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Abstract
This note is concerned with a system of non-renewable components in

parallel subjected to a common environment which is described by a
real-valued external stochastic process. Given the environment process, the
components are supposed to work independently, and the corresponding
failure rates are all increasing (or decreasing) functions of the observed
current state. It is then proved that, under these assumptions, the
association of the external process implies the association of the component
lifelengths. Connection with existing results is underlined.

FAILURE RATE; ASSOCIATED VARIABLES

1. Introduction

Consider a system of N non-renewable components in parallel, and let 1'; denote the
lifelength of componenti, i = 1, . · . , N. For reasons of simplicity, it is often assumed that the
different components of the system operate independently. In reality, however, there are a
number of situations with some form of dependence between the lifelengths. A usual factor
inducing correlation is the random environment that affects all the components of the system.
Lindley and Singpurwalla (1986) and Lefevre and Malice (1989) investigated a model where
the environment acts at the initial instant only and the joint lifelengths are then distributed as
a mixture of N independent exponential laws. Here, an alternative approach is followed by
representing the environment as a real-valued stochastic process Y = {Y;, t ~ O} which is
external (or exogeneous) to the failure mechanism.

Specifically, we assume the following. The environment process Y has real-valued cadlag
trajectories. Given Y, the lifelengths 1'; are independent and

(1) lim (1/1')P[t < 1'; ~ t + r I1'; > t, Y] = ;;(t, ¥;), i = 1, ... , N,
1:-0

where each s;(t, y) is a positive continuous function of t E lR + and y E lR. Further, for the
purposes of this paper, we shall assume that ;;(t, y) are all increasing (or decreasing) in y.
Observe that given the external process Y, the failure rates depend on Y only through the
current state Y;-. However, Y could be redefined to include cumulative measures describing
the history of changes in the environment at the cost of complicating the state space of Y. We
point out that in a similar context, Cinlar and Ozekici (1987) introduced a more tractable
model of this type where the failure rates depend on the whole history of Y via the so-called
intrinsic age process of each component. In its present formulation, the model above extends
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the one examined by Lefevre and Michaletzky (1990) in the special case of a birth-and-death
environment.

It is clear that the components' lifelengths now become correlated, and our goal is to
characterize the nature of that dependence. Under the hypotheses above, we prove that the
association of the environment process Y implies the association of the lifelengths 1'; (as well
as the association of the risks incurred by each component). Recall that the (real) random
variables 1;., ... , TN are associated (in the sense of Esary et al. (1967» if

(2)

for all increasing functions f and g for which the covariance exists; the (real-valued) stochastic
process Y is said to be associated if the variables ~1' ••• , ~k are associated for all choices of
the integer k ~ 1 and times t1 , •• • , tk •

That association property of the 1'; reinforces and extends Theorem 2 of Lefevre and
Michaletzky (1990). A similar result has also been derived, inter alia, by Cinlar et al. (1989)
for the model of Cinlar and Ozekici (1987). The proof given here is elementary and may be of
some value since it puts in evidence that the result can be viewed as a natural extension of a
theorem of Jogdeo (1978) on the association of mixtures of associated random variables.

2. Association of the Ufelengths

We begin by noting that, in view of the hypothesis (1), each conditional survival function
P( 1;> t IY) satisfies the ordinary differential equation

(3) dP(1'; > t IY) = - P(1'; > t IY);;(t, 1';)dt, i = 1, ... , N.

Assuming that the lifetimes are positive with probability one, (3) can be solved 'path by path'
and gives

(4) P(T; > t IY) = exp [ - l' ~i(U, Yu ) du ], i= 1,···, N.

Note that, by hypothesis, Y has cadlag paths and the ;;(t, y) are continuous in y, which
together imply that ;;[u, Yu(w)] is a cadlag function of u for each possible outcome to in the
underlying probability space. Hence, the right-hand side of (4) is well defined as the
exponential of a Lebesgue integral.

Next, we put as Lemma 1 a result due to Jogdeo (1978) that gives conditions under which
mixtures of associated random variables remain associated. Recall that a vector V is said to be
stochastically increasing in the (real) vector W if E[f(V) IW = w] is increasing in w for all
positive increasing functions f

Lemma 1. Let W be an associated random vector, and V be a random vector that is
conditionally associated given Wand stochastically increasing (or decreasing) in W. Then, V
is associated.

The following result is useful for what follows and has been proved by Ahmed et al. (1981),
amongst others.

Lemma 2. Let It;, ... , VN be random variables that are conditionally independent (hence
associated) given Wand suppose that each is stochastically increasing in W. Then
V = (It;, . · . , VN ) is stochastically increasing in W.

Comparing the actual model with the situation considered by Jogdeo (1978), we see that
the role of the vector W is played here by the external process Y and the vector V
corresponds to the lifelengths (1;., ... , TN) (subjected to the environment Y). The proposi
tion below gives sufficient conditions for the (unconditional) association of the 1';. As
expected, these conditions can be viewed as a natural extension of those obtained by Jogdeo
(1978).

https://doi.org/10.2307/1427571 Published online by Cambridge University Press

https://doi.org/10.2307/1427571


Letters to the editor 963

(5)

Proposition 3. Under the assumptions of the model specified earlier, if the environment
process Y is associated, then the lifelengths Ti, .. · , TN are associated.

Proof Let t ~ 0 be any fixed time and T be the random vector (1;, 1\ t, ... , TN 1\ t). By the
dominated convergence theorem, the association of the 1'; is equivalent to the association of
the 1; 1\ t; that is, cov [f(T), g(T)] ~ 0 for all increasing functions f and g. Moreover, without
loss of generality, we can take in the covariance f and g increasing, bounded and continuous
(see Esary et al. (1967». Now, consider the time interval [0, t] and, for simplicity in the
notations, put Yas the restriction of the external process Yon [0, t]. Conditionally on Y, the
1'; 1\ t are assumed to be independent, hence associated, so that

E[f(T)g(T)] ~ {E[f(T) IY]E[g(T) IY]}

== E[b(Y)c(Y)], say.

Thus, for our purpose, it suffices to prove the association of b(Y) and c(Y). From the
assumptions of the model, b(Y) can be written as

(6) b(Y) =1 [(U1'· · · , UN) fI F;(du; IY),
[O,t]N i=1

where F;(u IY), u E IR+, represents the conditional distribution function of 1'; 1\ t given Yand
is directly obtained from (4). A similar expression holds true for c(Y). Following then a
standard procedure, let us approximate Y by the sequence of processes Z; = {Zn,u, 0~ U ~ t},
n ~ 1, where

(7)
2"-1

z.; = 2: Yk t /2,.1 [k t /2" , ( k + l )t /2" )( U ) .
k=O

Zn, n ~ 1, is a cadlag process, and as n~oo, Z; converges a.s. to Y in D[O, t] for the
Skorohod topology. Observe from (4) and (6) that band c are continuous functionals on
D[O, t]. This implies that b(Zn) and c(Zn) converge a.s. to b(Y) and c(Y) as n~ 00,

respectively. Therefore, our problem reduces to that of showing the association of b(Zn) and
c(Zn) for all n ~ 1. Let y. and z.; be trajectories of Yand Zn respectively. From (7) and since
the process Y is assumed to be associated, we have just to prove that b(zn.) and c(zn.) are both
increasing (or decreasing) in the yktl2". Coming back to the definition of these two functions
and then applying Lemma 2 with l'; = 1'; 1\ t, i = 1, ... , N, we deduce that the latter property
will be satisfied if each variable 1; 1\ t is stochastically increasing (or decreasing) in the Yk t /2,. .

From (4), this is clearly true when the functions ;i(t, y) are all decreasing (or increasing) in y,
which completes the proof.

We note that the condition for Y to be associated is verified, for instance, for (real-valued)
stochastically monotone Markov processes (see, e.g., Barlow and Proschan (1975». A simple
particular case is the birth-and-death environment process considered by Lefevre and
Michaletzky (1990).

For each component i, let us now introduce the random variable

(8) ti~O, i = 1" ... , N.

From (4), it is legitimate to interpret Qi(ti) as the total risk incurred by component i from
the initial instant until time t; The dependence between these different risks is examined
below.

Proposition 4. Under the assumptions of Proposition 3, the risks Ql(t1) , ••• , QN(tN) are
associated.

Proof First, observe that Qi(ti), i = 1, ... , N, can be expressed as the a.s. limit, as n~ 00,
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of the Riemann sums

(9) n~l.
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It suffices thus to prove the association of the Si,n for all n ~ 1. This follows directly from (9)
and the hypotheses made.

The result is, of course, intuitive. Incidentally, a straightforward consequence is that
the T; are positively orthant dependent; this property, however, has been reinforced by
Proposition 3.
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