Proceedings of the Edinburgh Mathematical Society (2000) 43, 211-217 ©

2-GROUPS WITH FEW CONJUGACY CLASSES

NIGEL BOSTON¹ AND JUDY L. WALKER²

 ¹Department of Mathematics, University of Illinois, Urbana, IL 61801, USA (boston@math.uiuc.edu)
²Department of Mathematics and Statistics, University of Nebraska, Lincoln, NB 68588, USA (jwalker@math.unl.edu)

(Received 3 September 1998)

Abstract An old question of Brauer that asks how fast numbers of conjugacy classes grow is investigated by considering the least number c_n of conjugacy classes in a group of order 2^n . The numbers c_n are computed for $n \leq 14$ and a lower bound is given for c_{15} . It is observed that c_n grows very slowly except for occasional large jumps corresponding to an increase in coclass of the minimal groups G_n . Restricting to groups that are 2-generated or have coclass at most 3 allows us to extend these computations.

Keywords: p-groups; conjugacy classes; coclass

AMS 1991 Mathematics subject classification: Primary 20D15 Secondary 20-04; 20D60

1. Introduction

There is a long history to the question of the possible number k(G) of conjugacy classes of a finite group G. It began in 1903 when Landau [8] showed that only finitely many groups G have a given k(G). This was made explicit in 1963 by Brauer [3] (see also [4]), who showed that $k(G) > \log_2 \log_2 |G|$. In general, k(G) will be much larger than this. For example, Bertram [1] showed that for a given $\epsilon > 0$ and for almost all integers $n \leq x$, as $x \to \infty$, $k(G) > |G|^{1-\epsilon}$ for each group G of order n.

In his paper of 1963, Brauer asked what the 'true' growth of a lower bound for k(G) in terms of |G| might be. One answer to this was provided by Pyber [14], who proved the lower bound $k(G) \ge \epsilon \log_2 |G|/(\log_2 \log_2 |G|)^8$. Experimentally, López and López [9,10] found that $k(G) > \log_3 |G|$ if $|G| \le 3^{13}$, and in fact no group has been discovered for which this fails. The groups G = PSL(3, 4) and $G = M_{22}$ both satisfy $k(G) = \lfloor \log_3 |G| \rfloor$.

If we restrict our attention to nilpotent groups (in particular, if we restrict to |G| being a prime power), the ideas of P. Hall immediately give $k(G) > \alpha \log |G|$ for some constant α depending only on p, as described in §2. This was refined by Sherman [16], who showed that if G has nilpotency class c, then $k(G) > c(|G|^{1/c} - 1) + 1$. Kovaćs and Leedham-Green [7] produced, for each odd prime p, a group G_p of order p^p with less

than $p^3 = (\log_p |G_p|)^3$ classes. A natural question, originally formulated by Pyber [14], is whether, for a given p, there exists an absolute constant c and a sequence of p-groups (G_n) , where G_n has order p^n and $k(G_n) < cn = c \log_p |G_n|$.

The aim of this paper is to address what Brauer asked in his 1963 paper by attacking the above question with a computer. We focus on 2-groups, where we can make extensive calculations with the help of the computational software package MAGMA [2].

Let $c_n = \min\{k : \text{there is a group } G \text{ of order } 2^n \text{ with } k(G) = k\}$. Our approach consists of three searches. In the first search, we find c_n for all $n \leq 14$ together with bounds for c_{15} . In the second search, we restrict attention to 2-generated 2-groups and find the smallest number of conjugacy classes for such groups of order 2^{15} and 2^{16} . In the third search, we restrict our attention to 2-groups with coclass at most 3 and with any order.

It appears that c_n grows tightly with n except for large occasional jumps. We provide an explanation for this behaviour. The ultimate answer to Brauer's question will depend on a comparison between the frequency and the size of these jumps.

2. Basic results

If $|G| = p^{2m+e}$ with e = 0 or 1, then a formula of Hall [13] states

$$k(G) = m(p^{2} - 1) + p^{e} + r(G)(p - 1)(p^{2} - 1),$$

where r(G) is a non-negative integer. This formula has several implications. First, by noticing that the right-hand side of the equality is at least $m(p^2 - 1) + p^e$, we get that $k(G) > \alpha \log |G|$, where α is a constant depending only on p. For p = 2, we obtain $k(G) = 3(m + r(G)) + 2^e$, so that $k(G) \equiv |G| \pmod{3}$. In fact, Poland showed that if G is a p-group such that r(G) = 0, then $|G| \leq p^{p+2}$ and it has coclass 1. Fernández-Alcober and Shepherd [5] recently proved that if $p \ge 11$ and r(G) = 0, then $|G| \leq p^{p+1}$. Computational evidence (such as that provided by this paper) suggests that there are bounds on the order and coclass of p-groups with a given r(G), which, if true, explains phenomena later in this paper. Also, Poland showed that k(G) > k(Q) and $r(G) \ge r(Q)$ if Q is a proper quotient of p-group G. We summarize the consequences for c_n . Note that from this point on we consider exclusively 2-groups.

Lemma 2.1. $c_n \equiv 1 \pmod{3}$ if n is even, and $c_n \equiv 2 \pmod{3}$ if n is odd. Moreover, $c_n > c_{n-1}$.

Call a group G of order 2^n with $k(G) = c_n$ a best group. We can establish some properties of sequences of best groups.

Theorem 2.2. Let G_n (n = 1, 2, ...) be a sequence of best groups. The coclass of G_n grows without bound as $n \to \infty$.

This follows by combining the following two lemmas.

Lemma 2.3. For each positive integer c, there exists a positive real number α_c , such that if G is a 2-group of coclass c, then $k(G) \ge \alpha_c |G|$.

Proof. Shalev's proof [12] of the conjectures of Leedham-Green and Newman shows that if G is a 2-group of coclass c, then it contains an abelian normal subgroup A of index bounded by a function f(c). This implies that

$$k(G) \ge k(A)/[G:A] = |A|/[G:A] = |G|/[G:A]^2 \ge |G|/f(c)^2.$$

Taking $\alpha_c = 1/f(c)^2$ gives the result.

Lemma 2.4 (see [6]). Let H_n be the Sylow 2-subgroup of $GL(n, F_2)$. The order of H_n is $2^{T(n)}$, where T(n) = (n-1)(n-2)/2 and

$$2^{(1/12-\epsilon_n)n^2} < k(H_n) < 2^{(1/4+\epsilon_n)n^2}$$

where $\epsilon_n \to 0$ as $n \to \infty$.

Proof of Theorem 2.2. Suppose G_n is a sequence of best groups whose coclasses form a finite set C. Let $\alpha = \min\{\alpha_c \mid c \in C\}$. Then $c_n/2^n = k(G_n)/|G_n| \ge \alpha > 0$ for all n. In particular, we have $k(H_n) \ge c_{T(n)} \ge 2^{T(n)}\alpha$, contradicting Lemma 2.4 for sufficiently large n.

3. The first search; exhaustive for small n

Theorem 3.1. The values of c_n for $n \leq 14$ are as follows (G_n a best group):

n	c_n	$r(G_n)$	$coclass(G_n)$
1	2	0	1
2	4	0	1
3	5	0	1
4	7	0	1
5	11	1	1 or 2
6	13	1	2
7	14	1	2
8	19	2	2
9	26	4	3 or 4
10	28	4	3 or 4
11	29	4	3 or 4
12	34	5	3 or 4
13	35	5	3
14	37	5	3

The aim of this search is to compute c_n for as many n as possible. We originally used CAYLEY but later checked our results with the quicker system MAGMA. The databases of these systems contain all 2-groups of order ≤ 256 , and this allows us immediately to find c_n for $n \leq 8$. To extend these results, we use the following refinement of Lemma 2.1. We write $n(G) = \log_2(|G|)$.

Lemma 3.2. If Q is a quotient of the 2-group G, then $2k(G) - 3n(G) \ge 2k(Q) - 3n(Q)$ if n(G) is even, whereas $2k(G) - 3n(G) \ge 2k(Q) - 3n(Q) - 1$ if n(G) is odd.

Proof. If $|G| = 2^{2m+e}$ and $|Q| = 2^{2n+f}$ with $e, f \in \{0, 1\}$, then

$$(2k(G) - 3n(G)) - (2k(Q) - 3n(Q)) = 6(r(G) - r(Q)) + (2^{e+1} - 3e) - (2^{f+1} - 3f)$$

= 6(r(G) - r(Q)) + f - e.

Since $r(G) \ge r(Q)$, this is non-negative except, possibly, if f = 0 and e = 1, in which case it is at least -1.

The *p*-group generation process of O'Brien [12] creates, for each positive integer *d*, a tree whose vertices are the *d*-generated 2-groups (counted once up to isomorphism). An edge exists from *P* to *Q* if *P* is isomorphic to $Q/\gamma_c(Q)$, where $\gamma_c(Q)$ is the last non-trivial term of the lower exponent-*p* central series of *Q*. In that case, we call *Q* an immediate descendant of *P*. If there is a path from *P* to *Q*, then we say *Q* is a descendant of *P*. O'Brien's process allows us to compute immediate descendants (and so descendants) of any given 2-group.

We use Lemma 3.2 and O'Brien's trees to compute c_n for increasing n. To test, for instance, if there is a group of order 2^{12} with ≤ 31 conjugacy classes, we use O'Brien's routine to compute all 2-groups Q with smaller order and $2k(Q) - 3n(Q) \leq 26$. If our group existed, then it would be an immediate descendant of such a Q. A computational check shows that no such Q has an immediate descendant of order 2^{12} with ≤ 31 conjugacy classes. So $c_{12} \geq 34$ and we find all best groups of order 2^{12} by using O'Brien's routine to find all groups with $2k(Q) - 3n(Q) \leq 32$ and $|Q| \leq 2^{12}$.

This works well until we try to find c_{15} . The bound on 2k(Q) - 3n(Q) becomes so large that we have to consider too many groups in O'Brien's trees for this computation to be feasible. The case of 2-generated groups alone (see §4) took a few months to complete. The best we have is that $53 \le c_{15} \le 68$.

We have data on the best groups of order 2^n $(n \leq 14)$ that may be obtained by request from the authors. A few observations are in order. For each n there are 2-generated best groups. For n = 9, 10, 11, 12, there are also 3-generated best groups (these being the ones of coclass 4 of those orders). Note that jumps in c_n are apparently accompanied by jumps in coclass. The best groups of order 2^{14} are extensions of the same point group of order 2^6 by a normal subgroup isomorphic to the direct product C_4^4 .

4. The second search; 2-generated groups

Since the search for the best groups of order 2^{15} ultimately involved too many groups to be feasible, we decided to restrict our attention to 2-generated groups. This permits a lengthy but successful search.

Theorem 4.1. There are 142 2-generated groups of order 2^{15} with 68 conjugacy classes. No 2-generated group of order 2^{15} has fewer conjugacy classes. There are 92

214

2-generated groups of order 2^{16} with 70 conjugacy classes. No 2-generated group of order 2^{16} has fewer conjugacy classes. Every 2-generated group of order 2^{17} has \geq 74 conjugacy classes.

This arises by use of the method of the previous section. We inductively construct all 2-generated 2-groups Q with $2k(Q) - 3n(Q) \leq 92$. The largest of these have order 2^{16} . The groups of order 2^{15} are of coclass 3 or 4. The ones of order 2^{16} are of coclass 4. Note that if G_n is one of these groups, then $r(G_n) = 15$. We know of no *d*-generated groups, for $d \geq 3$, that have the same order as, but fewer conjugacy classes than, the above 2-generated groups.

5. The third search; groups of coclass ≤ 3

The paper of Newman and O'Brien [11] presents a method for obtaining all 2-groups of coclass 3. Since many of our best 2-groups have coclass ≤ 3 , we decided to do an exhaustive study of the number of conjugacy classes of these groups using [11]. All but 1782 sporadic examples naturally fall into 82 families as follows. There are 82 pro-2 groups, which correspond to the infinite ends of the subtrees of coclass ≤ 3 groups of O'Brien's trees for $1 \leq d \leq 3$. Mainline groups in family #*i* are obtained by taking the exponent-*p* central quotients of pro-2 group #*i*. The rest are obtained by taking descendants of these mainline groups. Above a certain vertex (the periodic root), the pattern of descendants is conjecturally periodic. This regularity allows us to find the 2-groups of coclass 3 with fewest conjugacy classes for all orders *n*. Since the largest of the 1782 sporadic groups has order 2¹⁴, we need not consider them when working with n > 14. The case of $n \leq 14$ was covered in §2.

For family #*i*, for each *i*, we compute the number $f_i(n)$ of conjugacy classes of its mainline quotient of order 2^n for sufficiently large *n*. For instance, family #2 yields dihedral groups and so $f_2(n) = 2^{n-2} + 3$.

There is a formula for $f_i(n)$ of the form $a2^n + \text{lower terms}$ (a independent of n). For instance, for family #34, setting $x = 2^{[n/4]}$, $f_{34}(n) = 2^{n-12} + cx^2 + dx + 9$, where the values of c and d depend on n (mod 4) as follows: if $n \equiv 0 \pmod{4}$, then c = 27/128 and d = 51/16; if $n \equiv 1 \pmod{4}$, then c = 3/8 and d = 27/8; if $n \equiv 2 \pmod{4}$, then c = 27/64 and d = 33/8; if $n \equiv 3 \pmod{4}$, then c = 3/4 and d = 39/8.

It is easy to see then that no group in family #2 beats even the mainline groups in family #34. We carry this method through with all 82 families. It is interesting to observe that $f_{29}(n) = f_{34}(n) + 6$, and lengthy computations show that these are the only two families that compete for best coclass 3 groups, in the following sense.

Let $c_n^{(3)} = \min\{k : \text{ there is a group } G \text{ of order } 2^n \text{ and coclass } \leq 3 \text{ with } k(G) = k\}$. If the group G has order 2^n , coclass ≤ 3 , and $k(G) = c_n^{(3)}$, then G will be called a best coclass 3 group.

Theorem 5.1. For $n \leq 14$, $c_n^{(3)}$ is given by Theorem 3.1, and, for $15 \leq n \leq 26$, the values of $c_n^{(3)}$ are given by

n	$c_n^{(3)}$
15	68
16	76
17	110
18	148
19	242
20	373
21	617
22	1123
23	1493
.24	4993
25	6 341
26	11911

The best groups of coclass 3 of order 2^{15} are located in families #30, #32, #35 and #42. The best of order 2^{16} are in family #42 and of orders 2^{17} , 2^{18} , 2^{20} and 2^{21} in family #20. As for n = 19 and $n \ge 22$, the following claim is verified for $n \le 26$ and is expected to hold in general. (A rigorous check of it would be far too lengthy; even the computational evidence for it takes several weeks to obtain.)

Claim 5.2. Suppose n = 19 or $n \ge 22$. The best coclass 3 groups of order 2^n depend on $n \pmod{4}$ as follows.

- (i) If n ≡ 1 (mod 4), then they are descendants of the mainline group of order 2ⁿ⁻² of family #34.
- (ii) If n ≡ 2 (mod 4), then they are descendants of the mainline group of order 2ⁿ⁻³ of family #29.
- (iii) If $n \equiv 3 \pmod{4}$, then they are descendants of the mainline group of order 2^{n-4} of family #29.
- (iv) If $n \equiv 0 \pmod{4}$, then they are descendants of the mainline group of order 2^{n-5} of family #34.

In each of the four cases, there is a formula for $c_n^{(3)}$ of the form $c_n^{(3)} = 2^{n-13} + bx^3 + cx^2 + dx + e$, where $x = 2^{[n/4]}$ and where b, c, d and e are rational numbers depending only on the congruence class of $n \pmod{4}$. For instance, it appears that for $n \equiv 1 \pmod{4}$, b = 107/14336, c = -11/256, d = 119/16 and e = -81/7.

Acknowledgements. N.B. was partly supported by the Sloan Foundation and NSF grant DMS 96-22590. He thanks God for leading him to results. J.L.W. was partly supported by the Henry Luce Foundation and NSF grant DMS 97-09388. Both authors thank Eamonn O'Brien for his generous software help.

References

- 1. E. A. BERTRAM, On large cyclic subgroups of finite groups, Proc. Am. Math. Soc. 56 (1976), 63-66.
- 2. W. BOSMA AND J. J. CANNON, Handbook of Magma functions (School of Mathematics and Statistics, University of Sydney, 1996).
- 3. R. BRAUER, Representations of finite groups. Lectures on Modern Mathematics (ed. T. L. Saaty), vol. I (Wiley, New York, 1963).
- 4. P. ERDÖS AND P. TURÁN, On some problems of a statistical group theory, IV, Acta Math. Acad. Sci. Hung. 19 (1968), 413-435.
- 5. G. A. FERNÁNDEZ-ALCOBER AND R. T. SHEPHERD, On the order of *p*-groups of abundance zero, J. Algebra 201 (1998), 392-400.
- 6. G. HIGMAN, Enumerating p-groups, I, Inequalities, Proc. Lond. Math. Soc. (3) 10 (1960), 24-30.
- L. G. KOVAĆS AND C. R. LEEDHAM-GREEN, Some normally monomial p-groups of maximal class and large derived length, Q. J. Math. Oxford 37 (1986), 49-54.
- 8. E. LANDAU, Klassenzahl binärer quadratischer Formen von negativer Discriminante, Math. Ann. 56 (1903), 674–678.
- 9. A. V. LÓPEZ AND J. V. LÓPEZ, Classification of finite groups according to the number of conjugacy classes, *Isr. J. Math.* **51** (1985), 305–338.
- 10. A. V. LÓPEZ AND J. V. LÓPEZ, Classification of finite groups according to the number of conjugacy classes, II, Isr. J. Math. 56 (1986), 188-221.
- M. F. NEWMAN AND E. A. O'BRIEN, Classifying 2-groups by coclass, Trans. Am. Math. Soc. 351 (1999), 131-169.
- 12. E. A. O'BRIEN, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), 677–698.
- J. POLAND, Two problems on finite groups with k conjugate classes, J. Aust. Math. Soc. 8 (1968), 49-55.
- 14. L. PYBER, Finite groups have many conjugacy classes, J. Lond. Math. Soc. (2) 46 (1992), 239-249.
- 15. A. SHALEV, The structure of finite *p*-groups: effective proof of the coclass conjectures, Invent. Math. 115 (1994), 315-345.
- 16. G. J. SHERMAN, A lower bound for the number of conjugacy classes in a finite nilpotent group, *Pac. J. Math.* 80 (1979), 253-254.