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ABSTRACT. The impact energy of an avalanche on the flat surface of an instrumented structure has been
quantified by full-scale experiments performed at the Lautaret avalanche test site, France. The
deformation and acceleration of the structure were measured during the avalanche. The impact energy
of the avalanche was calculated from an energy balance via the mechanical energy theorem. First the
elastic potential energy and kinetic energy of the structure were calculated from the measured
deformations and an adequate mechanical model of the structure. Internal energy dissipation due to
material damping and potential plastic deformation was calculated. Finally the mechanical work done
on the structure by the avalanche forces was deduced from the energy balance. Results show that the
elastic energy is the main component of the energy injected in the structure. The kinetic and viscous
components are negligible because of the very low displacement rate of the structure during the impact.
Another important result is that the maximum of the mechanical power (work rate) is done when the
head of the avalanche impacts the structure. This occurs before the pressure reaches its nominal value,
approximately when the product of the pressure by the pressure rate is maximum.

1. INTRODUCTION
Dissipated energy is a physical quantity that can be used to
estimate the protective effects of natural or artificial obs-
tacles against natural hazards. For example, mountain forests
play a significant role in protection against rockfalls and
avalanches (Führer, 2000). The energy-dissipation capacity
of trees has been quantified from experiments and simula-
tions (Bartelt and Stöckli, 2001; Dorren and Berger, 2006;
Dorren and others, 2006). Against rockfalls in particular,
different artificial defence techniques (Descoeudres, 1997)
can be used to dissipate energy. Flexible ring-net barriers are
an example of how structures can be designed on the basis of
dissipated-energy criteria (Peila and others, 1998; Anderheg-
gen and others, 2002; Cazzani and others, 2002). Recently
designed rock sheds are also able to dissipate the energy of
blocks hitting the edge of the slab via irreversible structural
damage, damage to the concrete, plastic deformation of the
steel reinforcement and plastic buckling of the specially
designed metal supports (Delhomme and others, 2005).

In avalanche science, the effects of snow avalanches on
obstacles are mostly studied through the forces and
pressures applied to the obstacle (Schaerer and Salway,
1980; McClung and Schaerer, 1985; Norem and others,
1985; Schaer and Issler, 2001; Berthet-Rambaud and others,
2008; Sovilla and others, 2008a,b; Thibert and others,
2008). Regarding the flow, these forces represent the rate of
variation of the linear momentum of the avalanche. Other
investigated parameters are most often flow deviation, snow
deposition around the obstacle and effects of obstacles on
the run-out distance (Larsen and Norem, 1996; Harbitz and
others, 2000; Jóhannesson, 2001; Naaim and others, 2004;
Cui and others, 2007; Faug and others, 2008a,b). The energy
dissipated during avalanche–obstacle interactions has not
been addressed frequently. Only Sheikh and others (2008)
have specially and experimentally estimated the amount of
energy dissipated in the flow interaction processes with
various obstacles (mounds, blunt bodies and catch dams)
using the conversion of the kinetic energy of the flow into
gravitational potential energy. Most papers dedicated to the

energy of avalanches have focused on the seismic energy
dissipated into the ground for the purpose of avalanche size
classification, model validation, indirect velocity measure-
ment (Firstov and others, 1991; Nishimura and Izumi, 1997;
Suriñach and others, 2005; Vilajosana and others, 2007a,b)
or avalanche detection (Leprettre and others, 1998).

A global energy balance is helpful to determine how
mechanical energy is internally dissipated by frictional
processes as well as how structures slow avalanche motion
by consuming part of the flow (kinetic) energy. In an
avalanche, internal energy dissipation involves irreversible
processes such as the viscous shear work, inelastic
collisions, material fracture, abrasive wear, air drag as well
as basal sliding on rough ground surfaces. For example, a
global energy-balance approach was adopted by Bartelt and
others (2006) to determine how the kinetic energy associ-
ated with the random motion of snow granules influences
the internal energy fluxes and therefore the motion of the
avalanche (Buser and Bartelt, 2009). More importantly, a
global energy balance can be helpful in designing structures
with different energy dissipation functions. By generating
internal deformations in the flow, both natural (trees,
vegetation and ground roughness) and man-made structures
(deflecting and catching dams, earth mounds) will lead the
avalanche to dissipate its own energy. Dissipative structures
may also ‘absorb’ a part of the energy by undergoing
volumetric dissipative damage (plastic deformation) or other
frictional processes (material wear or total destruction).

The purpose of this paper is to present an energy
calculation based on the deformation measured on a
structure impacted by an avalanche (section 2). The internal
energy is calculated from the elastic potential energy and the
kinetic energy of the structure. Energy dissipation is calcu-
lated from the internal damping of the material and the
plastic deformation (section 3). Finally, the mechanical work
done on the structure, at the boundary, by the avalanche
forces is deduced from the energy balance (section 4).
Results are discussed and compared to the kinetic energy
flux of the avalanche (section 5).
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2. TEST SITE, EXPERIMENTAL DEVICE AND DATA
2.1. Test site
Experiments were carried out at the Lautaret full-scale
avalanche site in the southern French Alps (45.0338N,
6.4048 E). This site has been used by the Cemagref research
institute since the 1970s (Issler, 1999; Naaim and others,
2004). It has been extensively described in recent papers
(Berthet-Rambaud and others, 2008; Thibert and others
2008; Baroudi and Thibert, 2009), so only a brief description
is provided here. Different avalanche paths located on the
southeast slope of Mont Chaillol (max. 2600ma.s.l.), near
Lautaret Pass (2058ma.s.l.), are used for experiments with
artificially released avalanches. Avalanche path No. 1 is
used for the experiment presented in this paper. It is 500m
long with an average slope of 368, reaching 408 in the
starting zone. Dry snow avalanches released in early winter
generally exhibit a density of 80–160 kgm–3 in the starting
zone and 300–350 kgm–3 in the deposition area. Typical
release volumes vary from 500 to 10 000m3, and the
maximum front speed can reach 30–40m s–1 (Meunier and
others, 2004).

2.2. Experimental device
The structure is a 1m2 plate supported by a 3.5m high steel
cantilever beam fixed in the ground, facing the avalanche
(Fig. 1). The plate can be moved along the beam to be
located exactly at the surface of the initial snow cover prior
to avalanche release. A strong concrete foundation was built
to support the structure. It is set up in the avalanche path
nearly 150m downhill from the starting zone, i.e. in the area
where avalanches generally reach their maximum velocity.

Strains are measured at the bottom of the beam with four
precision strain gauges placed in the maximum bending
moment area. Gauges are linked to the data acquisition
system in the shelter using quarter-bridge wiring. An
additional �490m s–2 accelerometer is placed on the beam
to measure high-frequency vibrations of the structure in the
direction of the avalanche. Vibration data are used for the
modal study of the structure. Data acquisition equipment

includes a National Instruments SCXI-1000 high-frequency
logger with a sampling rate of 3000Hz to ensure the
recording of dynamic effects. Signals are filtered with a
four-pole Butterworth (–24 dBoctave–1) filter with a cut-off
frequency set to 1 kHz to ensure a bandwidth without
aliasing. This structure is used to measure avalanche impact
pressures and other important parameters (acceleration,
velocity, etc.). The impact pressure history is obtained by
deconvolving the strain histories with the frequency response
function of the structure (Berthet-Rambaud and others, 2008;
Thibert and others, 2008; Baroudi and Thibert, 2009).

2.3. Data
We have used the data of the artificial avalanche released on
26 March 2008 (Baroudi and Thibert, 2009). This avalanche
started as a 0.2m thick layer of small dry (–1.18C) rounded
particles (density �=160 kgm–3) in the starting zone. By the
time it reached the structure, it had formed a 1m thick dense
flow. The deformations measured in the maximum bending
area of the structure are plotted in Figure 2.

The velocity of the avalanche at the structure location,
deduced from video analysis, and the reconstructed pres-
sure, are plotted in Figure 3 (Baroudi and Thibert, 2009).
From image analysis, the avalanche–structure interaction
can be divided into two steps that are consistent with the
pressure profile of Figure 3:

1. For the first 2–3 s, a saltation layer (a mixture of air and
ice particles with a high air content) impacts the
structure.

2. Then a dense layer of snow impacts the structure for
nearly 15 s with decreasing velocity (Fig. 4). The height
of the flow is constant and equals 1m until the flow stops
and the snow is deposited around the structure. Snow
density in the deposition area is 300 kgm–3.

The snow–structure interaction forms a dihedral dead zone of
dense snow (�=420 kgm–3) stuck on the plate as described in
Thibert and others (2008) for another avalanche event.

Fig. 1. View of the macroscopic structure and the two different levels of mechanical models: (a) the thick steel plate supported by a steel HEB
beam, and (b) the cantilever beam with an additional concentrated mass for the plate.
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3. METHOD
A methodology to estimate the work (energy) done on a
structure by an impacting avalanche and the work rate
(power) is presented here. Both the total injected and
dissipated energy are estimated. The principle is to apply the
theorem of mechanical work of a system (Malvern, 1969) to
the impacted structure. The elastic potential energy and
kinetic energy of the structure are calculated from the
experimental deformations and an adequate mechanical
model of the structure. Then the energy dissipation due to
potential plastic deformation and internal material damping
are calculated. Finally, the mechanical work done at the
structure boundary by the avalanche forces is deduced from
the energy balance.

3.1. The model of the structure
The structure of interest is an elastic beam and a plate
(Fig. 1a). The plate integrates the impacting pressure of the
avalanche spatially. This beam is mechanically modelled by
a Bernoulli–Euler beam (Fig. 1b). The plate is modelled, for
the spectral response, as an additional concentrated mass
(Fig. 1b). A comparative study on the adequacy of various
models to describe the behaviour of the structure under

dynamic loading has already been performed by the authors
in a previous paper (Thibert and others, 2008). In that paper,
a finite-element model using thin-plate discrete Kirchhoff
triangular (DKT) elements (Batoz and others, 1980) and a
Bernoulli–Euler beam model with an additional concen-
trated mass (Fig. 1b) were used to investigate the dynamic
behaviour. The numerical results, the eigenfrequencies and
the deformation frequency response functions were com-
pared to in situ impact hammer tests and to other direct
measurements (deformation and acceleration) when the
structure was impacted by the avalanche (Thibert and others,
2008). It was found that both models correctly capture the
observed frequency behaviour of the macro-sensor and that
the first to third eigen modes of the structure are accurately
represented by the beam model. This implies that elastic
potential and kinetic energies of the structure can also be
described accurately by the beam model. The parameters of
the model are as follows: the moment of inertia of the beam
section is I= 1.29� 10–4m4, its cross-sectional area is
A=100�10–4m2 and its Young’s modulus is E=210GPa.
The density of steel is �s = 7850 kgm–3. The additional plate
mass is Mp = 190 kg and the damping factor is � =0.33%.

Consider the resultant of the loads applied by the
avalanche on the structure being Fe. The system on which
the avalanche force Fe is doing work We is the beam-plate
macro-sensor. According to the theorem of mechanical work
applied to our system (Malvern, 1969; Maugin 1992), the
rate of change of mechanical work U+K is equal to the
power (work rate) d/dt (We –Wdis) of the forces working on
the beam. Therefore, noting time derivatives by a dot above
the variable:

d
dt

ðU þ K Þ þ _Wdis ¼ _We, ð1Þ

where U is the total deformation energy (potential energy of
elastic deformation), K is total kinetic energy, We is the work
of external forces, and Wdis =Wf +Wp is the dissipative work
due to the internal friction forces and plastic deformation.
The work done by the avalanche impact forces on the
structure is calculated by integrating Equation (1), given that
the work is related to the work rate as follows:

We �
Z t

0

_W e dt : ð2Þ

Fig. 2. Deformation measured during the avalanche released on
26 March 2008.

Fig. 3. Velocity and reconstructed pressure of the avalanche
released on 26 March 2008.

Fig. 4. Elastic and plastic deformation and associated energies given
by Equations (7) and (11).
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Because we have only measured deformation �(xi,y = h,t) at a
few points xi, the whole spatial distribution �(x,y = h,t)
should be ‘interpolated’ using the Euler–Bernoulli beam
model in order to calculate the spatial integrals along the
structure. For this, we have used the deformations given by
the Euler–Bernoulli beam model and the avalanche impact
force Fe reconstructed by inverse analysis. The force is
obtained from the measured deformation histories � via a
regularized deconvolution problem:

bFeð!Þ ¼ "ð!Þ � �ð!Þbhð!Þ , ð3Þ

where !=2�f is the angular frequency, � a regularization
filter and bh the deformation frequency response function of
the structure. This deconvolution procedure is described in
detail in several papers (Berthet-Rambaud and others, 2008;
Thibert and others, 2008; Baroudi and Thibert, 2009). By
applying this dynamic force to the beam model of Figure 1b,
we solve the equations of motion for the displacement v(x,t):

�A€vðx, tÞ þ C _vðx, tÞ þ ðEIv00ðx, tÞÞ00 ¼ pðx, tÞ, ð4Þ

using homogeneous initial and boundary conditions:

vð0, tÞ ¼ 0, v 0ð0, tÞ ¼ 0, v 000ðL, tÞ ¼ 0, v 00ðL, tÞ ¼ 0,

where spatial derivatives are noted by a prime. Equation (3)
is used to compute deformation histories as an equivalent of
Equation (4) written in the frequency domain. Finally, this
dynamic force is applied to the beam to obtain the whole
strain distribution over time by solving the motion equations
for the Euler–Bernoulli beam model as:

"ðxm, y ¼ h; tÞ ¼ FT�1 bhmj !ð Þ � bf j !ð Þ
� �

tð Þ, ð5Þ

where m = 1...n, and x = (x1, x2,...,xn) are the spatial
discretization of the beam and FT–1 denotes the inverse
Fourier transform.

3.2. Reversible energy calculation
The elastic and kinetic energies are reversible energies that
are mechanically relocated outside of the system once it is
unloaded. The potential energy of the elastic beam, U,
comes essentially from the bending strain energy:

U ¼ 1
2

Z L

0
EI � v 002ðx, tÞ dx, ð6Þ

where v(x) and v00(x) = (d2/dx2)v(x) are the displacement and
curvature, respectively. The deformation at the fibre located
at height y from the neutral axis of the beam section is
calculated as �(x,y;t) = –y.v00(x,t). Equation (6) can also be
expressed in terms of deformation:

U ¼ 1
2

Z L

0

EI
h2 "

2ðx, y ¼ h; tÞ dx, ð7Þ

where 2h is the height of the HEB profile (Fig. 1a).
The potential energy of shear is negligible compared to

the bending strain potential energy. The ratio of shear and
bending strain energies is given by:

UQ=UM � 2ð1þ �Þ � � � I=A=L2 ð8Þ
with a Poisson’s ratio � of 0.3, and a shear correction factor �
of 1.2 (Timoshenko and Young, 1956). Using the numerical
values for I, A and L given in section 3.1, Equation (8) results
in a ratio of 1% and therefore a negligible shear elastic
component in the energy balance.

The kinetic energy is the second reversible energy. It is
composed of the translational and the rotational displace-
ment contributions. Assuming small rotations 	z � @v=@x of
the beam sections, the rotational kinetic energy

ð1=2Þ R L
0 �Iz _	z

2ðx, tÞ dx can be neglected compared to the
translational kinetic energy of the beam and the plate. The
main component of the kinetic energy of the structure, K, is
therefore given by:

K ¼ 1
2

Z L

0
�A _v2ðxÞ dx þ 1

2
Mp _vp2, ð9Þ

where Mp and _vp denote the mass of the plate and its
velocity, respectively.

3.3. Dissipated energy
As opposed to the elastic and kinetic energies which are
reversible and mechanically relocated outside of the system,
two main forms of irreversible energy dissipation are related
to internal friction and potential plastic deformation. Both
correspond to a heat source in the structure.

The dissipation power due to internal friction is:

_Wf ¼
Z L

0
fint:frict: � _vðx, tÞ dx ¼

Z L

0
C � _v2ðx, tÞA dx, ð10Þ

where the structural viscous damping force is fint.frict. =C _v
and C=2�s!�.

The dissipation power related to the volume undergoing
plastic deformation Vp is:

_Wp ¼
Z
Vp


 _"pðx, y, z, tÞ dv, ð11Þ

where the irreversible plastic deformation, �p, is given by
�p = �– �e, where �e denotes the reversible elastic part (Fig. 4).

4. RESULTS
4.1. Check using synthetic data
To check the calculation method presented in the previous
section, we have calculated an energy balance for the
structure using an a priori known load history. The energy
balance can therefore be calculated independently by the
left- and right-hand sides of Equation (1).

A constant force of 10 kN (an equivalent of P=10 kPa on
the 1m2 plate) is applied for 2 s at the free end of the beam
after a loading time of 1 s (load rate = 10 kN s–1; Fig. 5).
Following the method presented above, the total work done
on the structure is calculated from the left-hand terms of
Equation (1). The elastic energy, U, is the main component
(Equation (7)) and reaches 30 J. Because the calculation
takes dynamic effects into account, before the beam reaches
its steady state, the kinetic energy component (Equation (9))
is responsible for the small energy fluctuations in the total
work (Fig. 5). When the beam is unloaded at t=3 s, the work
done by the elastic forces is the opposite and yields a
residual energy content of +0.06 J. This non-zero residual
value is the irreversible dissipative work due to internal
damping (Equation (11)) that is converted into heat during
the loading and unloading steps. There is no plastic
dissipation here, as the strain remains under the yield strain.

This result is checked by directly calculating the work
done by the applied force (right-hand side of Equation (1)).
This can be done in two different ways:
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1. Assuming static loading conditions, the relation between
the beam tip displacement, �, and the applied force, F, at
the free end of the beam is given by � = FL3/3EI
(Timoshenko and Young, 1956) which results in
� =5.3mm. The elastic component in the energy balance
is therefore U= F�/2 = F2L3/6EI which gives U=26.4 J, in
reasonable agreement with the computed value (Fig. 6).
The restrictive assumption of static loading neglects
displacement rates, exchanges between potential and
kinetic energy and friction dissipation. It is therefore
reasonable that we find a lower value.

2. The work done on the structure by the applied force at
the free end can be calculated under dynamic conditions
as well, quantifying the right-hand side of Equation (1)
from Equation (2):

We ¼
Z t

0

_W e dt ¼
Z t

0
FðtÞvðtÞ dt ¼

Z �

0
Fð�Þ d�, ð12Þ

where F(d) represents the force applied at the free end for
tip displacement �. The work We is therefore the area
under the curve of Figure 6 where F(�) is the force plotted
as a function of the tip displacement computed by the
Euler–Bernoulli beam model. Oscillations result from the
dynamic calculation and exchanges between elastic
potential- and kinetic-energy components. The area
under this curve is 30 J, which confirms the estimation
of We from the integration of the local deformation along
the beam from Equations (7), (9) and (10) and the energy
balance (Equation (1)).

4.2. Work and power applied to the structure
The pressure applied on the structure by the avalanche
released on 26 March 2008 only results in elastic deform-
ation (Fig. 2), far below the elastic limit of 1.2� 10–3mm–1.
There is consequently no power dissipated by plastic
deformation within the structure (Equation (1)). The irrevers-
ible power is only due to internal damping (Fig. 7a). This
power is proportional to the square of the displacement rates
of the material. It is therefore mainly dissipated in the first
seconds of the impact when the structure has the highest
displacement velocities _v. The corresponding quantity of

energy integrated over the [0, 25 s] time range results in very
little total work, amounting to <0.1 J (Fig. 7b).

The total power, d/dt(U + K) + _Wdis, injected in the
structure by the impact of the avalanche (Fig. 8) is therefore
mainly reversible with prevailing U and K terms. As
observed for the power due to internal friction, the kinetic
energy of the structure, K, is only high on impact when the
displacement terms � are highly time-variable (Fig. 9a). After
t=2.5 s, the loading of the structure is mainly static, resulting
in negligible time-derivative terms _� in Equation (9). The
internal power is therefore mostly due to the bending strain
potential U which represents >98% of the total power. It
reaches >300W for the 1m2 of the structure exposed to the
flow of the avalanche.

5. DISCUSSION
Since the deformations of the structure remain in the elastic
range, there is no plastic deformation and the total amount
of energy injected in the structure is mainly the elastic
potential energy. For a given force, this energy is limited by
the stiffness of the beam. This explains the very small
amount of energy that is injected in the structure. The beam
is designed to remain elastic because it is designed for
pressure measurements. Its function is therefore to measure
the rate of change of the linear momentum of the avalanche
which is mainly a change in the flow direction, and not a
velocity (kinetic energy) reduction. With a maximum of
340W of injected power when the loading rate is highest,
and a value of 45 J when the impact pressure reaches its
maximum of 22 kPa, both the power and energy of the
structure remain very low compared to the energy content of
the avalanche.

It is, however, important to note that the maximum of
power is injected in the structure in the head of the
avalanche (the time period of highly increasing pressure;
Fig. 3), before the pressure applied on the structure reaches
its nominal value, while in the tail of the avalanche (t>14 s;
Fig. 3) this energy is relocated outside of the structure in the

Fig. 5. Total work done on the structure as calculated from
Equations (8), (10) and (11) using the deformations along the beam
given by Equation (5).

Fig. 6. Two methods of calculating total work done on the structure
(see text): from the static tip displacement at nominal load (star);
and using the computed tip displacement from the Euler–Bernoulli
beam model (curve). Oscillations from the dynamic calculation are
exchanges between elastic potential- and kinetic-energy com-
ponents.
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avalanche flow. This is related to the definition of the work
rate which is a product of the pressure by a displacement
rate. This result can also be explained from Equation (1)
where we find the dissipative term _Wdis and the kinetic term
K to be negligible, resulting in a work rate done on the
structure, _We, mainly equal to d/dt(U). With the assumption
that the structure is impacted under quasi-static conditions,
its deformation is proportional to the pressure (see equation
6 in Baroudi and Thibert, 2009). Equation (7) states therefore
that the potential energy is proportional to the square of the
pressure. The work rate done on the structure is conse-
quently proportional to the product of the pressure by the
pressure rate. This product is indeed maximum before t=5 s,
as can be seen in Figure 3.

Regarding the amount of energy injected in the structure,
admitting that the avalanche is described with a simple
Voellmy–Salm model (Salm, 1993) or sliding-block model
(Bartelt and others, 2006), the kinetic power of the
avalanche, �, through a cross-sectional area S can be

estimated from the velocity of the flow, v, and expressed as
(Landau and Lifshitz, 1994):

� ¼ 1
2S�v

3, ð13Þ
where � is the density of the avalanche. Using S=1m2, a
mean density of 230 kgm–3 (Baroudi and Thibert, 2009) and
the velocity values of Figure 3 as a mean value over cross-
section S, the kinetic power is plotted in Figure 10. With a
mean velocity of 6m s–1 over the time range, the flux of
kinetic energy is typically 25 kJm–2 s–1.

The highest power injected in the structure (340W at
t= 7.5 s) is therefore only 0.4% of the kinetic power
available in the avalanche at the same time. This makes it
unlikely that the structure will dissipate a substantial amount
of the avalanche’s energy by internal elastic deformations.
We may therefore ask, in the event of plastic deformation,
what the injected power could be.

To answer this question, we calculate the ratio of plastic
dissipative work to elastic work (at the elastic limit). We first
assume that the beam undergoes plastic deformation (plastic
damage) at the clamped section, leading to formation of a
plastic hinge. We assume that the residual tip displacement
of the beam is 3.5 cm (i.e. 1% of the beam length) after one
cycle of loading–unloading. Then the dissipated irreversible
plastic work is given by:

Wpl ¼ Mpl	p, ð14Þ
where the plastic moment at the hinge is Mpl = 
ywp. For the
HEB beam made of structural steel with a yield stress of
250MPa, a rotation discontinuity of 	p = 1/100, and a plastic
bending resistance of wp = 0.001m3 for HEB240 (Timo-
shenko and Young, 1956), the result isWpl �2.6 kJ. Assuming
a linear deformation profile along the beam, the elastic strain
energy at the elasticity limit (�Y=12�10–4mm–1) would be
1.2 kJ. The plastic energy dissipated in the structure is
therefore here just around twice the elastic potential energy
that can be stored reversibly. This is related to the limited
volume of material subjected to plastic deformation (of the
order of 10–3m3).

However, the overall dissipated power remains unknown
in this calculation because the time history of deformation is
not defined. Time-measured plastic deformation data are

Fig. 7. (a) Irreversible power due to the internal friction _Wf, and (b) cumulative dissipative work due to the internal friction (converted into
heat).

Fig. 8. Total power (J s–1) injected in the structure (1m2) by the
avalanche impact.
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required. Such data are available for aluminium devices
impacted by avalanches on our experimental site. These
devices are set up on path No. 2 and have been presented in
a previous study (Berthet-Rambaud and others, 2008). These
small aluminium targets are made of plate structures (length
L=25 cm and width b=5 cm) fixed at one end to a tripod
and free at the other. They are embedded by a rigid cubic
piece located between the support and the aluminium plate,
and placed horizontally and normal to the avalanche
direction. The plate is sufficiently thin (h=11mm) to allow
a cantilever-beam behaviour (h/L� 0.04; Fig. 11).

A strain gauge is located on the downhill face of the
aluminium plate at the location of the plastic hinge. It is
therefore possible to estimate deformation as a function of
time, and derive elastic, plastic internal work rate using the
method exposed in section 3. As an example of the
calculation, consider the deformations recorded during an
avalanche released on 15 February 2007 (Fig. 12). Plastic
deformation is limited to very short time periods: it occurs
on the first impact (around 57.8 s) and later at 58.7 s.

The plastic power, _Wp, is calculated from the plastic
strain rate defined by the plastic deformation increment per
unit time _"p dt ¼ d"p � 0, and integrated over the volume of
the plastic hinge, Vp, which is about hb2 = 6.6�10–6m3:

_Wp ¼
Z
Vp

Z "p

0

 _"p dt dV : ð15Þ

To be compared with the kinetic energy flux of the
avalanche, this power has to be normalized with respect
to a m2 area. The result is shown in Figure 13. The power
dissipated by the structure reaches values of about 0.5, 1 and
2.2 kWm–2 during the three main steps of plastic deform-
ation. Regarding the avalanche characteristics (dense dry;
�=120 kgm–3; v=20m s–1 on impact), the kinetic power of
the avalanche is around 500 kWm–2. This example illus-
trates that dissipated energy remains limited to <1% of the
kinetic energy of the flow on impact.

Additional plastic deformation in the structure does not
therefore significantly enhance the energy dissipated by the

Fig. 9. (a) Kinetic energy K of the structure. As the loading by the avalanche is mainly static after 2–3 s, K decreases rapidly. (b) Elastic
potential energy U injected in the structure by the avalanche. This is the main part of the energy (>98%) of the structure.

Fig. 10. (a) Kinetic power of the avalanche through a 1m2 surface (i.e. kinetic energy flux per unit time, Jm–2 s–1). (b) Total work done on the
structure by the avalanche forces.
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cantilever beam with respect to the energy content of the
flow. This is explained by the limited plastic hinge volume,
Vp, in the cantilever-beam bending mode (volume inte-
gration in Equation (15)), which is <10–5m3.

6. CONCLUSION
The purpose of this study was to calculate the energy and
power balance between an avalanche and an impacted
cantilever-beam structure. During an avalanche impact,
mechanical work (energy) is injected in the structures via the
interface. The energy injected in (work done on) the
structure by the avalanche is of two types: reversible and
irreversible. Strain energy (elastic potential energy) is
reversible. Internal friction work (work of viscous forces),
plastic work and any work leading to damage (material
fracture) are examples of dissipative or irreversible work.
This irreversible work is converted into heat.

The elastic potential energy and the kinetic energy of the
structure are calculated from the experimental deformation
and a mechanical model of the structure. The model is first
validated by in situ hammer tests. The energy dissipated by
internal material damping is then calculated. The main
energy component is the elastic potential term. The kinetic

and viscous terms are negligible because of the very low
displacement rate of the structure during the impact.

Finally, the mechanical work done on structure (at the
boundary) by the avalanche forces is deduced from the
energy balance. The work and power injected in the
structure are very small compared to the kinetic flux of the
avalanche. This is explained by the very high stiffness of the
structure which has been designed to remain elastic.
Nevertheless, an important result is that the maximum of
power of the avalanche is injected in the structure before the
pressure reaches its maximum value. This occurs during the
very beginning of the impact when the head of the
avalanche impacts the structure. In a quasi-static approach,
this maximum is given by the maximum of the product of the
pressure by the pressure rate. This result could be important
for the design of defence structures where the single pressure
variable is mostly considered.

Calculations and complementary experiments show that
additional plastic deformation in the structure does not
significantly enhance the energy dissipated by the cantilever
beam with respect to the energy content of the flow. This is
explained by the limited plastic hinge volume in cantilever-
beam bending mode. As the total mechanical power done
on the structure is much smaller than the kinetic energy flux
of the avalanche, it is unlikely that the structure will
dissipate much of the avalanche’s energy by internal
deformation (viscous and plastic). Rather, energy dissipation
due to the avalanche–structure interaction is expected to
occur in the flow, and therefore the energy approach
developed in this paper should be considered mainly as a
tool to investigate avalanche processes.

An important result that we identified in our analysis is
the power imparted by the avalanche head to a structure. If a
structure (or tree) can withstand this impact, then the flow
will be diverted, increasing the internal energy dissipation
and slowing the avalanche. This effect must be quantified to
assess the defensive capacity of breaking mounds and
mountain forests. A precondition to utilize this effect is that
the avalanche head does not destroy the structure.

Dissipation of energy in the structure could nevertheless
be a possible way to design protective dissipative structures
for small avalanches in order to limit the dynamic loads.

Fig. 11. Aluminium plate device used to calculate the plastic
deformation power. The plate is shown after it has been damaged
by the avalanche impact. Vp is the plastic hinge. The dashed line is
the initial position of the plate.

Fig. 12. Deformations recorded on the aluminium plate device
during the avalanche released on 15 February 2007 (Fig. 12) at the
Lauraret avalanche test site (path No. 2). The yield strain is
indicated by a dashed line (2.6� 10–3mm–1). Plastic deformation
occurs between 57.6 and 58.7 s.

Fig. 13. Total power (J s–1) dissipated by the aluminium device (m–2)
due to avalanche impact.
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Specific and exchangeable parts of a structure can be
designed to dissipate energy and ensure its viability. For
example, a very high volume of plastically deformable
material can be concentrated in steel fuse-type elements
which are able to dissipate thousands of kWm–3. This
technique could be applied to more complex structures
interacting with an avalanche.

To design such dissipative structures in future, numerical
methods should be used (e.g. finite-element, finite-differ-
ence, finite-volume and discrete-element methods) to solve
motion equations in the structure together with relevant
constitutive material models.
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