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Abstract. The Large Area Telescope (LAT) on the Fermi satellite is the first γ-ray instrument
to discover pulsars directly via their γ-ray emission. Roughly one third of the 117 γ-ray pulsars
detected by the LAT in its first three years were discovered in blind searches of γ-ray data and
most of these are undetectable with current radio telescopes. I review some of the key LAT
results and highlight the specific challenges faced in γ-ray (compared to radio) searches, most
of which stem from the long, sparse data sets and the broad, energy-dependent point-spread
function (PSF) of the LAT. I discuss some ongoing LAT searches for γ-ray millisecond pulsars
(MSPs) and γ-ray pulsars around the Galactic Center. Finally, I outline the prospects for future
γ-ray pulsar discoveries as the LAT enters its extended mission phase, including advantages of
a possible modification of the LAT observing profile.
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1. Introduction
In the first four decades since their discovery, pulsars were almost the exclusive domain

of radio (and to a lesser extent X-ray) astronomy. Indeed, of the ∼2000 known pulsars†,
the majority were discovered in radio. Since June 2008, however, with the launch of the
LAT, on the Fermi satellite, γ-rays have become a viable means of discovering (and study-
ing) pulsars. More important than the number of LAT-detected pulsars (a small fraction
of the overall population), the LAT sample is subject to different biases than the radio
sample. LAT pulsars are typically nearby (∼few kpc) and energetic (Ė > 1033 erg s−1),
and a large fraction are radio-quiet. Furthermore, γ-rays, unlike the radio beams, carry
a significant fraction of the rotational energy of pulsars, thus providing a powerful probe
into these extreme objects. Finally, LAT pulsars provide a crucial input into our under-
standing of the overall neutron star population of the Galaxy.

The LAT is a pair conversion telescope consisting of a tracker, a calorimeter, and a
segmented anti-coincidence detector, along with a programmable trigger and a complex
data acquisition system. By incorporating the latest advances from particle physics‡, in-
cluding the use of silicon-strip detectors, the LAT has achieved a giant leap in capabilities
compared to its predecessor, EGRET. The LAT extends to higher energies (>300 GeV
vs ∼10 GeV), has a larger effective area and field of view, improved angular and en-
ergy resolutions, and much lower deadtime (Atwood et al. 2009). In its first 4 years of
operations, the LAT has collected >200 million “source” class events, compared to
∼1.5 million photons collected by EGRET, in its 9-year lifetime.

Regarding pulsars, the progress made by the LAT has been spectacular. The γ-ray
pulsar population has grown from 7 firm detections (plus a few candidates) at the time
of the Fermi launch (Thompson 2008), to 117 detections in three years of LAT survey

† http://www.atnf.csiro.au/research/pulsar/psrcat
‡ Bill Atwood was awarded the 2012 Panofsky Prize in Experimental Particle Physics “For

his leading work on the design, construction, and use of the Large Area Telescope [...]”.
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observations (The Second Fermi-LAT Catalog of γ-ray Pulsars, in preparation). Beyond
the jump in the number of pulsars, the increased statistics enable detailed (e.g. phase-
resolved) studies on individual pulsars, previously out of reach. The LAT has also opened
up the unexplored 10–100 GeV window. EGRET detected a mere handful of >10 GeV
photons from the brightest pulsars (Thompson 2005), whereas the LAT detects significant
emission from over two dozen pulsars in this energy range and even >25 GeV pulsations
from the brightest ones (e.g. Crab, Vela, Geminga, see Saz Parkinson 2012).

Of the 117 LAT detections, 61 pulsars were known prior to Fermi. Pulsations were
obtained by folding the γ-rays with a radio (or X-ray) timing model. Of these 61, 20
are MSPs (e.g. Abdo et al. 2009c), a hitherto unknown class of strong γ-ray emitters.
More surprisingly, a large number of MSPs (>40) were discovered in radio searches of
LAT unassociated sources (Ray et al. 2012). Most (20 so far, e.g. Ransom et al. 2011)
will likely exhibit γ-ray pulsations†, once enough data and/or a precise timing model
is obtained (usually from radio observations). Finally, 36 of the 117 γ-ray pulsars were
discovered directly in blind searches of LAT data (Abdo et al. 2009b, Saz Parkinson et al.
2010, Saz Parkinson 2011, Pletsch et al. 2012a, Pletsch et al. 2012b). The rest of this
paper discusses the challenges, results, and prospects of these searches.

2. Blind searches for γ-ray pulsars (compared to radio)
Two factors make γ-ray searches for pulsars particularly challenging, compared to radio

searches. The first involves the scarcity of events. The LAT detects ∼1 γ-ray per day from
a typical (bright) pulsar. This means that LAT searches for pulsars span months to years
(see Figure 1). The second complication involves the broad, energy-dependent PSF of
the instrument (from ∼ 5◦ at 100 MeV to ∼ 0.2◦ at 100 GeV, 68% containment, normal
incidence). This results in significant source confusion, especially in high background
regions like the Galactic plane, where the diffuse γ-ray emission makes it hard to resolve
individual sources. Essentially, it is impossible to select, with certainty, events coming
from a source, so statistical techniques must be employed. Using these techniques, it is
possible to determine the probability that each event is coming from the source of interest
and improve the sensitivity of the search by assigning a weight to each event equal to
this probability (Kerr 2011).

Searches over long (sparse) data sets make standard FFT techniques impractical. To
tackle this problem, Atwood et al. (2006) developed the “time-differencing technique” and
applied it successfully to EGRET data (Ziegler et al. 2008). The core of the technique
involves computing the FFT of the differences between the times of events (up to a
maximum, sliding, time window), rather than using the original time series. Using a time
window of ∼weeks significantly alleviates the coherence requirements of the search.

2.1. Young pulsars
Within weeks of the launch of Fermi, the first radio-quiet γ-ray pulsar was discovered
in the supernova remnant CTA 1(Abdo et al. 2008). This was followed by many more
discoveries (e.g. Abdo et al. 2009b, Saz Parkinson et al. 2010). Many of these early γ-
ray pulsars discovered by the LAT are coincident with old EGRET unidentified sources.
Many, like the pulsar in CTA 1, are also coincident with known supernova remnants
or pulsar wind nebulae, and were thus long suspected of hosting pulsars (e.g. PSR
J1836+5925, J2021+4026). Radio follow-up observations of the LAT-discovered pulsars
showed that most of them are radio-quiet (or extremely radio-faint), suggesting that the

† Given that they are LAT γ-ray sources selected precisely for their pulsar-like qualities.
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Figure 1. PRESTO (Ransom 2001) plots for two pulsars: one using radio data (left) and one
using γ-ray data (right). Left: PSR J1745+1017, an MSP discovered in radio searches of Fermi
unassociated sources with the Effelsberg telescope (Barr et al. 2012, MNRAS, submitted. Figure
Credit: E. Barr). Right: PSR J1957+5033, a radio-quiet γ-ray pulsar discovered in a LAT blind
search. Note that, although the pulse profiles and significances are similar, the γ-ray observation
is ∼10,000 times longer, and the number of γ-ray events (582) is approximately one per day
(∼200,000 pulsar rotations!). On the other hand, unlike in radio, there is no need to scan in DM
in a γ-ray search.

γ-ray emission originates far from the neutron star surface, resulting in broad beams.
It is now clear that these radio-quiet γ-ray pulsars represent a significant fraction of
the neutron star population of the Galaxy (see Guillemot et al. (2012), in these pro-
ceedings, for a detailed review of the radio observations of LAT γ-ray pulsars). All 36
pulsars found in LAT blind searches to date are young (τ < 1 × 107 yr) energetic (1033

erg s−1 < Ė < 1037 erg s−1) pulsars with frequencies below ∼20 Hz. These pulsars
often exhibit timing irregularities, in the form of timing noise and glitches. Since most
are not detected in radio, the LAT is the only instrument capable of timing them (Ray
et al. 2011). While it is possible to time these noisy (or “glitchy”) pulsars, a good tim-
ing model often requires many frequency derivatives and other whitening terms, making
their discovery over long data spans extremely challenging. Searches for these pulsars
may only be possible over LAT observing periods lasting ∼months, rather than years (see
Figure 2).

2.2. Millisecond pulsars

As mentioned above, the discovery of γ-ray MSPs (Abdo et al. 2009c) was largely unex-
pected. Equally unexpected was the large number of MSPs discovered by radio telescopes
searching LAT unassociated sources (Ray et al. 2012). This fact, combined with the large
fraction of radio-quiet young pulsars, raises the question of whether large numbers of
radio-quiet γ-ray MSPs remain to be discovered in blind searches of LAT data. The an-
swer, from examining the identified γ-ray sources in the almost flux-limited Fermi-LAT
Bright Source List (Abdo et al. 2009a), appears to be no. Whereas at least two thirds of
young γ-ray pulsars are radio quiet, at most one third of γ-ray MSPs are (Romani 2012).

Blind searches for MSPs are vastly more complicated than searches for young pulsars.
Firstly, a majority (∼80%) of MSPs are in binary systems, and a full blind search over
unknown orbital parameters is out of reach given current computer capabilities. Searches
for isolated MSPs are possible, but the high frequencies increase the memory and CPU
requirements. Positional uncertainties become more relevant with increasing frequencies
and the typical tolerance of a blind search using several years of data is of order a
fraction of an arc second. This means that one must either perform a fine scan over the
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LAT positions, or else identify a precise position of a plausible counterpart, using multi-
wavelength (e.g. X-ray) observations. A number of LAT sources have been identified
as promising pulsar candidates, by virtue of their variability and spectral properties
(Ackermann et al. 2012). More recently, X-ray and optical studies of some of the brightest
of these have identified some strong “black widow” candidates: eclipsing binary MSPs
with very compact, almost circular orbits, where the pulsar is destroying its low-mass
companion (Romani & Shaw 2011, Romani 2012). These studies derive extremely precise
positions (to ∼ 0.1′′) and stringent constraints on two out of the three requisite orbital
parameters (leaving only the projected semi-axis relatively unconstrained). Thus, for the
first time, searches for such binary MSPs using γ-ray data are possible. A deep LAT
search of 2FGL J2339.6+0532 (the most promising of these “black widow” candidates)
unfortunately produced no significant candidate, but further efforts are in progress (see
Belfiore 2012 for details).

3. Searches for pulsars around the Galactic Center
Understanding the γ-ray emission from the Galactic Center (GC) region is both chal-

lenging and controversial. Claims that γ-ray emission from the GC may be related to
dark matter (e.g. Hooper & Goodenough 2011, Weniger 2012) should be measured up
against more conventional explanations, such as a possible origin from γ-ray pulsars. As
a site of massive star formation, it likely contains thousands of pulsars, but their radio
detection is hampered by the large amount of interstellar scattering. Nevertheless, some
pulsars have been discovered fairly close to the GC, and predictions for the number of
radio pulsars that could be associated with the GC range in the thousands (Deneva et al.

Figure 2. Blind-search significance of PSR J1023-5745, as a function of the cumulative observing
time. Initially, the significance increases with time, but after a period of 7-10 months, the
significance peaks and then decreases with the addition of more data.
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Figure 3. Left: LAT view of the GC (Porter, 2011 Fermi Symposium). The bright source at
the GC (2FGL J1745.6-2858) is curved and non-variable, like most LAT pulsars. Right: Relative
exposure (compared to survey mode) with a LAT viewing strategy favoring the GC. The gain
in exposure is a factor of ∼3, while the exposure for other parts of the sky decreases to roughly
one third, in the worst case.

2009). It is possible that some of the undiscovered pulsars in the region are radio quiet,
like the majority of young pulsars found in LAT blind searches (e.g. PSR J1732-3131,
see Figure 3).

Blind searches for γ-ray pulsars around the GC are affected by low fluxes (due to
the large distance), and high levels of diffuse emission. Indeed, most LAT pulsars are
likely nearby (∼few kpc). The LAT has, however, detected pulsations from MSP J1823-
3021A, in the globular cluster NGC 6624, at 8.4 kpc (roughly the distance to the GC).
It is possible to estimate how far blind searches might be sensitive out to. From scaling
arguments, considering that the γ-ray flux of the Crab is several thousand times brighter
than the faintest γ-ray pulsar discovered in a blind search, we conclude that it is possible
to discover a Crab-like γ-ray pulsar in a LAT blind search out to at least ∼15 kpc.

Perhaps the biggest complication in searching for faint pulsars around the GC is the
fact that such a pulsar may be young and noisy (or “glitchy”). As described above, the
loss of coherence of the signal limits the amount of data that can be effectively searched
(see Figure 2). Thus, regardless of the number of years of LAT data available, it may
only be possible to search several months at a time. Thus, the sensitivity of searches
in this region may only improve significantly with improvements in reconstruction (e.g.
Pass 8, see Baldini 2011, Fermi Symposium), or a change in the observing mode. For
the first four years of its mission, Fermi has operated mostly in survey mode. This has
many advantages for most of the scientific goals of the mission, including pulsar searches
(and timing). Modifying the observing profile, however, could enhance the sensitivity to
detection of faint signals (both from pulsars and/or dark matter) from the GC. Figure 3
(right) shows the relative gain in exposure (compared to survey mode) with a modified
mode in which the LAT points to a location slightly offset from the GC. Whenever the
GC is occulted, the LAT could go back into survey mode, thus maintaining some level
of exposure over the entire sky.

4. Conclusions and Prospects
The NASA Senior Review recently recommended that Fermi operations continue

through 2016. In principle, Fermi could continue to operate well beyond this date†.
As the LAT accumulates more data, it will detect γ-ray pulsations from ever fainter
radio-loud pulsars. As for blind searches of γ-ray data, they too will continue to produce

† Unlike its predecessor, EGRET, the LAT has no consumables that limit its lifetime.
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new discoveries, although the increasing computational demands will require additional
resources (e.g. Einstein@Home‡) and efficient computational techniques to exploit them.
Finally, multi-wavelength observations (radio, X-rays, and optical), will continue to play
a crucial role in LAT pulsar studies, especially in facilitating the search for more exotic
pulsar systems, such as “black widow” systems, young binary pulsars, and pulsars around
the GC. In this last case, a modified observing profile enhancing the exposure to this
region (by a factor of ∼3) could play a crucial role in future discoveries.
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