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THE FRONT OF THE EPIDEMIC SPREAD AND FIRST
PASSAGE PERCOLATION

BY SHANKAR BHAMIDI, REMCO VAN DER HOFSTAD AND JÚLIA KOMJÁTHY

Abstract

We establish a connection between epidemic models on random networks with general
infection times considered in Barbour and Reinert (2013) and first passage percolation.
Using techniques developed in Bhamidi, van der Hofstad and Hooghiemstra (2012), when
each vertex has infinite contagious periods, we extend results on the epidemic curve in
Barbour and Reinert (2013) from bounded degree graphs to general sparse random graphs
with degrees having finite second moments as n → ∞, with an appropriate X2 log+ X

condition. We also study the epidemic trail between the source and typical vertices in the
graph.

Keywords: Flow; random graph; random network; epidemics on random graphs; first
passage percolation; hop count; interacting particle system
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1. Introduction and models

We consider the spread of an epidemic on the configuration model (of vertices and edges)
with independent and identically distributed (i.i.d.) infection times having a general continuous
distribution, and an infinite contagious period for each vertex. We describe the link between
first passage percolation on sparse random graph models [6, 8], and general epidemics on the
configuration model of Barbour and Reinert [3]. The work in [6, 8] is more general in terms
of the graph models allowed, but more restrictive in terms of the epidemic process, requiring
the assumption of infinite contagious periods and i.i.d. infection times. On the other hand, in
[3] Barbour and Reinert allowed for more general epidemic processes, but assumed the graphs
have bounded degrees. The main result, Theorem 2.1 below, extends our earlier work [6, 7, 8]
to the study of the epidemic curve in the spirit of [3] by describing how the infection sweeps
through the system. We also investigate the epidemic trail, namely the number of individuals
that spread the infection from source to destination. Branching process approximations for the
epidemic process and stable-age distribution theory for the corresponding branching processes
developed by Jagers and Nerman [16, 15, 23] play a critical role in the proof of the main result.

1.1. Configuration model

We first describe the model for the underlying network (i.e. graph) on which the epidemic
process takes place. The configuration model CMn(d) (see [10] or [25, Chapters 7 and 10])
on n vertices with degree sequence d = dn = (d1, . . . , dn) is constructed as follows. Let
[n] := {1, 2, . . . , n} denote the vertex set. For each vertex i ∈ [n], attach di half-edges to i,
notating them suitably as the set Xi (so |Xi | = di) and their union Ln := ⋃

i∈[n] Xi . Assume
the total degree |Ln| = ∑

i∈[n] di to be even (if not, as, for example, may occur when the degrees
di are drawn independently from some common degree distribution D, select i uniformly at
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102 S. BHAMIDI ET AL.

random from [n] and increase di by 1). For any given half-edge x ∈ Ln, let V (x) denote the
vertex incident to x.

Start by pairing the half-edges uniformly at random, i.e. pick an arbitrary unpaired half-
edge, x say, and pair x to another unpaired half-edge, px say, chosen uniformly at random,
to form the undirected edge {V (x), V (px)}. Once paired, remove both x and px from the
set of unpaired half-edges; note that ppx = x. Now repeat until all half-edges are paired.
Denote the resulting random multigraph by CMn(d). While self-loops (when V (x) = V (px))
and multiple edges (when {V (x′), V (px′)} = {V (x), V (px)} for some distinct pairs of half-
edges {x, px}, {x′, px′ }) can occur, under weak assumptions on the degree sequence as in, e.g.
Condition 1.1 below, their number is a tight sequence as n → ∞ (see [17, Theorem 7.1] or
[10] for more precise results in this direction). Write X◦

i = {x ∈ Xi : px ∈ Xi} for the set of
all half-edges in Xi which pair to form self-loops; X◦

i is empty for most i. For half-edges x′
and x′′ for which (V (x′), V (x′′)) is an edge (and not a self-loop), we abuse notation and write
the edge as (x′, x′′).

We consider the configuration model for general degree sequences dn; the model can be
either deterministic or random, subject to mild regularity conditions as n → ∞. To formulate
these conditions, think of dn = (dv)v∈[n] as fixed and choose a vertex Vn uniformly from [n].
Then the distribution of Dn := dVn = |XVn | is the degree of a uniformly chosen vertex Vn ∈ [n],
conditional on the degree sequence dn. To ensure that the majority of vertices are connected
in the resulting graph, assume throughout that dv ≥ 2 for each v ∈ [n] (see, e.g. [18] or [25,
Chapter 10]). We make the following key assumption on the degree sequence.

Condition 1.1. (Degree regularity.) The degrees Dn satisfy Dn ≥ 2 almost surely (a.s.) and,
for some integer-valued random variable D with P{D > 2} > 0 and E[D2 log+(D)] < ∞,

lim sup
n→∞

E[D2
n log+(Dn)] = E[D2 log+(D)]. (1.1)

The uniform integrability property (1.1) also implies that E[Dp
n ] → E[Dp] for p = 1, 2.

When dn is itself random, we require the convergence in Condition 1.1 to hold in probability.
Let D�

n denote a random variable with the size-biased distribution of Dn defined by

P{D�
n = k} = k P{Dn = k}

E[Dn] . (1.2)

It is easily checked that the uniform integrability as in Condition 1.1 implies that E[D�
n −1] →

E[D� − 1] = E[D(D − 1)]/E[D] < ∞, where D� is the corresponding size-biased version
of D. The assumption that Dn ≥ 2 and the nonvanishing variance var(D) > 0 of the degrees
implies that E[D� − 1] > 1.

1.2. Epidemic model

We now describe the infection model on CMn(d). Since multiple edges and self-loops play
no role in the dynamics, replace multiple edges by a single edge and ignore self-loops. View
each edge e = {u, v} in CMn(d) as two directed edges (u, v) and (v, u).

We consider an SIR (susceptible–infected–removed) process on CMn(d). Fix a continuous
distribution G on R+. At time t = 0, start the infection at a uniformly chosen root vertex Vn.
Each infected vertex infects its neighbours at times that start from the instant of its own infection
and are i.i.d. with distribution G. This can be modelled by adding i.i.d. edge lengths Xe ∼ G

for every directed edge e = (v, u) from a vertex v ∈ CMn(d) to a neighbour u of v. Suppose
that each vertex v has an i.i.d. contagious period Cv ≤ ∞ after which it recovers, and that
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once v gets infected, any neighbour u of v can become infected from v only if the infection
time X(v,u) < Cv . Denote the (possibly nonproper) tail distribution function of C by H , i.e.
H(x) = P{C > x}. Finally, assume that once a vertex is infected, it cannot be reinfected, so it
transmits infection to its neighbours at most once.

Let {Fn(t)}t≥0 denote this epidemic process, where, for any fixed t ≥ 0, Fn(t) contains the
entire σ -field of the process till time t ; thus, Fn(t) contains information not only on the set and
number of infected individuals by time t , but also on the entire sequence of transmissions on
(0, t).

Let |Fn(t)| denote the total number of infected individuals by time t , and let |An(t)| be
the total size of the coming generation, by which we mean those vertices in the graph that
at time t are not yet infected but have at time t an infectious neighbour that can infect them
some time after t . (In fact, the set An(t) will later be a set of half-edges, and when there
are no self-loops or multiple edges, there is a bijection between vertices and half-edges in the
coming generation; see Section 4.3.) Later we also define a related process {F̃n(t), Ãn(t)}t≥0
representing the collection of individuals that would infect a fixed target individual w by time t

were the epidemic to start from them, and the corresponding coming generation in this process.
We call this the backward infection process (see Section 4.3 for a precise definition).

2. Results

In this section we state our main results. Let Pn(s) denote the proportion of vertices infected
by time s, that is, with 1{·} an indicator function,

Pn(s) = 1

n

∑
w∈[n]

1{vertex w infected by time s}.

We also investigate the number of infected individuals on the path from the initial source of
the infection to other vertices in CMn(d). Let the vertex w be infected at some time s ∈ (0, ∞).
Then, since infection times are continuous random variables, there is a.s. a unique path that
realizes the infection between the root Vn and such another fixed vertex w ∈ [n], which we call
the infection trail to vertex w. Let Hn(w) denote the number of infectives along the trail to w

(including Vn and w), and define

Pn(s, h) = 1

n

∑
w∈[n]

1{vertex w infected by time s, and Hn(w)≤h}.

Now fix n ≥ 1. In Section 4 we describe how to couple the epidemic process and the back-
ward infection process {Fn(t), F̃n(t)}t≥0 to two independent Crump–Mode–Jagers processes
{BPn(t), B̃Pn(t)}t≥0, where each individual from the first generation onwards produces a
random number of children with distribution D�

n and birth times that are i.i.d. random variables
with cumulative distribution function G, and with a possibly finite contagious period Cv whose
tail distribution we write as H . The root has a slightly different offspring distribution from
the rest of the population. Recall that An(t) and Ãn(t) denote the coming generation in the
infection processes. Condition 1.1 and standard results [15, 16] that we describe in Section 4
imply that there exists a constant λn > 0 and limit random variables Wn, W̃n > 0 a.s. such that
exp{−λnt}(|An(t)|, |Ãn(t)|) a.s.−−→ (Wn, W̃n) as t → ∞ (see (4.14) below), where λn satisfies
the equation

E[D�
n − 1]

∫
R+

e−λnxH(x) dG(x) = 1. (2.1)
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Furthermore,
(Wn, W̃n)

D−→ (W, W̃ ) and λn → λ as n → ∞,

where W and W̃ are the corresponding limit random variables for the branching processes
{BP(t), B̃P(t)}t≥0 described below in Sections 4.1 and 4.4, and λ satisfies (2.1) with D�

n

replaced by D�. Let � be a standard Gumbel random variable independent of (S, S̃) :=
(−(log W)/λ, −(log W̃ )/λ). Define the function

P(t) = P

{
S̃ − �

λ
+ c ≤ t

}
, t ∈ R,

where (cf. Section 4.7) c = λ−1 log(E[D]{E[D� − 2]}2/{λm�
E[D� − 1]}) and the constant m�

is defined in (4.8) below. Finally, let �(·) denote the standard normal cumulative distribution
function.

Our main theorem describes the asymptotic behaviour of the functions Pn(t) and Pn(t, h),
showing that these functions follow a deterministic curve with a random time shift corresponding
to the initial phase of the infection.

Theorem 2.1. (Epidemic curve.) Consider the epidemic spread with i.i.d. continuous infection
times on the configuration model CMn(d) and infinite contagious periods. Assuming that
Condition 1.1 holds, for each fixed t ∈ R, the proportion of infected individuals satisfies

Pn

(
t + log n

λn

)
D−→ P(t − S) = P{log W̃ + log W + � > λ(c − t)}. (2.2)

Furthermore,

Pn

(
t + log n

λn

, αn log n + x
√

β log n

)
D−→ P(t − S)�(x), (2.3)

where αn and β are constants arising from the branching processes BPn(·) and BP(·), and are
defined in (4.25) below.

Remark 2.1. Theorem 2.1 implies that the epidemic sweeps through the graph in an almost
deterministic fashion, where the dependence on the initial phase of the epidemic appears only
in the random shift S in (2.2). Furthermore, (2.3) implies that the number of infectives needed
to reach a typical vertex in the graph is asymptotically independent of the time at which the
vertex is infected. Much information can be read off from the shape of the curve t 
→ P(t). For
example, the fact that the infection grows exponentially at the start is related to the fact that P(t)

decays exponentially at t = −∞, which in turn follows from the fact that P{−�/λ + c ≤ t}
decays exponentially for large and negative t .

Remark 2.2. We believe that the connection between first passage percolation and epidemic
models used to prove Theorem 2.1 can be easily generalized to the case with finite contagious
times. In this regime, the forward and backward branching processes have identical Malthusian
rates of growth but different limit random variables (see Section 4.2). This would extend results
in [3], where one assumes that the degree of all vertices is bounded by some constant K , to the
general configuration model satisfying Condition 1.1. In this context, the missing ingredient of
the proof is the coupling error of the joint construction of the exploration process on the graph
and the epidemic with finite contagious period.
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3. Discussion

Here we briefly describe some connections with work related to ours.

(a) Epidemic models on networks. There is an enormous literature on general epidemic mod-
els, their behaviour on various network models, and their connections to other dynamic
processes; see [4, 24] and the references therein for a description of the motivations from
statistical physics, and see [1, 13, 14] and the references therein for pointers to more
rigorous results. First passage percolation or shortest path problems play an integral role
in our study and we use results in [8] for the analysis of such processes on general sparse
graph models with general edge distributions.

(b) Connection to results of Barbour and Reinert [3]. Barbour and Reinert determined
the epidemic curve for a mean-field model with a Poisson number of infections. This
case is equivalent to the infection spread on the Erdős–Rényi random graph. They
generalized this to multitype epidemics, and concluded that a similar result holds for
the configuration model in which every vertex has degree bounded by K for some fixed
constant K ≥ 1. This restriction allowed them to consider infection rates with arbitrary
dependence on the number of possible infections created by a vertex. They used an
associated multitype branching process in their analysis. Using the connection to first
passage percolation, we show that similar results can be derived for any degree distribution
satisfying Condition 1.1. The price for allowing unbounded degree distributions is that
the infection rates between two individuals now cannot depend on the degree of the
infectious vertex.

(c) Links to the mathematical epidemics literature. The seminal paper by Kermack and
McKendrick from 1927 [22] was the first to model epidemic spread mathematically:
the spread here is deterministic using differential equations. The history of stochastic
epidemic models is somewhat less clear. Stochastic versions were first formulated by
Bartlett in the 1940s (see in particular Bartlett’s book [5] for some earlier references and
historical discussion, and also Kendall’s Berkeley Symposium paper [21]). The first rigor-
ous treatment using Crump–Mode–Jagers processes was presented in the 1995 paper [2],
where Ball and Donnelly derived a strong approximation of arbitrary infection dynamics
using Crump–Mode–Jagers processes for mean-field models. More recently, Volz [26]
used differential equations to describe the evolution of the (Markovian) epidemic spread
on random graphs. Subsequently, Decreusefond et al. [12] proved these results rigorously
under a fifth moment condition on the degrees, while Bohman and Picolleli [9] studied
epidemics on the configuration model with bounded degrees using a combined method
of differential equations and branching process approximations. Recently, Janson et al.
[19] analysed (Markovian) SIR epidemics on the configuration model with an arbitrary
initial set of infective vertices, under a second moment assumption on the degrees.

3.1. Scientific relevance and organization of the paper

In Section 4 we give the idea underlying the proof of Theorem 2.1 via the connection to
first passage percolation. The intuitive idea is as follows. The expected proportion of vertices
infected by time t equals the probability that a random individual is infected by time t , that is,
it is of distance less than t from the infection source in the weighted graph. Hence, we first
state the crucial Proposition 4.2 (see [8, Theorem 1.3]) about the typical distance between two
uniformly picked individuals in the graph, and then exploit first- and second-moment methods
on the empirical proportion of infected individuals to obtain the epidemic curve.
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This first- and second-moment approach first appeared in [3, Theorem 2.8], where the authors
performed it directly on the number of infected vertices within a given distance. The result is
the epidemic curve, which then implicitly gives the distribution of typical distances in the graph.

The novelty of our method is that we completely reverse this procedure. Instead of directly
analysing the number of infected individuals at a given time, we first use results in [8] about
the distribution of distances in a weighted graph: in graphs that are locally tree-like as here,
these distances can usually be understood via a branching process approximation of local
neighbourhoods. The infection process then equals the size of metric balls around the infection
source as a function of the radius r of the ball, in the random metric space given by the weighted
graph. This size is encoded by the distribution of distances, since a random vertex falls into
a metric ball of radius r with the probability that its distance is less than r from the source.
Moreover, results about the distribution of the hop count (i.e. the number of vertices on the path
of shortest weight) can be turned into results on the number of vertices on the epidemic trail.

Our paper therefore provides a bridge between two different areas of literature: distances in
random metric spaces (e.g. weighted random graphs) and the spread of epidemics on random
networks. We believe that our paper helps communication between these two fields: if there
is a random metric space where typical distances are well understood then this immediately
implies results on the behaviour of epidemic processes on the metric space, and vice versa.

Finally, at the end of the paper, in Sections 4.6 and 4.7, we explain the idea of how to
determine the distribution of typical distances—we describe the core ideas of the proof of [8,
Theorem 1.3] and the similar result given implicitly in [3]. Both couple the initial phases of
the infection to two branching processes, and describe how these clusters connect up. We
explain how the connection is formed based on the Bhamidi–van der Hofstad–Hooghiemstra
[8] connection process that describes the limiting Poisson process of possible connection edges,
of which the first point corresponds to the infection time. Essentially, the same Poisson process
appears in the connection process of [3]; hence, we just highlight the differences and similarities
between these two approaches.

4. Proofs

In this section we prove our main result, Theorem 2.1, starting in Section 4.1 with the con-
nection between the exploration process on the configuration model and branching processes.
In Section 4.2 we describe the relevant forward and backward continuous-time branching
processes (CTBPs). In Section 4.3 we provide the coupling between the infection process
on the configuration model and the CTBPs. In Section 4.4 we investigate asymptotics for the
CTBPs and give the main proposition about the distribution of typical distances. Then in Section
4.5 these results are used to prove Theorem 2.1. In the penultimate Section 4.6 we give the
intuitive idea of the proof of typical distances, i.e. we describe how the forward and backward
CTBPs from two uniform vertices meet. Finally, in Section 4.7 we intuitively describe how
Barbour and Reinert [3] derived asymptotics for the connection time.

4.1. Exploration on the configuration model and branching processes

Consider the epidemic process Fn(·) of Section 1.2 with i.i.d. infection times and possibly
infinite i.i.d. contagious periods {Cv ∈ (0, ∞], v ∈ [n]} with tail distribution H . We show
how this is connected to a shortest path problem on CMn(d). To all directed edges {(v, u) ∈
CMn(d)}, assign the respective i.i.d. random edge lengths X(v,u) ∼ G. The epidemic process
can be thought of as a flow starting at vertex Vn at t = 0 and spreading at rate 1 through the
graph using the corresponding edge lengths. When the infection hits a nonsource vertex v at
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time σv , thus infecting vertex v, each neighbour u of v (other than the neighbour that spread the
infection to v) becomes infected at time σv +X(v,u) if X(v,u) is less than Cv . Thus, the offspring
distribution of new infections created by vertex v—these describe the number of infections and
infection times created by v after σv—has the same distribution as the counting measure

ξv =
dv−1∑
i=1

δXi
1{Xi≤Cv}, (4.1)

where dv denotes the degree of v, Xi ∼ G are i.i.d., Cv ∼ H is the contagious period of v,
and, for Borel subsets A of R+ and a ≥ 0, δa(A) is the Dirac measure (see, e.g. [11, p. 382]).

4.1.1. Local neighbourhoods in CMn(d). The initial source Vn of the epidemic is chosen
uniformly at random from [n] and, thus, has degree distribution Dn in Condition 1.1. We now
describe the neighbourhood of this vertex. By the definition of CMn(d), we can construct
CMn(d) from Vn by sequentially connecting the half-edges of Vn to uniformly chosen unpaired
half-edges. For any j ≥ 1, let N∗

j (n) ≈ npj (by Condition 1.1) be the number of vertices with
degree j , where we exclude Vn. Then, for fixed k ≥ 1, the probability that the first half-edge
of Vn connects to a vertex v ∈ [n] \ {Vn} with degree dv = k + 1 equals

(k + 1)N∗
k+1(n)∑

v∈[n] dv − 1
≈ (k + 1) P{Dn = k + 1}

E[Dn] . (4.2)

If Vn connects to such a vertex then this neighbour has k remaining half-edges that can be used to
connect to vertices in CMn(d). Thus, the forward degree of each neighbour Vn has a distribution
that is approximately equal to D�

n. The same is true for the remaining half-edges of Vn and,
in fact, the above approximation continues to hold as long as the neighbourhood is not too
large. Equations (4.1) and (4.2) suggest that the epidemic process can be approximated by the
following branching process {BPn(t)}t≥0 with label set BPn(t) ⊂ V := {0} ∪ ⋃∞

n=1 N
n.

• At time t = 0, start with a single individual ρ = 0 whose offspring distribution is
constructed as follows. First generate Dn possible children, and let {X0

i }1≤i≤Dn be i.i.d.
with distribution G and independent of C0 ∼ H . Then the children of ρ comprise the set
(0, i) such that Xi < C0, labelled in an arbitrary order. The interpretation is that each
of these vertices is born at time X0

i . Thus, the offspring distribution of the root can be
represented as

ξ0 :=
Dn∑
i=1

δXi
1{Xi≤C0} . (4.3)

• Every other individual v ∈ V born into the process BPn(·) has i.i.d. offspring distribution
ξv with

ξv :=
D�

n(v)−1∑
i=1

δXv
i

1{Xv
i ≤Cv}, (4.4)

where Cv ∼ H is the contagious period, D�
n(v) has the size-biased distribution (1.2),

and the Xv
i are i.i.d. with distribution function G. Thus, conditionally on D�

n(v), a vertex
(v, i) ∈ V is born at time Xv

i after vertex v is born if and only if Xi
v ≤ Cv .

When C = ∞ a.s., this coupling between Fn(·) and the corresponding branching process
BPn(·) is carried out in [8, Section 4]. The details and corresponding error bounds are rather
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technical; we give an intuitive idea in Section 4.3 and a rigorous error bound for their difference
in Theorem 4.1 below.
4.2. Forward and backward processes

In the previous section we described the branching process approximation to the epidemic
forward in time. Another key aspect of [3] is the study of the backward branching process. For
a uniformly chosen vertex w ∈ CMn(d) and fixed time t > 0, the vertex w is infected by time t

precisely when there is a chain of infections leading to w. Hence, for large time t , we can ask,
when w is in the infection process of one of its neighbours, whether that neighbour is in the
infection process of one of his/her neighbours, etc., i.e. we can trace the infection path back.
In [3], this leads to a new approximating branching process, the backward branching process
with offspring process ξ̃ [0, ∞].

To see the difference between the offspring processes ξ going forward and ξ̃ going back-
ward, consider the case where all contagious periods are a.s. finite and i.i.d. with cumulative
distribution function H . Then, as before, ξ = ∑D�

n−1
i=1 δXi

1{Xi<Cv} denotes the offspring of the
forward process. On the other hand, in the backward process each individual has to be in the
contagious period of its children, thus resulting in the offspring distribution

ξ̃ =
D�

n−1∑
i=1

δXi
1{Xi<Ci }, (4.5)

where Ci ∼ H are i.i.d. Thus, the distribution of the offspring distribution (4.5) is different from
that of the forward process ξ , even though they have the same expectations. In more complicated
infection models, the backward process is substantially more complicated to describe.

The crucial observation is that in the case (4.5), En [̃ξ(a, b)] = En[ξ(a, b)] for all 0 ≤ a <

b ≤ ∞, so the corresponding expected reproduction measures μ̃n(dt) and μn(dt) are the same
for all n. This implies that, when C < ∞ a.s., the distribution of the limiting martingale
variables defined in (4.14) below are not the same in the forward and backward processes, but
the growth rate λn and the multiplying constants for every characteristic under consideration
(see (4.9) below) are the same.

Note that, when C = ∞ a.s., which is what we assume for the rest of the paper, then the
branching processes corresponding to the backward and forward processes are the same with
offspring distribution

ξ =
D�

n∑
i=1

δXi
, Xi ∼ G are i.i.d. random variables.

Therefore, from now on, we write Q̃ for the quantity in the backward process that corresponds
to the quantity Q in the forward process.

4.3. Labelling the BP with half-edges on the configuration model

We now construct CMn(d) together with the epidemic process Fn(·) on it. First we construct
the forward process by describing the sequence of new vertices that are infected and the times
when these vertices become infected. Informally, at each step k = 0, 1, . . . , one of two things
can happen.

Event I. A new vertex is infected, either as the root (k = 0) or via an active half-edge that is
incident to a currently infected vertex connecting to a half-edge incident to an uninfected vertex,
whereupon all other half-edges incident to the newly infected vertex become active half-edges,
and the two newly paired half-edges that merge to create the connection are removed.
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Event II. Occasionally, two active half-edges (i.e. incident to some infected vertex) merge. The
number of times this happens before time τk is a tight random variable. This leaves the cluster
of infected vertices unaltered because no new vertex results.

Here is a precise description of the construction. Recall from Section 1.1 that each half-edge
x ∈ Ln is incident to a vertex V (x) ∈ [n], so x ∈ XV (x), and in CMn(d) x pairs with px ∈ Ln,
and px is incident to V (px).

The successive steps k = 0, 1, . . . concern the pairings, one at each step k ≥ 1, that occur
between an active half-edge and all other edges not yet removed, and of the effects of those
pairings on the vertices and sets of half-edges of CMn(d). Let F ′(τk) denote the vertices
infected by time τk .

For k = 0, choose the infection root Vn ∈ [n] uniformly at random in [n], set τ0 = 0
and F ′(τ0) = {Vn}. Vertex Vn has the Dn offspring comprising x ∈ XVn that are born
immediately. Check whether any x ∈ XVn belong to the self-loop set X◦

Vn
. The coming

generation is Aτ0 = XVn \ X◦
Vn

. Members of this initial set of active half-edges have residual
times to birth given by Bτ0 := {Bx(τ0)}x∈Aτ0

, where Bx(τ0) ∼ G are i.i.d. For each x ∈ Aτ0 ,
the endpoint V (px) is revealed and infected at time Xx (if not infected earlier via some other
infection chain). Write Hτ0 = Ln \ {x : V (x) = Vn} = Ln \ XVn for the initial set of
susceptible half-edges (i.e. half-edges incident to uninfected vertices).

For each k ≥ 1, proceed recursively as below, starting from the three sets Aτk−1 of active
half-edges, Hτk−1 of susceptible half-edges, and Bτk−1 the residual times to birth of the active
half-edges. A half-edge is ‘free’ if it is susceptible or active.

• Find the active half-edge x�
k with shortest residual time to birth, B�

k := min Bτk−1 , and
pair it to a uniformly chosen free half-edge px�

k
∈ Hτk−1 ∪ Aτk−1 . Update the time to

τk := τk−1+B�
k . For the rest of this algorithm, the vertex vk := V (px�

k
) is either (I) newly

infected, so F ′(τk) = F ′(τk−1) ∪ {vk}, or (II) already infected, so F ′(τk) = F ′(τk−1).

• In case (II), Aτk
= Aτk−1 \ {x�

k , px�
k
}. In case (I), form a putative new set of active

half-edges A′
τk

= (Aτk−1 \ {x�
k }) ∪ X′

vk
, where X′

vk
= Xvk

\ ({px�
k
} ∪ X◦

vk
). For each

x ∈ X′
vk

, if px ∈ A′
τk

then delete both x and px from A′
τk

. The set A′
τk

left after checking
all such x is Aτk

.

• Refresh residual times to birth, i.e. reduce all Bx ∈ Bτk−1 by B�
k , and in case (I), also add

the i.i.d. edge weights Xy for newly active half-edges y ∈ (X′
vk

∩ Aτk
) so that

Bτk
:= {Bx(τk−1) − B�

k : x ∈ (Bτk−1 \ {x�
k })} ∪

{
{Xy : y ∈ X′

vk
} in case (I),

∅ in case (II).

• Refresh the set of free half-edges:

Hτk
= Hτk−1 \

{
Xvk

in case (I),

∅ in case (II).

Let {F ′
n(k)}k≥0 denote the above discrete-time process. We assert the truth of the following

lemma as being obvious by construction.

Lemma 4.1. (Epidemic exploration process.) For any t > 0, set k(t) = sup{k : τk ≤ t}. Let
F ∗

n (t) := F ′
n(k(t)). Then, for the epidemic process on CMn(d), the distributional equality

{Fn(t)}t≥0
D= {F ∗

n (t)}t≥0 holds.
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4.3.1. Coupling to a branching process. It was shown in [8, Section 2] that the epidemic process
constructed above can be coupled to a branching process BPn(·) for which the root has offspring
distribution (4.3) and all other individuals have distribution (4.4) (both with Cv = ∞). The
intuitive idea is as follows. In occurrences of Events I and II, the former correspond to
the creation of new vertices in both Fn and BPn, and the latter to the creation of artificial
vertices in BPn. Now let BP denote the (n-independent) branching process where the offspring
distributions Dn in (4.3) and D�

n in (4.4) are replaced by their distributional limits D and D�.
Let dTV (·, ·) denote the total variation distance between these mass functions on N. Define
sequences {tn}n≥1 and {sn}n≥1 satisfying both tn, sn → ∞ (n → ∞) and

tn = log n

λn

, eλsndTV(D�
n, D

�) → 0. (4.6)

One of the main coupling results in [8] is the following proposition.

Proposition 4.1. ([8, Proposition 2.4].) There exists a coupling of the processes {Fn(t)}0≤t≤sn

and {BP(t)}0≤t≤sn such that

P{{Fn(t)}0≤t≤sn �= {BP(t)}0≤t≤sn} → 0 as n → ∞. (4.7)

Replacing BP here by BPn yields a coupling between Fn and BPn satisfying (4.7).

4.3.2. Exploration of the backward infection process. After time t�n = 1
2 (log n)/λn, freeze the

forward cluster. The half-edges ‘sticking out’ of this cluster, namely the set of active edges, are
exactly those in the coming generation At�n

. Start labelling the backward process conditional
on the presence of the forward process. This labelling is slightly different from the labelling of
the forward cluster, since we also want to keep track of when we connect to a half-edge in the
coming generation At�n

.
At each step k = 0, 1, . . . , three things can happen in the backward process: exactly one of

Events I and II in the forward process and the following event.

Event III. Occasionally a half-edge in the backward cluster is paired to a half-edge in the
coming generation of the forward cluster At�n

. Call this a collision of the two processes. These
collisions are of the utmost importance, as they let the infection spread between source and
destination.

Here now is a precise description of the construction; note that our concern is now with sets
of edges as well as of half-edges.

For k = 0, pick the source of the backward infection ṽ0 := Ṽn ∈ [n] \ {Fn(t
�
n)} uniformly,

so F̃ (0) := {Ṽn} is the initial (backward process) set of infected vertices. This vertex has
D̃n = dṼn

offspring and is born immediately. Set τ̃0 = 0. Pair the D̃n outgoing half-edges
immediately, uniformly at random without replacement from At�n

∪ Ht�n
. Check whether any

of these half-edges are merged amongst themselves creating self-loops (Event II) or collision
edges (Event III). Set the collision edges and residual collision times, and the coming generation
or active edges for Event I by

C0 := {((y, py), Bpy (t
�
n)) : V (y) = Ṽn, py ∈ At�n

},
Ã0 := {(y, py) : V (y) = Ṽn, py /∈ At�n

, V (py) �= Ṽn}.
For Event III, any (y, py) with py ∈ At�n

forms an edge between Ṽn and the forward cluster.
The forward cluster has already ‘eaten up’ some time from this edge: the remaining time on
this edge is Bpy (t

�
n). Remove Event II pairs (y, py) from the set of active edges; they form self-
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loops which are irrelevant for the epidemic spread. For Event I, the initial remaining times to
birth B̃0 := {Bx(̃τ0) : x ∈ Ã0} with Bx(̃τ0) ∼ G are i.i.d. random variables. For each y ∈ Ã0,
the endpoint V (py) is revealed immediately, but infected only at time Xy . (Here and below,
the ‘half-edge y ∈ Ã·’ is short for the ‘half-edge y is paired with py and (y, py) ∈ Ã·’.)

The initial set of free half-edges consists of the free half-edges at t�n (i.e. At�n
∪Ht�n

) adjusted
by removing the half-edges of Ṽn and their half-edge pair partners:

H̃0 = (At�n
∪ Ht�n

) \ ({y : V (y) = Ṽn} ∪ {py : V (y) = Ṽn}).
For k ≥ 1, the construction proceeds as follows, starting from the three sets, Ãτ̃k−1 of active

edges, H̃τ̃k−1 of free half-edges, and B̃τ̃k−1 of residual times of birth of the active edges (this is
a marginal set of Cτ̃k−1 ). This is described in the following algorithm.

• Find the active edge (̃x�
k , px̃�

k
) ∈ Ãτ̃k−1 with shortest residual time to birth B̃�

k =
minx∈B̃τ̃k−1

{Bx(̃τk−1)}. Update the time: τ̃k := τ̃k−1 + B̃�
k . Noting that, by definition,

ṽk := V (px̃�
k
) is newly infected at τ̃k , update the set of infected vertices to F̃ (̃τk) :=

F̃ (̃τk−1) ∪ {̃vk}.
• Refresh the coming generation and the collision edges: sequentially pair all half-edges

{y : V (y) = ṽk}, excluding px̃�
k
, to a uniformly chosen half-edge py ∈ H̃τ̃k−1 ∪ Ãτ̃k−1 .

The new sets of collision and active edges are defined by

Cτ̃k
:= Cτ̃k−1 ∪ {((y, py), Bpy (t

�
n)) : V (y) = ṽk, py ∈ At�n

},
Ãτ̃k

:= Ãτ̃k−1 ∪ {(y, py) : V (y) = ṽk, py /∈ At�n
∪ Ãτ̃k−1} \ {x�

k , px�
k
},

namely, the new collision edges are those among the dṽk
−1 newly found half-edges each

of whose partner half-edge is an active half-edge in the forward process and for which
the remaining time on the edge is Bpy (t

�
n). If py ∈ Ãτ̃k−1 then Event II happens: we have

found a cycle. If none of these is the case, then the edge (y, py) becomes an active edge
with residual time to birth By = Xy ∼ G that is independent of all previous randomness.

• Refresh the residual times to birth, i.e. subtract B̃�
k from all residual times to birth and

add the i.i.d. edge weights Xy for newly active edges (but, do not add the remaining time
of collision edges, and also remove cycle edges):

B̃τ̃k
:= {Bx(̃τk−1) − B̃�

k : x ∈ B̃τ̃k−1 \ {̃x�
k }}

∪ {Xy : V (y) = ṽk, y �= px̃�
k
, py /∈ At�n

∪ Ãτ̃k−1}.
• Refresh the set of free half-edges, i.e. remove the half-edges of ṽk and their partner

half-edges: H̃τ̃k
= H̃τ̃k−1 \ ({y : V (y) = ṽk} ∪ {py : V (y) = ṽk}).

The main difference between the forward process and this process is that here we pair the new
outgoing half-edges y ∈ {1, . . . , dṽk

− 1} immediately at the birth of ṽk , and check whether this
edge collides with the forward cluster or becomes active. (Hence, in the backward process, the
pairs (x, px) form the coming generation.) The statement of Proposition 4.1 remains valid for
this process as well, i.e. the coupling between the backward cluster and BP can be established.

4.3.3. The total length of collisions. A collision happens at time τ̃k for some k when the vertex
ṽk has a half-edge y with a partner half-edge py ∈ At�n

of the forward process. Since this is
checked exactly at the time when ṽk becomes infected, and there is still a residual time Bpy (t

�
n)

on this edge, the length of this connection is exactly t�n + Bpy (t
�
n) + τ̃k . This procedure yields

several possible connection paths occurring at different times; the path with minimal time is the
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one achieving the infection, its weight is the time of infection of Ṽn, and the number of edges
in this path is the epidemic trail.

Note that py is a uniformly picked half-edge from the coming generation At�n
; hence, its

residual time to birth Bp�
y
(t�n) converges to the empirical residual time to birth distribution in

(4.16) below. Also, note that this is independent of the backward process infection time τ̃k .

4.4. Branching processes

In this section we set up the branching process theory on which we rely. This includes stable-
age distribution theory as in [23]. Fix a point process ξ on R+, and consider a branching process
BP(·) whose vertex set is a subset of N := {0} ∪ ⋃∞

n=1 N
n, started with one individual 0 at t = 0

with each vertex having an i.i.d. copy of ξ . Here an individual is labelled x = (i1, i2, . . . , in)

if x is the inth child of the in−1th child of . . . of the i1th child of the root.
Let ξ(A) denote the number of points of ξ in the Borel set A ⊂ R+. Write μ(A) = E[ξ(A)]

for the corresponding first moment measure. Assume that μ(·) is nonlattice, that there exists a
Malthusian parameter λ ∈ (0, ∞) satisfying∫ ∞

0
e−λtμ(dt) = 1,

and that ξ satisfies the following integrability conditions with this parameter λ:

m� :=
∫ ∞

0
te−λtμ(dt) < ∞, E

[(∫ ∞

0
e−λt ξ(dt)

)
log+

(∫ ∞

0
e−λt ξ(dt)

)]
< ∞.

(4.8)
For v ∈ BP, write σv for its birth time and ξv for its offspring process. Let {{φv(·)} : v ∈ BP}

be a family of i.i.d. stochastic processes with {φv(t)}t≥0 measurable with respect to the offspring
distribution ξv , φv(t) = 0 for t < 0 and φv(t) ≥ 0 for t ≥ 0. The interpretation of such a
functional, often called a characteristic [16, 15, 23], is that it assigns a score φv(t) when vertex
v has age t . Write φ := φ0 to denote this process for the root. The branching process counted
according to this characteristic is defined by

Z
φ
t :=

∑
x∈BP(t)

φx(t − σx).

Theorem 5.4 and Corollary 5.6 of [23] show that there exists a random variable W ≥ 0 with
E[W ] = 1 such that, for any characteristic φ satisfying mild integrability conditions,

e−λtZ
φ
t → W

∫ ∞
0 e−λt

E[φ(t)] dt

m�
a.s. (4.9)

Moreover, for two characteristics φ1 and φ2,

Z
φ2
t

Z
φ1
t

→
∫ ∞

0 e−λt
E[φ2(t)] dt∫ ∞

0 e−λtE[φ1(t)] dt
a.s. on {W > 0}. (4.10)

Now we apply this general theory to our epidemic-exploration process on CMn(d).
Since the BP results above hold both for finite and infinite infectious periods, and, for finite

infectious period, only the joint construction of the exploration process and the epidemic spread
is missing, we state results here (for possible future reference) for arbitrary i.i.d. infectious
periods distributed as P{C ≥ x} = H(x). For C = ∞, we can set H(x) ≡ 1 everywhere
below. (Referring to Remark 2.2, our hope is that, eventually, the connection between first
passage percolation and epidemics used in this paper can be extended to epidemic models with
finite contagious periods.)
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First we fix n. Recall (Section 4.1) that the epidemic process Fn(·) on CMn(d) is approx-

imated by a branching process BPn with offspring process ξ = ∑D�
n

i=1 δXi
. There is a slight

modification for the distribution of the root; however, this does not effect the limit theorems
above (other than the limit random variable having E[Wn] �= 1). Recall the Malthusian rate of
growth parameter λn from (2.1). The other parameters (with fixed n) are calculated as

μn(0, t] := E(D�
n − 1)

∫ t

0
H(x) G(dx),

m�
n = E[D�

n − 1]
∫ ∞

0
te−λntH(t) G(dt), μn(dt) := E[D�

n − 1]H(t) G(dt).

(4.11)

Here m�
n is called the mean of the stable-age distribution or mean age at child bearing.

In order to establish the connection between two infected clusters in the graph, we need
the size of the so-called coming generation (i.e. those individuals that are born after time t to
a mother born before time t), and the empirical distribution of the residual time to birth of a
uniformly picked individual in the coming generation. Asymptotics for these objects are derived
by choosing appropriate characteristics φ. Fix s > 0. Letting φs(t) := ξ [t + s, ∞) and using
F to denote the particles born into the branching process, Z

φs

t = ∑
x∈F ξx[t − σx + s, ∞)

counts the number of children of already born individuals whose birth date is at least s time
units from now. In particular, we write Ad

t := Z
φ0
t = ∑

x∈F ξx[t − σx, ∞), so that Ad
t counts

the size of the coming generation (usually referred to as the alive individuals in the CTBP
literature) in a BP with expected intensity measure μn in (4.11). (We add the superscript ‘d’ to
denote delaying the process by one generation, i.e. the root here also has a μn offspring law.)
Use (4.11) to compute that in our case, E[φ0] = E[D�

n − 1] ∫ ∞
t

H(x) G(dx); hence,

e−λntAd
t = e−λntZ

φ0
t

a.s.−−→ W d
n

∫ ∞
0 e−λnt dt E[D�

n − 1] ∫ ∞
t

H(x) G(dx)

m�
n

= W d
n

E[D�
n − 1] ∫ ∞

0 H(x) G(dx) − 1

m�
nλn

= W d
n

μn(∞) − 1

m�
nλn

. (4.12)

Now, in order to match the BP to the exploration process Fn(t) on CMn(d) so as to have the
same reproduction function at the root, introduce the following BP via the size of the coming
generation:

At :=
Dn∑
i=1

(1{t<Xi<Cv} + A
d,(i)
t−Xi

1{Xi<t∧Cv}).

Here the A
d,(i)
t are i.i.d. copies of Ad

t in (4.12), and At corresponds to |An(t)|, i.e. the number
of active half-edges in Fn(t). Multiplying by e−λnt and using (4.12) gives the convergence

e−λntAt = e−λnt

Dn∑
i=1

1{t<Xi<Cv} +
Dn∑
i=1

e−λnXi 1{Xi<t∧Cv}(e−λn(t−Xi)A
d,(i)
t−Xi

)

a.s.−−→
Dn∑
i=1

e−λnXi 1{Xi<Cv}W d,(i)
n

μn(∞) − 1

λnm�
n

, (4.13)
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where the W
d,(i)
n are i.i.d. copies of W d

n . Since E[e−λnXi 1{Xi<Cv}] = 1/E[D�
n − 1] by (2.1),

and Xi is independent of W
d,(i)
n , we can introduce the limit random variable Wn in (2.1); it is

the unique solution of the stochastic identity

Wn :=
Dn∑
i=1

e−λnXi 1{Xi<Cv} W d,(i)
n

μn(∞) − 1

λnm�
n

. (4.14)

In terms of this, (4.13) implies that

e−λntAt
a.s.−−→ Wn with E[Wn] = E[Dn](μn(∞) − 1)

E[D�
n − 1]λnm�

n

. (4.15)

For an infinite contagious period (i.e. C = ∞ a.s.), μn(∞) − 1 = E[D�
n − 2].

The ratio convergence in (4.10) and E[φs(t)] = E[D�
n − 1] ∫ ∞

t+s
H(x) G(dx) implies that

the empirical ‘residual time to birth’ distribution converges:

Z
φs

t

Z
φ0
t

a.s.−−→ E[D�
n − 1] ∫ ∞

0 e−λnt dt
∫ ∞
t+s

H(x) G(dx)

E[D�
n − 1] ∫ ∞

0 e−λnt dt
∫ ∞
t

H(x) G(dx)

= E[D�
n − 1]

μ(∞) − 1

∫ ∞

s

(1 − eλn(s−x))H(x) G(dx)

:= 1 − F
(n)
R (s). (4.16)

This is the limiting probability that a uniformly picked individual from the ‘coming generation’
will be born after an extra s time units.

We have now set the stage for the branching processes that approximate the initial phase of
the infection and the backward infection process. First we state the main proposition on which
our proof of the epidemic curve Theorem 2.1 is based, giving that proof in Section 4.5, and
then indicating how to prove the proposition in Sections 4.6 and 4.7. To this end, denote the
infection time from vertices v to w by Ln(v, w). (Note that part (a) of the proposition is part
of [8, Theorem 1.2], and part (b) is a two-vertex analogue which can be proved in a similar
way.) In its statement, Gn(s) for s > 0 denotes the σ -algebra of all vertices that are infected
before time s, as well as all edge weights of the half-edges that are incident to such vertices.
Thus, as opposed to Fn(s) which has information only about the sequence of transmissions that
have transpired before time s, Gn(s) also contains information about the ‘coming generation’
of infections.

Proposition 4.2. (a) Let sn be as in (4.6), and let � be a standard Gumbel random variable.
For n → ∞, the shortest infection path between two uniformly picked vertices Vn and Ṽn

satisfies

P

{
Ln(Vn, Ṽn) − log n

λn

+ log Wsn

λn

+ log W̃sn

λn

< t

∣∣∣∣ Gn(sn), G̃n(sn)

}
D−→ P

{
−�

λ
+ c < t

}
.

(b) Let Vn, Ṽ (1)
n , and Ṽ

(2)
n be three independent uniform vertices in [n], with respective forward

and backward infection processes Gn(sn), G̃
(1)
n (sn), and G̃(2)

n (sn). Then, for n → ∞,

P

{
Ln(Vn, Ṽ

(i)
n ) − log n

λn

+ log Wsn

λn

+ log W̃
(i)
sn

λn

< t, i = 1, 2

∣∣∣∣ Gn(sn), G̃
(1)
n (sn), G̃

(2)
n (sn)

}
D−→

[
P

{
−�

λ
+ c < t

}]2

. (4.17)
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4.5. Proof of Theorem 2.1

In this section we use Proposition 4.2 to explain how to get the epidemic curve in Theorem 2.1
and complete its proof which is based on the key proposition proved below. Let sn → ∞ as
in Proposition 4.1, and set Wsn = e−snλn |Asn |, where, as before, |At | is the size of the coming
generation of infected individuals at time t .

Proposition 4.3. (Epidemic curve with an offset.) Under Condition 1.1, consider the epidemic
spread with i.i.d. continuous infection times on the configuration model CMn(d) and infinite
contagious periods. For every t > 0,

Pn

(
t + log n

λn

− log Wsn

λn

, αn log n + x
√

β log n

)
P−→ P(t) �(x). (4.18)

Proof of Theorem 2.1 subject to Proposition 4.3. Fix x ∈ R. Because t 
→ Pn(t, v) is
nondecreasing, and the limit t 
→ P(t) in (4.18) is nondecreasing, continuous, and bounded,
Proposition 4.3 implies that the convergence in (4.18) is uniform in t , i.e.

sup
s∈R

∣∣∣∣Pn

(
s + log n

λn

− log Wsn

λn

, αn log n + x
√

β log n

)
− P(s)�(x)

∣∣∣∣ P−→ 0.

Applying this to s = t + (log Wsn)/λn, we thus obtain

Pn

(
t + log n

λn

, αn log n + x
√

β log n

)
= P

(
t + log Wsn

λn

)
�(x) + oP(1).

Since (log Wsn)/λn
D−→ (log W)/λ = −S and t 
→ P(t) is continuous, Theorem 2.1 is proved.

Proof of Proposition 4.3. Here we use Proposition 4.2, performing a second moment method
on Pn(t + (log n)/λn − (log Wsn)/λn, αn log n + x

√
β log n), conditionally on Gn(sn). To

simplify the notation, set x = ∞, Sn = −(log Wsn)/λn, S̃n = −(log W̃sn)/λn. We show that

E

[
Pn

(
t + log n

λn

+ Sn

) ∣∣∣∣ Gn(sn)

]
P−→ P(t)

and E

[
Pn

(
t + log n

λn

+ Sn

)2 ∣∣∣∣ Gn(sn)

]
P−→ P(t)2.

(4.19)

Equation (4.19) implies that, conditionally on Gn(sn), Pn(t + (log n)/λn + Sn)
P−→ P(t), as

required. We start by identifying the first conditional moment. For this, note that

E

[
Pn

(
t + log n

λn

+ Sn

) ∣∣∣∣ Gn(sn)

]
= 1

n

∑
w∈[n]

P

{
Ln(Vn, w) ≤ t + log n

λn

+ Sn

∣∣∣∣ Gn(sn)

}

= P

{
Ln(Vn, Ṽ

(1)
n ) − log n

λn

− Sn ≤ t

∣∣∣∣ Gn(sn)

}
,

where Ṽ
(1)
n is a uniform vertex independent of Vn and Ln(v, w) is the time for the infection

starting from v to reach w. Thus, in the infinite-contagious period case, Ln(v, w) is nothing
but the first passage time from v to w. For s > 0, let G̃(1)

n (s) denote the σ -algebra of all vertices
that would infect Ṽ

(1)
n within time s if the infection started from them at time 0, as well as

all edge weights of the edges that are incident to such vertices. Thus, by the argument about
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the backward process in Section 4.2, these vertices are the same as the vertices that would be
infected before time s from an infection started from Ṽ

(1)
n in the backward process.

Write W̃sn = e−λnsn |Ãsn |, where Ãt consists of those half-edges that are in the coming
generation of the backward infection process of Ṽ

(1)
n at time t . We now further condition on

G̃(1)
n (s), and obtain

E

[
Pn

(
t + log n

λn

+ Sn

) ∣∣∣∣ Gn(sn)

]
= E

[
P

{
Ln(Vn, Ṽ

(1)
n ) − log n

λn

− Sn ≤ t

∣∣∣∣ Gn(sn), G̃(1)
n (sn)

} ∣∣∣∣ Gn(sn)

]
.

By Proposition 4.2, there exists a constant c > 0 such that

P

{
Ln(Vn, Ṽ

(1)
n ) − log n

λn

− Sn − S̃n ≤ t

∣∣∣∣ Gn(sn), G̃(1)
n (sn)

}
P−→ P

{
−�

λ
+ c ≤ t

}
.

Again, since t 
→ P{−�/λ + c ≤ t} is increasing and continuous, the above convergence
even holds uniformly in t , i.e.

sup
t∈R

∣∣∣∣P{
Ln(Vn, Ṽ

(1)
n ) − log n

λn

− Sn − S̃n ≤ t

∣∣∣∣ Gn(sn), G̃
(1)
n (sn)

}
− P

{
−�

λ
+ c ≤ t

}∣∣∣∣ P−→ 0.

Thus,

E

[
Pn

(
t + log n

λn

+ Sn

) ∣∣∣∣ Gn(sn), G̃(1)
n (sn)

]
= P

{
Ln(Vn, Ṽ

(1)
n ) − log n

λn

− Sn ≤ t

∣∣∣∣ Gn(sn), G̃(1)
n (sn)

}
= P

{
−�

λ
+ c ≤ t − S̃n

∣∣∣∣ G̃(1)
n (sn)

}
+ oP(1),

and since W̃sn

P−→ W̃ and t 
→ P{−�/λ + c ≤ t} is continuous and bounded,

E

[
Pn

(
t + log n

λn

+ Sn

) ∣∣∣∣ Gn(sn)

]
P−→ P

{
−�

λ
+ c ≤ t − S̃

}
= P(t).

By bounded convergence, this also implies that

E

[
Pn

(
t + log n

λn

+ Sn

) ∣∣∣∣ Gn(sn)

]
P−→ P(t),

which completes the proof of the convergence of the first moment.
We use similar ideas to identify the second conditional moment. Start by writing

E

[{
Pn

(
t + log n

λn

+ Sn

)}2 ∣∣∣∣ Gn(sn)

]
= 1

n2

∑
i,j∈[n]

P

{
Ln(Vn, i) + log n

λn

+ Sn ≤ t, Ln(Vn, j) + log n

λn

+ Sn ≤ t

∣∣∣∣ Gn(sn)

}

= P

{
Ln(Vn, Ṽ

(1)
n ) + log n

λn

+ Sn ≤ t, Ln(Vn, Ṽ
(2)
n ) + log n

λn

+ Sn ≤ t

∣∣∣∣ Gn(sn)

}
,
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where Vn, Ṽ
(1)
n , and Ṽ

(2)
n are three i.i.d. uniform vertices in [n]. For s > 0 and j ∈ {1, 2}, let

G̃
(j)
n (s) denote the σ -algebra of all vertices that would infect Ṽ

(j)
n within time s if the infection

started from them at time 0, as well as all edge weights of the edges that are incident to such
vertices. Thus, these vertices are the same as the vertices that would be infected before time s

in the backward infection process started from Ṽ
(j)
n .

Write W̃
(j)
sn = e−λnsn |Ã(j)

sn | and S̃
(i)
n = − log W̃ (i)/λn. Now condition also on G̃(1)

n (sn) and
G̃(2)

n (sn):

E

[(
Pn

{
t + log n

λn

− Sn

})2 ∣∣∣∣ Gn(sn)

]
= E

[
P

{
Ln(Vn, Ṽ

(1)
n ) − log n

λn

− Sn ≤ t,

Ln(Vn, Ṽ
(2)
n ) − log n

λn

− Sn ≤ t

∣∣∣∣ Gn(sn), G̃
(1)
n (sn), G̃

(2)
n (sn)

} ∣∣∣∣ Gn(sn)

]
.

By (4.17), there exists a constant c > 0 such that

P

{
Ln(Vn, Ṽ

(i)
n ) − log n

λn

− Sn − S̃(i)
n ≤ t, i = 1, 2

∣∣∣∣ Gn(sn), G̃
(1)
n (sn), G̃

(2)
n (sn)

}
P−→

(
P

{
−�

λ
+ c ≤ t, −�′

λ
+ c ≤ t

})2

=
(

P

{
−�

λ
+ c ≤ t

})2

,

since � and �′ are two independent Gumbel variables. Now the argument proving convergence
of the first moment can be repeated to yield

E

[{
Pn

(
t + log n

λn

+ Sn

)}2 ∣∣∣∣ Gn(sn)

]
P−→ [P(t)]2,

and this completes the proof of the convergence of the second moment for x = ∞.
The extension to x < ∞ follows in an identical fashion, now using [8, Theorem 2.2], i.e.

P

{
Ln(Vn, Ṽ

(1)
n ) − log n

λn

− Sn − S̃n ≤ t,

Hn(Vn, Ṽ
(1)
n ) ≤ αn log n + x

√
β log n

∣∣∣∣ Gn(sn), G̃
(1)
n (sn)

}
P−→ P

{
−�

λ
+ c ≤ t

}
�(x),

as well as a three-vertex extension involving Vn, Ṽ
(1)
n , and Ṽ

(2)
n . We omit further details.

4.6. The Bhamidi–van der Hofstad–Hooghiemstra connection process

In this section we give the idea of the proof of Proposition 4.2. We have seen in Section 4.1
that the early stages of the exploration processes can be coupled to two branching processes.
Now we describe how these branching processes connect up and explain the results on the
connection process in [8]. We start by setting the stage. Fix the deterministic sequence sn → ∞
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as in (4.6). Then, define

tn = 1

2λn

log n, t̄n = 1

2λn

log n − 1

2λn

log (WsnW̃sn). (4.20)

Note that eλntn = √
n, so that at time tn, both |Fn(tn)| and |F̃n(tn)| have size of order

√
n.

Consequently, the variable tn denotes the typical time when collision edges start appearing. The
time t̄n allows for stochastic fluctuations in the size of these infected (and backward-infected)
clusters.

By Proposition 4.1, sn → ∞ in such a way that each of {Fn(t)}t≤sn and {F̃n(t)}t≤sn can be
coupled to independent CTBPs. For the present part, it is crucial that the forward CTBP from
Vn and the backward CTBP from Ṽn should run simultaneously, i.e. we run the two exploration
processes described in Section 4.3 at the same time (meaning the same actual continuous time).

A collision edge is formed when a half-edge, on pairing, connects to a half-edge in the other
CTBP, i.e. either a half-edge in the coming generation of the forward cluster of Vn pairs to a
half-edge in the coming generation of the backward cluster of Ṽn or vice versa. The main result
in this section describes the limiting stochastic process of the appearance of collision edges and
their properties. For this, we need some more notation.

Denote the ith collision edge by (xi, pxi
), where pxi

is an active half-edge (in either the
forward or backward cluster) and xi is the half-edge which pairs to pxi

. Furthermore, let T
(col)
i

denote the time at which the ith collision edge is formed, which is the same as the birth time
of the vertex incident to xi . We let R

T
(col)
i

(pxi
) be the remaining lifetime of the half-edge

pxi
, which, by construction, is equal to the time after time 2T

(col)
i that the edge will be found

completely by the flow. Thus, the path that the edge (xi, pxi
) completes has length equal to

2T
(col)
i + R

T
(col)
i

(pxi
) and it has Ne(xi) + Ñe(pxi

) + 1 edges, where Ne(xi) and Ñe(pxi
) denote

the number of edges between the respective roots and the vertices V (xi) and V (pxi
) incident

to xi and pxi
, respectively (our notation assumes that the chain with pxi

at one end has Ṽn

at the other; if not then simply swap xi and pxi
). We conclude that the shortest weight path

has weight equal to Ln(Vn, Ṽn) = mini≥1{2T
(col)
i + R

T
(col)
i

(pxi
)}. Let J be the minimizer of

this minimization problem. Then the number of edges equals Ne := Ne(xJ ) + Ñe(pxJ
) + 1.

Finally, for a collision edge (xi, pxi
), let

I (xi) =
{

1 when xi is incident to a vertex in Fn(T
(col)
i ),

2 when xi is incident to a vertex in Ãn(T
(col)
i ).

In order to describe the properties of the shortest weight path, define

T
col
i = T

(col)
i − t̄n, Ni = m�

nNe(xi) − tn√
(σ �

n )2tn/m�
n

, Ñ i = m�
nÑe(pxi

) − tn√
(σ �

n )2tn/m�
n

, (4.21)

where m�
n and σ�

n are the mean and standard deviation of the stable-age distribution in (4.11).
Introduce the space S := R × {1, 2} × R × R × [0, ∞), and define the S-valued random
variables {�i}i≥1 by

�i = (T
col
i , I (xi), Ni, Ñ i , RT

(col)
i

(pxi
)).

Then, for sets A in the Borel σ -algebra of the space S, define the point process

�n(A) =
∑
i≥1

δ�i
(A), (4.22)
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where δ· is the Dirac measure as in (4.1). Let M(S) denote the space of all simple locally
finite point processes on S equipped with the vague topology (see, e.g. [20]). Use the natural
definition of weak convergence of a sequence of random point processes �n ∈ M(S) on this
space. This is the notion of convergence referred to in the following theorem in which � denotes
the distribution function of a standard normal random variable. Finally, define the density fR

of the limiting residual time to birth distribution FR in (4.16) by

fR(x) =
∫ ∞

0 e−λyg(x + y) dy∫ ∞
0 e−λy[1 − G(y)] dy

.

Then the main result about the appearance of collision edges in [8, Theorem 3.1] is the following
theorem.

Theorem 4.1. (Poisson process limit of collision edges [8].) Consider the distribution of the
point process �n ∈ M(S) defined in (4.22) conditional on {(Fn(t), F̃n(t))}t∈[0,sn] such that
Wsn > 0 and W̃sn > 0. Then �n converges in distribution as n → ∞ to a Poisson process �

on S with intensity measure

λ(dt × i × dx × dy × dr) = 2E[D� − 1]fR(0)

E[D] e2λtdt ⊗
{

1

2
,

1

2

}
⊗�(dx)⊗�(dy)⊗FR(dr).

(4.23)

Given a realization of the Poisson process � (PPP) as in Theorem 4.1, denote the marginal
process of the first component with points in (−∞, ∞) by {Pi}i≥1. It was shown in [8] that
Theorem 4.1 implies that Ln(Vn, Ṽn) − 2t̄n

D−→ mini≥1{2Pi + Ri}. Furthermore, it follows that

λ min
i≥1

{2Pi + Ri} D= −� − log

(
E[D� − 1]fR(0)B

E[D]
)

, (4.24)

where B = ∫ ∞
0 FR(z)e−λz dz = m�/E[D� − 2] and m� is the mean of the so-called stable-age

distribution in (4.11). It was shown in [8, Lemma 2.3] that fR(0) = λ/E[D� − 2], so

λc = − log

(
E[D� − 1]fR(0)B

E[D]
)

= log

(
E[D] (E[D� − 2])2

λm� E[D� − 1]
)

.

We thus see here that the Gumbel distribution arises from the minimization of the points of
the PPP {2Pi +Ri}i≥1. Interestingly, the Gumbel distribution also arises in mini≥1{Pi : i ≥ 1},
but with a different constant c. Thus, the addition of the residual lifetime only changes the
constant. Since 2(t̄n − tn)

D−→ λ−1 log (WW̃), this proves that, as n → ∞,

Ln(Vn, Ṽn) − 2tn = min
i≥1

{2T
(col)
i + R

T
(col)
i

(pxi
)} − 2tn

D−→ c + log(WW̃) − �

λ
. (4.25)

Also, by (4.21), the trail of the epidemic, which is equal to Ne = Ne(xJ ) + Ñe(pxJ
) + 1, when

normalized to (m�
nNe − 2tn)/

√
(σ �

n )2tn/m�
n, converges in distribution to the sum of two i.i.d.

standard normal random variables, where m�
n and σ�

n are the mean and standard deviation of
the stable-age distribution in (4.11). This explains (2.3), and identifies αn = 1/(λnm

�
n) and

β = (σ �)2/[λ(m�)3], where (m�, σ �) = limn→∞(m�
n, σ

�
n ).

To prove Theorem 4.1, in [8] the expected number of collision edges that are created are
investigated. The branching process theory in Section 4.4 suggests that when a collision edge
occurs, the processes generating the two vertices of the collision edge satisfy central limit
theorems. Furthermore, the residual time to birth of the active half-edge to which we have
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paired the newly found half-edge converges in distribution to the residual lifetime distribution.
Thus, we only need to argue that the stochastic process that describes the times of finding the
collision edges and centered by t̄n as in (4.21) converges to a PPP whose intensity measure
has density function on (−∞, 0] equal to t 
→ (2E[D� − 1]fR(0)/E[D])e2λt . For this, we
note that the rate at which new half-edges are found at time t + t̄n is roughly equal to
2fR(0)|An(t + t̄n)| |Ãn(t + t̄n)|/|Ln|, where the factor fR(0) is due to the fact that half-edges
with remaining lifetime equal to 0 are those that die, and the factor 2 is due to the fact that both
Fn and F̃n can give rise to the birth of the half-edge.

Here we also note that |An(t + t̄n)| and |Ãn(t + t̄n)| are of order
√

n, and, thus, the total
number of half-edges is equal to |Ln|(1 + oP(1)). When a half-edge dies, it has a random
number of children with distribution close to D�

n − 1, and each of the corresponding half-edges
can create a collision edge; hence, we add an extra E[D�

n − 1] factor. Furthermore, we can
approximate |Ln| ≈ nE[Dn], |An(t)| ≈ eλntWsn , and |Ãn(t)| ≈ eλnt W̃sn , so that, using (4.20),

E[D�
n − 1] fR(0) |An(t + t̄n)| |Ãn(t + t̄n)|

|Ln| ≈ E[D�
n − 1] fR(0)

E[D]n e2λn(t+t̄n)WsnW̃sn

= E[D�
n − 1] fR(0)

E[Dn] e2λnt .

This explains the intuition behind Theorem 4.1.

4.7. The Barbour–Reinert connection process: differences

The main difference between the Barbour–Reinert proof of Proposition 4.2 given in [3]
and the previous section is that in the proof in [3], the forward and backward clusters are run
sequentially, one after the other, not simultaneously.

This is achieved by coupling the infection process together with the exploration on CMn(d)

to the forward branching process with small errors up to time t�n := τ√
n in the forward process

(τ√
n denotes the time when the

√
nth vertex enters the infection), which we freeze after this

time. We then couple the backward process conditionally on the frozen cluster of the forward
process up to time (log n)/2λn + K for some large K > 0. Then, by (4.15), for any u ∈ R,
at time tn(u) := (log n)/2λn + u the size of the coming generation in the forward process is
|Aτ√

n
| = cA

n

√
n(1 + o(1)) for a specific constant cA

n and the size of the backward cluster is
|Ãtn(u)| = cA

n

√
neλuW̃tn(u)(1 + o(1)). From here the formation of collision edges leads to a

similar two-dimensional Poisson process to that described by the first and last coordinates in
(4.23), i.e. here the intensity measure, conditioned on W̃sn , is given by

E[D�]fR(0)

E[D] eλxW̃sndx ⊗ FR(dy).

From here onwards, the two proofs are essentially the same: the factor W from the forward
process appears in the formula τ√

n ≈ (log n)/2λn − (log Wsn)/λ. The minimization problem
(4.24) is then solved by calculating the probability that there are no PPP points in the infinite
triangle x + y ≤ t , yielding the statement of Proposition 4.2.
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