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ABSTRACT

In this paper we derive formulae for finite time survival probabilities when the
aggregate claims process is a Gamma process. We illustrate how a compound
Poisson process can be approximated by a Gamma process and by a process
defined as a translated Gamma process. We also show how survival probabil-
ities for a compound Poisson process can be approximated by those for a
Gamma process or a translated Gamma process.

KEYWORDS

Gamma process; finite time; survival probability.

1. INTRODUCTION

The Gamma process was introduced into the actuarial literature by DUFRESNE,
GERBER and SHIU [1991]. They defined a Gamma process as a limit of
compound Poisson processes and proposed it as a model for the aggregate
claims process. They discussed many of the properties of this process and, in
particular, showed how to calculate the probability of ultimate ruin for such a
process. This paper takes this study a stage further and is concerned mainly
with the probability of ruin/survival in finite time.

In the next section we derive (very simple) formulae for the probability of
survival in finite time for a Gamma process. In § 3 we show how to
approximate a compound Poisson process by a Gamma process and investigate
numerically how well the probability of survival in finite time for the former
process is approximated by that for the latter process. The advantage in
approximating a compound Poisson process in this way is that, as we show in
§ 2, the probability of survival in finite time for a Gamma process is
particularly easy to calculate. In § 4 we introduce what we term a translated
Gamma process and we carry out an investigation similar to that in § 3.

2. FINITE TIME SURVIVAL FOR THE GAMMA PROCESS

The main result in this section gives formulae for the probability of survival in
finite time for a Gamma process. These formulae are derived from standard
formulae for a compound Poisson process. Before deriving these results we
show how to define/construct a (standardised) Gamma process as a limit of
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compound Poisson processes. This construction follows precisely the method
outlined by DUFRESNE et al. [1991, §§2 and 3]. However, we provide more
details of the construction since some of these details are important for the
proof of the main result.

For x > 0 define the function Q(x) as follows:

fQ(x) = dy

(This is precisely the same as the function Q(x) in DUFRESNE et al. [1991, § 3]
with their parameters a and b both taken to be 1.)

Now let {S(t; l)},>0 be a compound Poisson process such that:

(a) the number of claims occurring in (0, t] has a Poisson distribution with
mean tQ{\), and,

(b) individual claims amounts have a distribution function P(y; 1), where:

P(y; l) = 0 for y< 1

For n = 2, 3, ..., define the process {S(t; n)}l>0 as follows:

(2.1) S(t;n) = S(t;n

where {Xn(t)}l>0 is a compound Poisson process, independent of
{S(t;n-l)}l>0, such that:

(c) the number of claims occurring in (0, t] has a Poisson distribution with
mean t[Q(l/n)-Q(l/(n-]))], and,

(d) individual claim amounts have a distribution function FI{y;ri), where:

n(y;n) = 0 for y < \/n

Q(l/n)-Q(y)
= f o r ]/n < y < \/(n- 1)

- i ) )

= 1 for y> l / («- l )

Then it is easy to show that for n = 1, 2, 3, . . . \S(t; n)\l>0 is a compound
Poisson process such that:

(e) the number of claims occurring in (0, t] has a Poisson distribution with
mean tQ{\jn), and,

(f) individual claims amounts have a distribution function P(y;n), where:

P(y;n) = 0 for y < \/n

= [QV/n)-Q(y)]/Q(l/n) for y>\/n

(Note that S(t;ri) and P(y; n) in this paper were denoted S{t; x) and P(y; x),
respectively, with x = \/n by DUFRESNE et al. [1991].)
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The standardised Gamma process is the process {SSG(t)}l>0 defined by:

(2.2) SSG(t) = Lim S(t;n) for t >0
rt->ao

It is important to note that this limit exists surely, rather than just almost
surely, for each t > 0, since, from (2.1), S(t; ri) is monotonic non-decreasing as
n -> GO.

Since S(t;n) converges surely to SSG(t), it also converges in distribution.
However, DUFRESNE et al. [1991, § 3] show that S(t; ri) converges in distribu-
tion to a random variable with a Gamma (/, 1) distribution. Hence, SSG(t) has
a Gamma (t, 1) distribution. Finally in this construction/definition, for any
a > 0 and /? > 0, define a new stochastic process {SG(t)}t>0 as follows:

We will refer to {SG(t)}l>0 as a Gamma (a, /?) process, so that the
standardised Gamma process, {SSG(t)}t>0, is a Gamma (1, 1) process. Note
that the random variable SG(t) has a Gamma (ou, /?) distribution. (Note also
that we are parameterising the Gamma distribution so that SG(t) has mean
at/0.)

The remainder of this section will be concerned with the standardised
Gamma process. We are regarding this as a model for the aggregate claims
process for a risk, so that SSG(t) represents the aggregate claims generated by
this risk in the period (0, t]. We assume that premium income is received
continuously at constant rate c per unit time for this risk. We assume that

c> E[SSG(\)] ( = 1 )

We denote by SSG(U, t) the probability of survival, i.e. non-ruin, up to time ;
for this process given initial surplus U (> 0), so that:

SSG(U, t) = Pr (SSG(T) < U+CT for all x, 0 < x < t)

The main result of this section is the following:

Result:

(2.3) dsa(O, t) = FSG(ct, t) - - FSG(ct, t+ 1)
c

(2.4) SSG(U,t)=FSG(U+ct, t)-c f fSG(U+cs,s)FSG(c(t-s),t-s)ds +
Jo

fSG(U+cs, s) FSG(c(t-s), t-s+l) dsf
Jo
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where/SG(;c, /) and FSG(x, t) are the density function and distribution func-
tion, respectively, of a Gamma (t, 1) random variable.

Proof: For n = 1, 2, 3, ... and U > 0 define:

S(U, t;n) = Pr(S(z;n)< U+cz for all T, 0 < T < 0

The first step in the proof of this result is to show that:

(2.5) Lim d(U,t;n) = d(U,t)
n-t-oo

To see this, note from the construction of the processes {{S(t; «)},>0} and
from (2.2) that for any sample path co and any re(0, / ] :

. . . S(z; n- 1) (co) < S(r; n) (co) < ... < SSG(T) (CO)

and:

(2.6) Lim S(t; n) (co) = SSG(x) (co)
n-»oo

Hence:

Lim d(U,t;n)>S(U,t)
n->cc

and the limit on the left does exist. If this limit is strictly greater than 3(U, t),
then there must exist some sample path co and some re(0, t] such that for
all n:

S(z;n)(co)< U+cz < SSG(z) (co)

which contradicts (2.6). This proves (2.5).
Since {S(t; n)}t>0 is a compound Poisson process, we have:

1 Ccl

(2.7) 5(0,t;n) = — F(y,t;n)dy
ct Jo

where F(y, t; n) is the distribution function of S(t; n). See SEAL [1978b, Ch. 4].
The convergence in distribution of the processes {{S(t; n)\l>Q} and the fact that
FSG(y, t) is everywhere continuous show that for all y and all t:

FSG()>, t) = Lim F(y, t; n)
n-*cc

Applications of this result, of (2.5) and of the Bounded Convergence
Theorem to (2.7) show that:

(2.8) dSG(O,t) = — I FSG(y,t)dy
1 f"

). 0 = -
ct Jo
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Since SSG(t) has a Gamma (t, 1) distribution, we can rewrite (2.8) as follows:

dydx
Ct J o Jo

- -, r r
Ct J 0 J y

r(t)

r(t)
dx rfy

, '«-' ra+i)
lo r(t) ctr(t)

= FSG(ct,t) - -FSG(ct,t+l)

Jo ^ + 1 )

This proves (2.3). Formula (2.4) can be derived as follows. Using the familiar
general reasoning argument (see SEAL [1974, p. 126]), we have:

= Fsa(U+ct,t)-i dSG(O,t-s)fSG(U+cs,s)ds

Formula (2.4) is obtained by substituting (2.3) into this last expression.
Table 1 shows values of SSG(U, t) for the standardised Gamma process for

various combinations of U and t. The premium has been taken to be 1.1 per
unit time, so that the premium loading factor is 10%.

/

1
2
3

. 4
5
6
7
8
9
10
20
30
40
50
100
200
300
400
500
600
700
800
900
1000

u = o

0.39352
0.30244
0.25906
0.23254
0.21423
0.20064
0.19005
0.18151
0.17445
0.16848
0.13662
0.12306
0.11534
0.11030
0.09919
0.09351
0.09195
0.09138
0.09113
0.09102
0.09097
0.09094
0.09093
0.09092

T A B L E
V A L U E S O F SSG(U, t)

U= 1

0.82211
0.71818
0.65070
0.60271
0.56647
0.53790
0.51467
0.49532
0.47890
0.46475
0.38506
0.34924
0.32837
0.31460
0.28380
0.26783
0.26345
0.26182
0.26112
0.26080
0.26065
0.26057
0.26053
0.26051

1
WHEN C = 1.1

U= 5

0.99706
0.99108
0.98304
0.97378
0.96393
0.95386
0.94384
0.93402
0.92449
0.91531
0.84296
0.79653
0.76483
0.74194
0.68487
0.65187
0.64234
0.63872
0.63717
0.63645
0.63610
0.63592
0.63582
0.63578

[/= 10

0.99998
0.99991
0.99975
0.99947
0.99907
0.99852
0.99784
0.99703
0.99608
0.99503
0.98058
0.96428
0.94935
0.93644
0.89569
0.86585
0.85617
0.85233
0.85063
0.84983
0.84944
0.84924
0.84913
0.84908

U=25

1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
0.99999
0.99996
0.99987
0.99971
0.99801
0.99409
0.99176
0.99055
0.98993
0.98961
0.98945
0.98936
0.98931
0.98928
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3. THE GAMMA PROCESS APPROXIMATION TO A COMPOUND POISSON PROCESS

In this section we demonstrate how finite time survival probabilities for a
compound Poisson process can be approximated by those for a Gamma
process.

Let {S(t)}t>0 be a compound Poisson process with Poisson parameter X. Let
P(x) denote the individual claim amount distribution and let pk denote the
k-t\i moment about zero of this distribution. We shall approximate this
compound Poisson process by a Gamma (a, /?) process {SG(t)}l>0. We find the
parameters a and ft of the Gamma process by matching the first two moments
of the two processes (assuming that these moments exist). For each value of
t> 0 we set

E[S(t)} = Xtpx = <xtlp

V[S(t)]= Xtp2 = at/p2 = V[SG(t)]

which gives
(3.1) P = P\IPi and <x = Xp2Jp2

Note that the parameters a and /? are independent of t.
The surplus process associated with the compound Poisson process is

{U(t)}l>0 where U(t)= U+ct-S{t). U is the initial surplus and c is the
premium income per unit time. In our numerical examples we write
c = (1 +0)Xp{ where 6 is the premium loading factor. The finite time survival
probability for this process is S(U, t) defined by

d(U,t) = Pr(S(z)<U+cx for all x, 0 < x < t)

We will approximate this probability by dG(U, t) defined by

SG(U,t) = Pr(SG(z)<U+cx for all x, 0 < r < t)

where the parameters a and /? of {SG(t)}l>0 are given by (3.1). We calculate
SG(U, t) using the standardised Gamma process and the identity

SG(U,t) = Pr(Sa(x)<U+(l+9)<xzlp for all T, 0 < % < t)
' =Pr(P~lSSG(T)< U+(\+9)axlp for all T, 0 < r < t)

= Pr(SSG(<XT)<pu+(l + 9)t for all x, 0 < z < at)
= 8SG(pU,at)

In our numerical examples we set X = 1 and use two distributions for
individual claims amounts:

Distribution 1: P{x) is the Gamma (1/3, 1/3) distribution. For this distribu-
tion, pi = 1 and p2 = 4, so that a = /? = 0.25 in the approximating gamma
process. Thus we approximate 8{U,t) by dSG(U/4, t/4).

Distribution 2: P(x) is the Pareto (3, 2) distribution. For this distribution,
px = 1 and p2 = 4, so that a = /? = 0.25 in the approximating Gamma process.

The parameters of these distributions have been chosen so that the same
Gamma process approximates each compound Poisson process. Although the
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first two moments are the same for each of Distributions 1 and 2, />3 does not
exist for Distribution 2, but does exist for Distribution 1. Hence we would
expect that the Gamma process approximation would be better for the
compound Poisson process with Distribution 1 rather than Distribution 2.

In Figures 1 to 5 the crosses denote the ratios S(U, t): SSG(fiU, at) (shown
as percentages) for selected values of U and t for the surplus process associated
with Distribution 1 when 6 = 0.1. A logarithmic scale for time has been used in
these graphs. The values of S(U, t) have been calculated (approximately) using
the methods described by DICKSON and WATERS [1991]. We note that for each
of these values of U the approximate values are fairly close to the true values.
They are within 4 % of the true values for all values of U shown, and within
1 % for virtually all combinations of U and t, except when U = 4. We conclude
that the approximation to S(U, t) is reasonable in this case.

114.00% -|

112.00%

110.00% •

108.00%

106.00% •

104.00% '

102.00% •

100.00% •

1.00 2.00 4.00 5.00 6.00

Loe(l)

8.00 1M

FIGURE 1. Ratios of exact to approximate values of <5(0, t) for Gamma individual claims.

104.00% -

103.50% •

103.00%

102.50%

102.00%

101.50%

101.00%

100.50%

100.00%

99.50%

5.00 6.00

Log(t)

FIGURE 2. Ratios of exact to approximate values of <5(4, t) for Gamma individual claims.
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100.20% -

100.15% -

100.10% -

100.05% •

100.00% •

99.95% •

99.90% •

99.85% •

99.80% •

99.75% •

99.70%

1.00 2.00 3.00 4.00 5.00 6.00

Log(t)
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FIGURE 3. Ratios of exact to approximate values of 3(20, t) for Gamma individual claims.
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FIGURE 4. Ratios of exact to approximate values of <5(4O, () for Gamma individual claims.
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99.94% •
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FIGURE 5. Ratios of exact to approximate values of <5(100, () for Gamma individual claims.
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The crosses in Figures 6 to 10 denote the corresponding ratios for the same
combinations of U and t for the surplus processs associated with Distribu-
tion 2, again with 0 = 0.1 and with a logarithmic scale for time. The
approximations are generally worse for this distribution, although the approx-
imate values are within 1 % of the true values when U = 40 and when
U= 100.

We have used the same Gamma process to approximate to two different
compound Poisson processes. It is therefore no surprise that the approximation
is better for one of the compound Poisson processes. In the following section
we present a method which allows us to approximate survival probabilities for
compound Poisson processes with identical first two moments by different
Gamma processes.

110.00%

105.00% •

100.00% •

95.00% -

90.00% •

85.00% •

75.00% •

70.00% -

65.00%

4.00 5.00 6.00

Log(t)

FIGURE 6. Ratios of exact to approximate values of <5(0, /) for Pareto individual claims.
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FIGURE 7. Ratios of exact to approximate values of 3(4, t) for Pareto individual claims.
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102.00% •

101.00% •

100.00% •

99.00% •

97.00% •

96.00% •

95.00% •

94.00%

1.00 2.00 3.00 4.00 5.00

Log(t)

6.00 7.00 K.00 9.00

FIGURE 8. Ratios of exact to approximate values of <5(2O, t) for Pareto individual claims.

100.60% •

100.40% -

100.20% •

100.00% •

99.80% •

99.60%

99.40%

99.20%

99.00%

1.00 2.00 3.00 4.00 5.00

Log(t)

6.00 7.00

FIGURE 9. Ratios of exact to approximate values of (5(40, /) for Pareto individual claims.

100.50% -

100.40% -

100.30% •

100.00% « t 1

4.00 5.00
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FIGURE 10. Ratios of exact to approximate values of <5(100, () for Pareto individual claims.
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4. THE TRANSLATED GAMMA PROCESS APPROXIMATION TO A COMPOUND

POISSON PROCESS

As in the previous section, {S(t)}l>0 is a compound Poisson process with
Poisson parameter X; pk denotes the A:-th moment about zero of the individual
claim amount distribution. We shall approximate {S(t)}t>0 by what we term a
translated Gamma process {STG(t)}t>0. F° r all f > 0 we define

STG(t) = SG(t) + kt
where {SG(t)}t>0 is a Gamma (a, ft) process and k is some constant (which may
be positive or negative). The parameters a, /? and k of the process {STG(t)}!>0

are chosen such that for all / > 0
E[S(t)] = XtPx = at/fi + kt = E[STG(t)]
V[S(t)] = Xtp2 = at/p2 = V[STG(t)]
Sk [S(t)] = ktp,l{ktp2f

12 = 2/(a/)1/2 = Sk[STG(t)]
i.e. we are matching the mean, variance and coefficient of skewness of S(t) and
STG(t) for all t (again assuming that these quantities exist). These identities give
the parameter values as

« = 4 Xp\ lp\ P=2P2/Pi k = X(Pi- 2p\ /p3)
As in the previous approximation, the parameters are all independent of t.

We now approximate
S(U,t) = Pr(S(x)<U+cx for all x, 0 < x < t)

by
STG(U,t) = Yr(STG(r)<U+CT for all x, 0 < x < t)

= Pr(SG(T) + kT<U+cx for all x, 0 < x < t)
= Pr(SG(T)<U+(c-k)T for all x, 0 < x < t)

Note that

= 0/1/?! +a//?
Thus c-k> E[SG(\)] (where SG(1) has a Gamma (a, y?) distribution)

regardless of the values of k. Since Xpx = ix/fi+k, 3TG(U, t) represents the finite
time survival probability when the aggregate claims process is a Gamma (a, /F)
process and when the premium loading factor is 8 = 9(1 +kfi/tx). Hence we can
approximate S(U, t) by dSG(f}U, at) using a premium loading factor of 6.

We illustrate the approximation method for two distributions for individual
claim amounts:

Distribution 1: P{x) is the Gamma (1/3, 1/3) distribution. The first three
moments of this distribution are px = 1, p2 = 4 and p3 = 28. Let X = 1 and let
6 = 0.1, giving a = 16/49, 0 = 2/7 and k = - 1/7. Then a/0 = 8/7 and
c-k = 87/70, so that 6 = 7/80. We approximate S(U, t) by 8SG(2 U/7,l6t/49)
using a premium loading factor of 7/80.
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In Figures 1 to 5 the circles denote the ratios S(U, t): 5SG(flU, at) for the
same values of U and t as before for the surplus process associated with
Distribution 1. Again a logarithmic scale has been used for time. The
approximate values are very close to the exact ones except when U = 0 (within
0.3% when U = 4, and within 0.06% when U = 20, 40 and 100). It is no
surprise that the translated Gamma process gives superior approximations to
those in the previous section when U > 0 since the approximating process
matches one further feature of the given process. The reason why the
approximation is poor when U = 0 is discussed later in this section.

Distribution 3: P(x) is the Pareto (4, 3) distribution. (Note that the third
moment of Distribution 2 does not exist and so we cannot use the translated
Gamma approximation in this case.) For this distribution px = 1, p2 = 3 and
/?3 = 27. Again let X = 1 and let 9 = 0.1 giving a = 4/27, /? = 2/9 and k = 1/3.
Then a//? = 2/3 and c — k = 23/30, so that $=0 .15 . Hence we approximate
S(U,t) by SSG(2U/9,4t/27) using a premium loading factor of 0.15. In
Figures 6 to 10 the circles denote the ratios d(U, t): SSG((1U, at) for the same
values of U and t as before for the surplus process associated with Distribu-
tion 3. The approximate values are fairly close to the exact ones when U > 0
(within 6% when U = 4, and within about 1 % when U = 20, 40 and 100) but
the approximations are not as close as for Distribution 1. Note that the ratios
are not directly comparable with those for Distribution 2 as the parameter
values for the distributions are different. Nevertheless, when U > 0 this
approximation represents an improvement over the method described in the
preceding section.

Since the first three moments of the approximating translated gamma
process match those of the compound Poisson process for all values of t, we
would expect 8TG{U,t) to be reasonable approximation to d(U,t). This is
indeed the case when U > 0. However, when U = 0, the approximations are
poor and are much worse than those in the previous section. We can see why
this is so by writing down formulae for the exact and approximate survival
probabilities. The formula for the exact survival probability is

1 C
(4.1) S(O,t) = — F(x,t)dx

ct J
F(x,

Jo
where F(x, t) = Pr (S(t) < x), and S(t) has a compound Poisson distribution.
The approximation in Section 3 is

(4.2) 5a(U,t) = -' [ FG(x,t)dx
ct J o-'-• f
ct Jo

where FG(x, t) = Pr (SG(t) < x), and SG(t) has a Gamma distribution whose
first two moments match those of the compound Poisson distribution. It is not
surprising that (4.2) is a good approximation to (4.1). Not only are the
formulae for <S(0, t) and <5G(0, t) of the same form, but FG(x, t) may be
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regarded as an intuitively reasonable approximation to F(x, t) since these two
distributions have the same first two moments.

In this section 8(0, /) is approximated by

j *(c-k)t

(4.3) 3TG(0, 0 = FG(x, t) dx
(c-k)t Jo

Comparing (4.1) and (4.3), we see that there are two differences: the factor c
in (4.1) is replaced by c — k in (4.3), and FG(x, t) does not have the same first
two moments as F(x, t). It is not surprising that (4.3) is not as good an
approximation to (4.1) as is (4.2). In particular, in the limiting case when t -> oo
we can measure the difference between (4:1) and (4.3) since

Lim 8(0, t) = 1/(1 + 0) and Lim STG(0, t) = 1/(1 + 0)
/ -* CO t -*• GO

(See DUFRESNE et al. [1991].)

5. CONCLUDING REMARKS

The computer time required to produce approximate values for 3(U, t) using
the methods of the previous two sections is substantially less than that required
for the algorithms described by DICKSON and WATERS [1991]. Although these
algorithms produce very accurate values, the amount of computer time
required for large values of U and t can be considerable. The examples in
Section 4 show that the approximations to 3(U, t) are good for large values of
U and t. We conclude that the approximation method of the previous section
can be used to produce fast and fairly reliable estimates of 8(U, t) for such
combinations of U and t.

The underlying idea in Sections 3 and 4 has been to approximate a
compound Poisson process {S(t)}t>a by a Gamma process {SG(t)}t>0 and by a
translated Gamma process {STG(t)}l>0, respectively. In each case the approxi-
mation is the result of matching an appropriate number of moments. The
probability of survival for the compound Poisson process, 3(U, t), is then
approximated by the corresponding probability for the Gamma process or the
translated Gamma process. However, there is an alternative and related way of
approximating this probability. We have the following formulae:

(5.1) 3(0, t) = - f F(x,t)dx
ct Jo

(5.2) 3(U, t) = F(U+ct, t)-c [ 8(0, t-s) f(U+cs,s)ds,t)-c f 3(0, t-i
Jo

(Formula (5.1) is, of course, the same as formula (4.1).)
We can now approximate 3(0, t) and 5(U, t) by approximating F(m, t) and

/(• , s) by Gamma distributions or translated Gamma distributions with the
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same first two or three moments as the original distributions. If we approxi-
mate F(; t) and / ( • , s) by Gamma distributions, it can be checked that the
result is the same as that achieved by approximating the original compound
Poisson process by a Gamma process, as in Section 3. However, replacing
F(m, t) and/(*, s) in (5.1) and (5.2) by translated Gamma distributions with the
same first three moments, an idea originally discussed by SEAL [1978a], is not
the same as approximating the original process by a translated Gamma process
as described in Section 4. To see this, note that Seal's method leads to the
following approximation for <5(0, t):

(5.3) ,5(0,0 « - I FfG(x,t)dx
t Jo

where Ffa(x, t) is a translated Gamma distribution with the same first three
moments as F(x, t). Formula (5.3) is clearly not the same as formula (4.3). An
advantage of Seal's method as compared to the method of Section 4 is that
(5.3) is a better approximation to (4.1) than is (4.3). A disadvantage of Seal's
method is that it leads to a slightly more complicated (approximate) formula
for <5(0, t) and hence for S(U, t).
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