaves just one symbol of Ω fixed and therefore, as before, J is not commutative with any permutation $(\neq 1)$ of \mathfrak{P}'' . Thus \mathfrak{P}'' must be abelian. By assumption \mathfrak{P}'' cannot be normal in \mathfrak{G} . Let \mathfrak{D} be a maximal intersection of two distinct Sylow p-subgroups of \mathfrak{G} , one of which may be assumed to be \mathfrak{P}'' . Assume that $\mathfrak{D} \neq 1$ and let $Ns\mathfrak{D}$ and $Cs\mathfrak{D}$ denote the normalizer and the centralizer of \mathfrak{D} in \mathfrak{G} , respectively. Then, as it is well known, any Sylow p-subgroup of NsD cannot be normal in it. On the other hand, since \mathfrak{P}'' is abelian, it is contained in $Cs\mathfrak{D}$. Moreover, as before, the prime to p part of the order of $Cs\mathfrak{D}$ is at most two. This implies that \mathfrak{P}'' is Thus it must hold that $\mathfrak{D} = 1$. Using Sylow's theorem the normal in NsD. following equality is now obtained:

$$2(n-1)n/xn = yn + 1.$$

This implies that y = 1, x = 1 and n = 3.

Thus there exists no group satisfying the conditions of the theorem in Case (A).

4. Case (B). Likewise in Case (A) let \mathfrak{P} be a Sylow *p*-subgroup of NsR. Then, as before, \mathfrak{P} is elementary abelian of order p^m and normal in NsR. Since, however, $n = p^m (2 p^m - 1)$ in this case, \mathfrak{P} is a Sylow *p*-subgroup of \mathfrak{S} . Let Ns \mathfrak{P} and Cs \mathfrak{P} denote the normalizer and the centralizer of \mathfrak{P} in \mathfrak{S} , respectively. Let the orders of Ns \mathfrak{P} and Cs \mathfrak{P} be 2 $(p^m - 1)p^m x$ and $2p^m y$, respectively. If x = 1, then from Sylow's theorem it should hold that $(2p^m - 1)(2p^m + 1) \equiv 1 \pmod{p}$, which, since *p* is odd, is a contradiction. Thus *x* is greater than one. If y = 1, then \Re would be normal in $Ns\mathfrak{P}$, and this would imply that x = 1. Thus y is greater than one. Now y is prime to 2p. In fact, y is obviously prime to p. If y is even, then let \mathfrak{S} be a Sylow 2-subgroup of $Cs\mathfrak{P}$. Since then the order of \mathfrak{S} must be greater than two, \mathfrak{S} leaves just one symbol of \mathfrak{Q} fixed. Hence \mathfrak{S} cannot be contained in $Cs\mathfrak{P}$. Thus y must be odd. Therefore by a theorem of Zassenhaus ((5), p. 125) $Cs\mathfrak{P}$ contains a normal subgroup \mathfrak{Y} of order y. \mathfrak{Y} is normal even in $Ns\mathfrak{P}$.

Now likewise in Case (A) let \mathfrak{V} be a Sylow p-complement of $Ns\mathfrak{R}$ and let us consider the subgroup \mathfrak{YS} . Since \mathfrak{Y} is a subgroup of $Cs\mathfrak{F}$, any permutation $(\neq 1)$ of \mathfrak{Y} does not leave any symbol of \mathscr{Q} fixed. In particular, every prime factor of the order of \mathfrak{Y} must divide $2p^m - 1$. Since $p^m - 1$ and $2p^m - 1$ are relatively prime, it follows that every permutation $(\neq 1)$ of \mathfrak{V} is not commutative with any permutation $(\neq 1)$ of \mathfrak{Y} . This implies that y is not less than $2p^m - 1$. Thus it follows that $y = 2p^m - 1$ and that all the permutations $(\neq 1)$ of \mathfrak{Y} are conjugate under \mathfrak{V} . Therefore $2p^m - 1$ must be equal to a power of a prime, say q^l , and \mathfrak{Y} must be an elementary abelian q-group. Let $Ns\mathfrak{Y}$ and $Cs\mathfrak{Y}$ denote the normalizer and the centralizer of \mathfrak{Y} in \mathfrak{S} , respectively. Then it can be easily seen that $Cs\mathfrak{Y} = \mathfrak{P}\mathfrak{Y}$. On the other hand, it is easily seen that the index of $Ns\mathfrak{F}$ in \mathfrak{S} is equal to $2p^m + 1$. But then we must have that $2p^m + 1 \equiv 2 \pmod{q}$, which contradicts the theorem of Sylow.

Thus there exists no group satisfying the conditions of the theorem in Case (B).

5. Case (C). Since $n = 2^{2m}$, \mathfrak{H} contains a normal subgroup 11 of order n-1. Let \mathfrak{B} be a Sylow 2-complement of $Ns\mathfrak{H}$ leaving the symbol 1 fixed. Then \mathfrak{B} is contained in 11. Since $Ns\mathfrak{R}/\mathfrak{R}$ is a complete Frobenius group of degree 2^m , all the Sylow subgroups of \mathfrak{B} are cyclic. Let l be the least prime factor of the order of \mathfrak{B} . Let \mathfrak{L} be a Sylow l-subgroup of \mathfrak{B} . Let $Ns\mathfrak{Q}$ and $Cs\mathfrak{Q}$ denote the normalizer and the centralizer of \mathfrak{Q} in \mathfrak{G} . Then \mathfrak{Q} is cyclic and clearly leaves only the symbol 1 fixed. Hence $Ns\mathfrak{Q}$ is contained in \mathfrak{H} . Because $Cs\mathfrak{Q}$ contains \mathfrak{K} , using Sylow's theorem, we obtain that $Ns\mathfrak{Q} = Cs\mathfrak{Q}(Ns\mathfrak{R} \cap Ns\mathfrak{Q}) = Cs\mathfrak{Q}(\mathfrak{K}\mathfrak{R} \cap Ns\mathfrak{Q})$. Then it is easily seen that $Ns\mathfrak{Q} = Cs\mathfrak{Q}$. By the splitting theorem of Burnside \mathfrak{G} has the normal l-complement. Continuing in the similar way, it can be shown that \mathfrak{G} has the normal subgroup \mathfrak{S} , which is a complement

NOBORU ITO

of \mathfrak{V} . In particular, $\mathfrak{S} \cap \mathfrak{U} = \mathfrak{D}$ is a normal subgroup of \mathfrak{U} , which is a complement of \mathfrak{V} and has order $2^m + 1$. Consider the subgroup \mathfrak{DR} . Then since every permutation $(\neq 1)$ of \mathfrak{D} leaves just one symbol of \mathfrak{Q} fixed, K is not commutative with any permutation $(\neq 1)$ of \mathfrak{D} , and therefore \mathfrak{D} is abelian. \mathfrak{S} is the product of \mathfrak{D} and a Sylow 2-subgroup of \mathfrak{G} . Hence \mathfrak{S} , and therefore \mathfrak{G} , is solvable $((\mathfrak{Z}))$. Then \mathfrak{G} must contain a regular normal subgroup.

Thus there exists no group satisfying the conditions of the theorem in Case (C).

6. Case (D). If m = 1, then it can be easily checked that $\mathfrak{G} = A$. Hence it will be assumed hereafter that m is greater than one.

Let \mathfrak{S} be a Sylow 2-subgroup of Ns \mathfrak{R} of order 2^{m+1} . Then, since n = $2^{m}(2^{m+1}-1)$ in this case, \mathfrak{S} is a Sylow 2-subgroup of \mathfrak{S} . Let \mathfrak{B} be a Sylow 2complement of NsR of order $2^m - 1$. Then, since NsR/R is a complete Frobenius group of degree 2^m , $\mathfrak{S}/\mathfrak{R}$ is elementary abelian and normal in $Ns\mathfrak{R}/\mathfrak{R}$. Furthermore, all the elements (± 1) of $\mathfrak{S}/\mathfrak{R}$ are conjugate under $\mathfrak{V}\mathfrak{R}/\mathfrak{R}$. Since I and K are commutative involutions, \mathfrak{S} contains an involution S distinct from Thus every permutation (± 1) of \mathfrak{S} can be represented uniquely in the Κ. form either $V^{-1}SV$ or $V^{-1}SVK$, where V is any permutation of \mathfrak{B} . In fact. assume that $V^{-1}SV = V^{*-1}SV^*K$, where V and V* are permutations of \mathfrak{B} . Then it follows that $V^*V^{-1}SVV^{*-1} = SK$ and $(V^*V^{-1})^2S(VV^{*-1})^2 = S$. But VV^{*-1} has an odd order, and this implies that $V = V^*$ and K = 1. This is a contradiction. Therefore \mathfrak{S} is elementary abelian.

Let $Ns \mathfrak{S}$ denote the normalizer of \mathfrak{S} in \mathfrak{G} . All the involutions of \mathfrak{S} are conjugate in \mathfrak{G} because of $g^*(2) = 0$. Hence they are conjugate already in $Ns\mathfrak{S}$ ((5), p. 133). Since $Ns\mathfrak{S}$ contains $Ns\mathfrak{R}$, it follows that the index of $Ns\mathfrak{R}$ in $Ns\mathfrak{S}$ equals $2^{m+1} - 1$. Let \mathfrak{A} be a Sylow 2-complement of $Ns\mathfrak{S}$ of order $(2^{m+1} - 1)$ $(2^m - 1)$. Then it follows that $\mathfrak{S}\mathfrak{B} = \mathfrak{S}(\mathfrak{A} \cap \mathfrak{S}\mathfrak{B})$. By a theorem of Zassenhaus ((5), p. 126) \mathfrak{B} and $\mathfrak{A} \cap \mathfrak{S}\mathfrak{B}$ are conjugate in $\mathfrak{S}\mathfrak{B}$. Hence we can assume that \mathfrak{B} is contained in \mathfrak{A} . Now every permutation (± 1) of \mathfrak{B} leaves just one symbol of \mathcal{Q} fixed, and all the Sylow subgroups of \mathfrak{B} are cyclic. Therefore likewise in Case (C) it can be shown that \mathfrak{A} has the normal subgroup \mathfrak{B} of order $2^{m+1} - 1$. Every permutation (± 1) of \mathfrak{B} leaves no symbol of \mathcal{Q} fixed, hence it is not commutative with any permutation (± 1) of \mathfrak{B} . Let B be a permutation of \mathfrak{B} of a prime order, say q. Then all the permutations (± 1) of \mathfrak{B} are conjugate to either B or B^{-1} under \mathfrak{V} . This implies that \mathfrak{V} is an elementary abelian qgroup of order, say q^b . Then it follows that $2^{m+1} - 1 = q^b$. This implies that b = 1 and \mathfrak{B} is cyclic of order q. Hence \mathfrak{V} is also cyclic.

Let $Ns\mathfrak{B}$ denote the normalizer of \mathfrak{B} in \mathfrak{B} . Noticing that $2^m - 1 = \frac{1}{2}(q-1)$, let the order of $Ns\mathfrak{B}$ be equal to $\frac{1}{2}x(q-1)q$. Since $n = \frac{1}{2}q(q+1)$, \mathfrak{B} cannot be transitive on \mathfrak{Q} , and hence it cannot be normal in \mathfrak{B} . Therefore x is less than (q+1)(q+2). Now using the theorem of Sylow we obtain the following congruence:

$$(q+1)(q+2)/x \equiv 1$$
 (mod. q).

This implies that (q+1)(q+2) = x(yq+1), where, since x is less than (q+1)(q+2), y is positive. Then we obtain that x = zq+2, where z, since q is greater than two, is non-negative. Finally we obtain that (q+1)(q+2) = (zq+2)(yq+1). This implies that z is not greater than one. If z = 1, then the order of NsB equals $\frac{1}{2}(q-1)q(q+2)$. Hence there will be a permutation $X(\neq 1)$ of order dividing q+2, which belongs to the centralizer of B. But X leaves just one symbol of Q fixed. Then X cannot be contained in the centralizer of B. This contradiction implies that z = 0, x = 2 and $y = \frac{1}{2}(q+3)$. In particular, B coincides with is own centralizer, and the order of NsB equals (q-1)q.

If \mathfrak{G} is solvable, then \mathfrak{G} must have a regular normal subgroup, which is an elementary abelian group of a prime-power order. Since $n = \frac{1}{2}q(q+1)$, it is impossible. Thus \mathfrak{G} must be nonsolvable.

Let \mathfrak{N} be the least normal subgroup of \mathfrak{G} such that $\mathfrak{G}/\mathfrak{N}$ is solvable. Then since \mathfrak{N} is transitive on \mathfrak{Q} , \mathfrak{N} contains \mathfrak{B} and an involution. Since all the involutions of \mathfrak{G} are conjugate, \mathfrak{N} contains \mathfrak{S} . Using Sylow's theorem, we obtain that $\mathfrak{G} = (Ns\mathfrak{B})\mathfrak{N}$. Therefore the order of \mathfrak{N} is divisible by q+2. Let the order of \mathfrak{N} be equal to xq(q+1)(q+2). Then the order of $\mathfrak{N} \cap Ns\mathfrak{B}$ is equal to 2xq. Thus the number of Sylow q-subgroups of \mathfrak{N} is equal to $\frac{1}{2}q(q$ +3)+1. On the other hand, since the order of \mathfrak{B} equals q, it can be easily shown that \mathfrak{N} is a simple group. Therefore by a theorem of Brauer ((1)) \mathfrak{N} is isomorphic to the two-dimensional special linear group LF (2, q+1) over the field of $q+1=2^{m+1}$ elements. In particular, it follows that x=1.

Using Sylow's theorem, we obtain that $\mathfrak{G} = \mathfrak{N}(Ns\mathfrak{N})$. Therefore there exist

q+2 distinct Sylow 2-subgroups in \mathfrak{G} . Let Γ be the set of all the Sylow 2subgroups of S. Then, in a usual manner, we represent S as a permutation As it is well known, \Re , and therefore \mathfrak{G} , is triply transitive on group on Γ . Γ . Let \mathfrak{W} be the stabilizer of some two symbols of Γ . Then the order of \mathfrak{W} is equal to $\frac{1}{2}(q-1)q$, and hence a Sylow q-subgroup of \mathfrak{W} is normal in it. Therefore we can assume that $\mathfrak{W} = \mathfrak{A}$. Thus \mathfrak{V} is the stabilizer of some three symbols of Γ . Let $\mathfrak{V}^*(\neq 1)$ be any subgroup of \mathfrak{V} , and put $\mathfrak{V}^* = \mathfrak{N}\mathfrak{V}^*$. Then \mathfrak{G}^* is triply transitive on Γ , and \mathfrak{B}^* is the stabilizer of the above three symbols of Γ in \mathfrak{G}^* . Let f be the number of symbols in the subset Δ of Γ , each symbol of which is left fixed by \mathfrak{B}^* . Then by a theorem of Witt ((4), Theorem 9.4) $\mathfrak{G}^* \cap Ns\mathfrak{V}^*$ is triply transitive on \mathcal{A} . Therefore $\mathfrak{A} \cap \mathfrak{G}^*Ns\mathfrak{V}^*$ has an orbit in \mathcal{A} of length f-2. But we already know that $\mathfrak{A} \cap Ns\mathfrak{B}^* = \mathfrak{B}$. Thus it follows that $\mathfrak{A} \cap \mathfrak{G}^* \supset Ns\mathfrak{B}^* = \mathfrak{B}^*$. This implies that f = 3 and that $Ns\mathfrak{B}^*/\mathfrak{B}$ is isomorphic to the symmetric group of degree three.

Now let \mathfrak{l} be the Sylow 2-complement of \mathfrak{H} of order $\frac{1}{2}(q-1)(q+2)$. Then we can assume that \mathfrak{V} is contained in \mathfrak{l} . Since m is greater than one, it follows that $q = 2^{m+1} - 1$ is not less than seven. Hence the order q+2 of $\mathfrak{N} \cap \mathfrak{l}$ is divisible by 3. Since $\mathfrak{N} \cap \mathfrak{l}$ is cyclic, it contains only subgroup \mathfrak{T} of order three. \mathfrak{T} is normal in \mathfrak{l} . On the other hand, since $\frac{1}{2}(q-1)$ is odd, \mathfrak{T} is contained in the centralizer of \mathfrak{V} . Thus it follows that $\mathfrak{l} \cap Ns\mathfrak{V}^* = \mathfrak{V}\mathfrak{T}$. If q+2has a prime factor l distinct from 3, then let \mathfrak{V} be the Sylow *l*-subgroup of $\mathfrak{N} \cap \mathfrak{l}$ of order, say l^c . Then l^c is not greater that (q+2)/3. Now the above argument shows that l^c-1 is a multiple of $\frac{1}{2}(q-1)$. This contradiction implies that q+2 is equal to a power of 3, say, 3^a . Thus finally we obtain the following equality:

$$q+2=2^{m+1}-1=3^a.$$

This implies that a = 2, m = 2 and q = 7. Then it is easy to check that \mathfrak{G} is isomorphic to S.

Remark. Holyoke ((2)) proved a special case of the theorem: if \mathfrak{H} is a dihedral group, then \mathfrak{H} is isomorphic to **A**.

BIBLIOGRAPHY

[1] R. Brauer, On the representations of groups of finite order, Proc. Nat. Acad. Sci.

U.S.A. 25, 290-295 (1939).

[2] T. Holyoke, Transitive extens ons of dihedral groups, Math. Zeitschr. 60, 79-80 (1954).

[3] N. Ito, Remarks on factorizable groups. Acta Sci. Math. Szeged 15, 83-84 (1951).

[4] H. Wielandt, Finite permutation groups, Academic Press, New York-London (1964).

[5] H. Zassenhaus, Lehrbuch der Gruppentheorie, I, Teubner, Leipzig (1937).

Mathematical Institute, Nagoya University