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The algebraic numerical range as a spectral
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Abstract. We investigate when the algebraic numerical range is a C-spectral set in a Banach algebra.
While providing several counterexamples based on classical ideas as well as combinatorial Banach
spaces, we discuss positive results for matrix algebras and provide an absolute constant in the case
of complex 2 × 2-matrices with the induced 1-norm. Furthermore, we discuss positive results for
infinite-dimensional Banach algebras, including the Calkin algebra.

1 Introduction

Since the discovery of the von Neumann inequality the theory of spectral sets has
evolved in many directions, see, e.g., [2] for a broad overview. Our interest will lie
in C-spectral sets. Recall that a compact, simply connected set Ω is a C-spectral set
(C > 0) for the operator T if it contains the spectrum of T and satisfies the inequality

∥p(T)∥ ≤ C sup
z∈Ω

∣p(z)∣, p ∈ C[z],(1.1)

(see Section 3 for details). A particularly well-studied C-spectral set for a Hilbert space
operator T is the numerical range W(T) ∶= {⟨Tx , x⟩ ∶ ⟨x , x⟩ = 1}. The first result
underlining the role of the numerical range in this context is the seminal work by
Delyon–Delyon [24], in which the constant C depends on W(T). In 2007 Crouzeix
[21] showed that there exists a universal constant C between 2 and 11.08 such that the
numerical range of T is a C-spectral set. Crouzeix’s conjecture [20], stating that the
optimal constant for C is 2, remains open to this day. The best estimate so far of
the constant C ≤ 1 +

√
2 was provided by Crouzeix and Palencia [22] in 2017, see also

[40, 42] for shorter proofs. In due course the conjecture was shown to be true in
certain special cases, see, e.g., [6–8, 16, 17, 23, 38]. We also mention recent results
[36, Theorem 2, Proposition 26] showing that the value 1 +

√
2 is not attained for any

Hilbert space operator.
Meanwhile, the theory of spectral sets in Banach spaces appears to be much more

demanding. Recall that the von Neumann inequality can be restated as saying that the
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2 H. Blazhko et al.

closed unit disk is a 1-spectral set for any contraction on a Hilbert space. In contrast to
this, there are Banach-space contractions for which the closed unit disk fails to be a C-
spectral set for every C > 0. This is usually argued in the literature by saying that there
exists an operator with unit norm which is not polynomially bounded, see e.g., [19,
Section 4] or [26, 27, 33]. On the other hand, Katsnelson and Matsaev demonstrated
in [31] that for any contraction T on any Banach space the disk 3D is a 1-spectral set,
and furthermore, that the constant 3 is sharp. In fact, this result is a trivial consequence
of a much older inequality attributed to Bohr, see [11], for disk algebra functions, see
also [39] for a recent short proof and [32] for multivariate analogs.

This article deals with the question to what extent the fact that the numerical
range is C-spectral for Hilbert spaces operators can be generalized to Banach algebras.
The most suitable generalization of the numerical range seems to be the algebraic
numerical range of an element T of a Banach algebra A, i.e., the set

V(T) ∶= {ϕ(T) ∶ ϕ ∈ A′ , ∥ϕ∥ = 1 = ϕ(I)},

where I stands for the unit and A′ stands for its dual space. Like in the Hilbert
space setting, the algebraic numerical range contains the spectrum and is contained
in the disk of radius ∥T∥. It is also clear from the definition that V(αT) = αT for
α ∈ C. Hence, one may assume without loss of generality that T is of norm one and
consequently V(T) is then contained in the closed unit disk. Note that for operators
with unit norm C-spectrality of V(T) trivially implies polynomial boundedness. The
above mentioned examples on Banach spaces thus provide operators for which (1.1)
with Ω = V(T) does not hold for any C > 0. We will strengthen this by showing that
there even exists a polynomially bounded operator T with unit norm such that V(T)
is not C-spectral for any C, see Example 6.2.

The article is organized as follows. In Section 2, we review preliminary properties
of the algebraic numerical range. In Section 3, we introduce the spectral constant
of the numerical range and discuss its general properties. In Section 4, we discuss
matrix algebras. In Section 5, we focus on some special classes of Banach algebras for
which the numerical-range spectral constant is finite: Continuous function algebras
and Calkin algebras. In particular, this shows that Crouzeix’s conjecture on Hilbert
space operators can be rephrased based on the essential numerical range instead of
the numerical range. In Section 6, we provide several examples in which the spectral
constant of the numerical range is infinite. Namely, we consider the shift operators in
�p and a cut-shift in a combinatorial Banach space. In Section 7, we study in detail the
case of 2 × 2-matrices for �1 induced norm and show that the spectral constant of any
2 × 2-matrix is bounded above by 13.

The striking fact about Crouzeix’s result is that the numerical range is a C-spectral
set with an absolute constant C. In particular, this shows that the constant can be
bounded independently of the dimension of the Hilbert space. While our results show
that the latter is not true for general Banach algebras, we prove that for the specific case
of B(C2) with the induced 1-norm, there also exists a uniform bound on the spectral
constant. It is interesting to note that our proof strongly exploits a nice representation,
of interest in its own right, of the corresponding (algebraic) numerical range for the
particular space. This, in a way, relates to Crouzeix’s initial result on 2 × 2-matrices
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The algebraic numerical range as a spectral set in Banach algebras 3

[20] (with the optimal constant 2), strongly resting on the fact that the (Hilbert space)
numerical range is an ellipse in that case.

2 Preliminaries

LetAbe a complex Banach algebra with a unit I, and letA′ denote the set of continuous
linear functionals on A (dual space). For T ∈ A, the algebraic numerical range V(T)
is defined as

V(T) ∶= {ϕ(T) ∶ ϕ ∈ A′ , ∥ϕ∥ = 1 = ϕ(I)}.

The set V(T) is compact and convex. We denote by B(X) the algebra of bounded
linear operators on a Banach space X. Recall forA being the algebraB(H) of bounded
operators on a Hilbert space H, the algebraic numerical range coincides with the
closure of the usual numerical range, cf. [44, Theorem 6].

To specify the algebra with respect to which V(T) is defined, we will sometimes
write V(T ,A). Usually, we will do this in connection with the following important
observation [12, Theorem 4]: If B ⊆ A is a subalgebra of A sharing the same unit, then

V(T ,B) = V(T ,A)(2.1)

for all T ∈ B. Further, by ν(T) we define the algebraic numerical radius

ν(T) ∶= sup{∣z∣ ∶ z ∈ V(T)}.

For the basic properties of the algebraic numerical range we refer the reader to [12].
Below we only highlight the ones that are most relevant for our purposes. For further
results on equivalent definitions and geometry see, e.g., [13, 35, 44].

The algebraic numerical range always contains the spectrum

σ(T) ∶= {λ ∈ C ∶ λI − T is not invertible}.

In the commutative case the inclusion goes easily by characters, for the general case
we refer to [12, Theorem 6] and [44, Theorem 1]. In particular, the spectral radius
ρ(T) ∶= supλ∈σ(T) ∣λ∣ satisfies ρ(T) ≤ ν(T). Further, for any T ∈ A it holds that

ν(T) ≤ ∥T∥ ≤ e ⋅ ν(T),(2.2)

see [12, Section 4, Theorem 1, p. 34], and if A is a C∗-algebra the constant e can be
improved to 2, see [45].

The following equality shown in [44, Theorem 4], see also [29], will be of particular
importance when searching for an explicit form of the algebraic numerical range:

V(T) = ⋂
λ∈C

D(−λ, ∥T + λI∥),(2.3)

where D(z, r) ⊂ C denotes a closed disk of radius r centered at z. An immediate
consequence is that V(T) is a compact convex subset of C. An even more useful
result for plotting approximations of V(T) is [12, Theorem 2.5], which states that the
algebraic numerical range V(T) can be represented as an intersection of hyperplanes:

V(T) = ⋂
θ∈[0,2π)

Hθ(T),(2.4)
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4 H. Blazhko et al.

where

Hθ(T) ∶= {eiθ α ∶ α ∈ C, Re(α) ≤ rθ(T)}(2.5)

with

rθ(T) ∶= inf
t∈[0,∞)

{∥e−iθ T + tI∥ − t} .(2.6)

Recall that the algebraic numerical range is preserved under affine transformations:

V(αT + βI) = αV(T) + β(2.7)

for all α, β ∈ C, T ∈ A (however, in general not under polynomial transformations).
This, together with (2.2), implies that

V(T) = {λ0} if and only if T = λ0I.(2.8)

Another simple yet useful observation we provide along with the proof. We write
dH for the Hausdorff metric on the set of non-empty compact subsets of the complex
plane.

Lemma 2.1 Let A be a unital Banach algebra. For all S , T ∈ A it holds that

dH(V(S), V(T)) ≤ ∥S − T∥.

In particular, the mapping T ↦ V(T) is uniformly continuous.

Proof For each ϕ ∈ A∗ with ϕ(1) = 1 and ∥ϕ∥ = 1 we have

dist(ϕ(S), V(T)) ≤ ∣ϕ(S) − ϕ(T)∣ ≤ ∥S − T∥

and, likewise,

dist(V(S), ϕ(T)) ≤ ∣ϕ(S) − ϕ(T)∣ ≤ ∥S − T∥.

So by definition of the Hausdorff distance, we have

dH(V(S), V(T)) = max{ sup
z∈V(S)

dist(z, V(T)), sup
z∈V(T)

dist(V(S), z)} ≤ ∥S − T∥

as desired. ∎

We conclude this list of properties of V(T) with the following estimate for the
growth of the resolvent, cf. [44, Lemma 1],

∥(λI − T)−1∥ ≤ dist(λ, V(T))−1 , λ ∉ V(T).(2.9)

3 Spectral constants

Let us turn to the main object of the study. Hereinafter let A denote a complex Banach
algebra with the unit I. Let Ω be an open or closed, simply connected bounded set.
We say that Ω is a C-spectral set for T ∈ A if Ω contains the spectrum of T and (1.1)
holds. Note that it is also possible to define C-spectrality for multiply connected and
unbounded sets, replacing polynomials by rational functions. However, this is not
relevant for the purposes of the current article.
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The algebraic numerical range as a spectral set in Banach algebras 5

We say that an element T ∈ A is polynomially bounded if there exists C > 0 such
that

∥p(T)∥ ≤ C sup
∣z∣≤1

∣p(z)∣,

for all p ∈ C[z]. We will typically investigate whether ∥T∥D is a C-spectral set for T,
which is equivalent to T/ ∥T∥ being polynomially bounded.

For an element T ∈ A we consider the linear mapping

ΦT ∶ C[z] ∋ f ↦ f (T) ∈ A.

and we define the numerical-range spectral constant of T as

Ψ(T) ∶= Ψ(T ,A) ∶= inf{C > 0 ∶ ∥p(T)∥ ≤ C sup
V(T)

∣p∣, p ∈ C[λ]},(3.1)

with inf ∅ = ∞. If finite, Ψ(T) is the smallest C ≥ 0 for which (1.1) holds with Ω =
V(T). Note that for T = λ0I (λ0 ∈ C) we have Ψ(T) = 1. For T not being the multiple
of the unit I we have that V(T) is a convex set that is not a singleton, cf. (2.8). In
this case Ψ(T) is the operator norm of ΦT with respect to the supremum norm on
V(T) and the usual norm on A, provided ΦT is bounded. As was already pointed out
in the introduction, if T is a contraction that is not polynomially bounded, we have
Ψ(T ,B(X)) = ∞, due to the first inequality in (2.2).

Finally, we define the (algebraic) numerical-range spectral constant of the algebra A
by

ΨA ∶= sup
T∈A

Ψ(T) ∈ [0,∞].(3.2)

Later on we will skip the adjective “algebraic” for brevity. Directly from (2.1), we get
that if B is a subalgebra of A sharing the same unit. Then

Ψ(T ;B) = Ψ(T ;A), ΨB ≤ ΨA ,(3.3)

note that we do not assume that any of these numbers are finite. Let us discuss the
elementary properties of the function T ↦ Ψ(T).

Proposition 3.1 The function A ∋ T ↦ Ψ(T) ∈ [0,+∞] has the following properties:
(i) Ψ(⋅) is bounded from below by 1;

(ii) Ψ(⋅) is lower semi-continuous;
(iii) Ψ(⋅) attains its minimum on every compact set;
(iv) Ψ(αT + βI) = Ψ(T) for every α ∈ C/{0}, β ∈ C, T ∈ A;
(v) for any C ∈ [1,∞), the set {T ∈ A ∶ Ψ(T) > C} is open and if it is nonempty then

λ0I belongs to its boundary for any λ0 ∈ C;
(vi) Ψ(⋅) is not continuous, unless it is constantly equal to one.

Proof Taking the polynomial p(z) = z shows (i).
(ii) Assume the contrary, i.e., that Ψ(⋅) is not lower semicontinuous at some point

T in A. Then there exists C ∈ (0,∞), an ε > 0 and a convergent sequence Tk → T
such that Ψ(T) > C + ε and Ψ(Tk) ≤ C for all k ≥ 1. Note that C is finite, regardless
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6 H. Blazhko et al.

of whether Ψ(T) is finite or not. Further, there exists a polynomial p ∈ C[z] such that
supV(T) ∣p∣ = 1 and ∥p(T)∥ ≥ C + ε. Now fix a number

0 < δ <
√

C + ε
C

− 1.

Since V(Tk) → V(T) with respect to the Hausdorff metric, there exists an integer
N1 ≥ 1 such that supV(Tk) ∣p∣ ≤ 1 + δ for all k ≥ N1. Since p(Tk) → p(T), there also is
an integer N2 ≥ 1 such that ∥p(Tk)∥ ≥ (1 + δ)−1∥p(T)∥ for all k ≥ N2. Thus, for k ≥
N ∶= max{N1 , N2} we have

Ψ(Tk)(1 + δ) ≥ Ψ(Tk) sup
V(Tk)

∣p∣ ≥ ∥p(Tk)∥ ≥
∥p(T)∥

1 + δ
≥ C + ε

1 + δ
.

However, this implies that Ψ(Tk) > C for all k ≥ N , which is a contradiction.
(iii) follows directly from (ii). To see (iv) define the mapping Λ ∶ C[z] ∋ p(z) ↦

p(αz + β) ∈ C[z] for fixed α ≠ 0 and β ∈ C and note that it is bijective. Hence, by (2.7),

Ψ(αT + βI) = inf{C > 0 ∶ ∥Λ(p)(T)∥ ≤ C sup
V(T)

∣Λ(p)∣, p ∈ C[λ]/{0}} = Ψ(T).

(v) Let us fix C > 1. Then the set S ∶= {T ∈ A ∶ Ψ(T) > C} is open as the function
Ψ(⋅) is lower semi-continuous. Fix λ0 ∈ C and take any T with Ψ(T) = C0 ∈ [C ,∞].
Then Ψ(αT + λ0I) = C0 for any α ≠ 0, hence λ0I is in the closure of S. As Ψ(I) = 1
we have that λ0I is on the boundary of S. Statement (vi) is also a consequence of this
reasoning. ∎

We provide one more elementary property of the function Ψ(⋅). Given a Banach
space X and its dual X′ we naturally define the adjoint T ′ ∈ B(X′) of T ∈ B(X). Recall
that the map T ↦ T ′ is a linear isometry. The following lemma shows that the algebraic
numerical range and numerical-range spectral constants (3.1) coincide for T and T ′.

Lemma 3.2 Let X be any Banach space. For any T ∈ B(X) the following is true:

(i) V(T ′ ,B(X′)) = V(T ,B(X));
(ii) Ψ(T ′ ,B(X′)) = Ψ(T ,B(X));

(iii) ΨB(X) ≤ ΨB(X′), with the inequality being an equality for reflexive X.

Proof (i) Since for any θ ∈ R, α > 0 we have

∥IX′ + αeiθ T ′∥B(X′) = ∥IX + αeiθ T∥B(X) ,

the result follows from (2.4).
(ii) For ζ ∈ C we trivially have

Ψ(ζIX′ ,B(X′)) = Ψ(ζIX ,B(X)) = 1.
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The algebraic numerical range as a spectral set in Banach algebras 7

Assume that T is not a scalar multiple of IX . By (i) we have

Ψ(T ′ ,B(X′)) = sup
f ∈C[z]

f≠0

∥ f (T ′)∥B(X′)

∥ f ∥∞,V(T′ ,B(X′))

= sup
f ∈C[z]

f≠0

∥ f (T)′∥B(X′)

∥ f ∥∞,V(T′ ,B(X′))

= sup
f ∈C[z]

f≠0

∥ f (T)∥B(X)

∥ f ∥∞,V(T ,B(X))

= Ψ(T ,B(X))

as desired.
The inequality in statement (iii) is now obvious. Further, if X is reflexive, then T ↦

T ′ is surjective and the equality follows. ∎

The ε-hull (ε > 0) of a compact set S ⊆ C is defined as Sε = {x ∈ C ∣ dist(x , S) ≤ ε}.
As it was already mentioned in the introduction, the constant ΨA might be infinite
for some algebras. However, both the ε-hull of the algebraic numerical range V(T)ε
and the disk (1 + ε) ∥T∥D are C-spectral sets, as the following proposition shows.

Proposition 3.3 For every Banach space X, any operator T ∈ B(X) and ε > 0 we have

∥p(T)∥ ≤ (1 + 1
2ε
) sup

z∈V(T)εd

∣p(z)∣, p ∈ C[z],

where d is the diameter of V(T). In particular, if ∥T∥ ≤ 1, then V(T)1 is a 2-spectral set.
Furthermore, for arbitrary ∥T∥,

∥p(T)∥ ≤ 1 + ε√
ε(2 + ε)

sup
∣z∣≤(1+ε)∥T∥

∣p(z)∣, p ∈ C[z].

Proof Since V(T)εd is convex, its compact boundary ∂V(T)εd is locally the graph
of a Lipschitz function and hence it is rectifiable. The first statement follows now
directly from the Cauchy integral formula (or, more precisely, from the Riesz–Dunford
calculus) and from the estimate (2.9). The fact that V(T)1 is a 2-spectral set follows
from taking ε = 1/2, so that εd ≤ ε ⋅ 2 ∥T∥ ≤ 1.

To see the second statement let T ∈ B(X), ε > 0 and p(z) = ∑n
k=0 ak zk . Further, let

c = (1 + ε)∥T∥ and consider

∥
n
∑
k=0

ak T k∥ = ∥
n
∑
k=0

ak ck( 1
c T)k∥ ≤ (

n
∑
k=0

∣ak ck ∣2)
1
2

(
∞
∑
k=0

(1 + ε)−2k)
1
2

= ∥ f ∥H2(D)Cε ,

where f (z) = ∑n
k=0 ak ck zk for z ∈ D, the norm ∥⋅∥H2(D) refers to the norm of the

Hardy space H2(D) and Cε to the constant above. Finally, we use that H∞(D), the
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8 H. Blazhko et al.

space of bounded analytic functions on D, embeds continuously into H2(D). More
precisely,

∥ f ∥H2(D) ≤ sup
∣z∣<1

∣ f (z)∣ = sup
∣z∣<c

∣p(z)∣,

which finishes the proof. ∎

Remark 3.4 Clearly the first estimate in Proposition 3.3 is not sharp, as for T
with V(T) being the disk of radius ∥T∥ (e.g., when T is the forward shift on �1)
the second bound is better. Furthermore, for large ε the second bound is also not
optimal. For example, taking ε = 2 in Proposition 3.3 leads to the estimate ∥ f (T)∥ ≤
C sup∣z∣≤3∥T∥ ∣ f (z)∣ with C = 3/

√
8 ≥ 1.06 for all polynomials f, while it is known that

this inequality holds even with C = 1, see [11, 31, 39].

4 Finite dimensional algebras

Let us recall that an element A of a Banach algebra is called algebraic if there exists
a polynomial p such that p(A) = 0. This is equivalent to the fact that A generates a
finite-dimensional subalgebra. The central theorem of this section is the following.

Theorem 4.1 For any unital Banach algebra A the numerical-range spectral constant
Ψ(T ,A) is finite for all algebraic elements T of A.

For the proof we need the following lemma, based on the estimation of the resolvent
growth near the algebraic numerical range, see [44].

Lemma 4.2 Let ∥⋅∥ be any unital submultiplicative norm on C
n×n . Let T ∈ Cn×n

and λ ∈ σ(T) be given. If λ belongs to the boundary ∂V(T), then λ is a semisimple
eigenvalue.

Proof Suppose that λ ∈ ∂V(T) is not semisimple. Then the Jordan normal form
of T contains a Jordan block J corresponding to λ of size s, where 1 < s ≤ n. Since
λ ∈ ∂V(T), we can find a sequence (λ i)i∈N in C/V(T) such that λ i → λ and d i ∶=
d(λ i , V(T)) = ∣λ i − λ∣. Let es be the sth standard basis vector of Cs and let ∥⋅∥1 denote
the operator norm induced by the �1-norm on C

s . Note that

∥(λ i − J)−1es∥1 =
s
∑
k=1

1
dk

i
.

On the other hand,

∥(λ i − J)−1es∥1 ≤ ∥(λ i − J)−1∥1 ≤ C∥(λ i − T)−1∥ ≤ C
d i

,

where C > 0 depends only on the similarity transformation for the Jordan decompo-
sition of T and the equivalence between the norms ∥⋅∥1 and ∥⋅∥. The last inequality
follows directly from (2.9). We deduce that

1 + 1
d i

+ ⋅ ⋅ ⋅ + 1
d s−1

i
≤ C ,

which contradicts d i → 0. ∎
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The algebraic numerical range as a spectral set in Banach algebras 9

Proof (of Theorem 4.1) Since T generates a finite-dimensional subalgebra, due to
(3.3) it is enough to consider only finite-dimensional unital Banach algebras A.
Furthermore, any such algebra A can be isometrically embedded in B(A). Therefore,
once again by (3.3), it is enough to consider only unital Banach algebras of operators
on finite-dimensional spaces. In other words, it is enough to show that for fixed
n ∈ N, fixed T ∈ Cn ,n and fixed unital Banach algebra norm ∥⋅∥ on C

n ,n one has
Ψ(T ,B(Cn , ∥⋅∥)) < ∞. Note that for some constant C (depending on the norm and
hence implicitly on the dimension n) we have that ∥p(T)∥ ≤ C ∥p(T)∥2 for any
polynomial p(z). Hence, we subsequently reduce the proof to showing that

∥p(T)∥2 ≤ C2 sup
V(T ,B(Cn ,∥⋅∥))

∣p∣, p ∈ C[z],

with some constant C2 possibly dependent on T. Let TJ denote the Jordan form of T
and let S denote the corresponding similarity transformation. We write

TJ = diag(λ1 , . . . , λr) ⊕ R, σ(T) = {λ1 , . . . , λr} ∪ σ(R),

where λ1 , . . . , λr are the semisimple eigenvalues written with their multiplicities and
R consists of all nontrivial Jordan blocks (possibly one of these two parts constitut-
ing TJ might be void). Recall that the algebraic numerical range V(T ,B(Cn , ∥⋅∥))
has the property that all eigenvalues of T on its boundary are semisimple by
Lemma 4.2. Hence, the eigenvalues of R (if there are any) lie inside the interior
of V(T ,B(Cn , ∥⋅∥)), by Lemma (4.2). The boundary ∂V(T ,B(Cn , ∥⋅∥)) is rectifi-
able. Estimating in a routine way the Cauchy integral formula we receive ∥p(R)∥ ≤
C1 supV(T ,B(Cn ,∥⋅∥)) ∣p∣ for any polynomial p and some constant C1, depending on the
maximum of the norm of the resolvent of R on ∂V(T ,B(Cn , ∥⋅∥)). Therefore,

∥p(T)∥2 ≤ ∥S∥2 ∥S−1∥2 ∥p(TJ)∥2

and

∥p(TJ)∥2 = max(∣p(λ1)∣, . . . , ∣p(λr)∣, ∥p(R)∥)
≤ max(1, C1) sup

V(T ,B(Cn ,∥⋅∥))
∣p∣,

for all p ∈ C[z], from which we obtain the constant C2. ∎

Immediately we provide an example that the numerical-range spectral constant
ΨB(Cn ,∥⋅∥p) of the matrix algebra with the �p-induced norm depends on the dimension
n. It should not come as surprise that the “bad” matrix will be the Jordan block

Jn ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 ⋱

⋱ ⋱
0 1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cn×n .

The following facts we use to derive suitable operator norm estimates are well known
and can be traced back to the works of Shapiro [43] and Rudin [41]. There exists Δ > 0
such that for every n ∈ N there exists a polynomial fn = ∑n−1

k=0 αk zk of degree n − 1,
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10 H. Blazhko et al.

with coefficients αk all equal to either 1 or −1, and satisfying

∣ fn(z)∣ ≤ Δ
√

n, ∣z∣ = 1, n = 1, 2, . . . .(4.1)

The best known constant is Δ =
√

6, see [3]. We also refer to [4] for a recent solution
of the related Littlewood conjecture [34], stating that there even exist such polynomials
satisfying the lower bound δ

√
n ≤ ∣ fn(z)∣ ≤ Δ

√
n with some constants 0 < δ ≤ Δ

independent of n.

Theorem 4.3 Let p ∈ [1,∞] with Hölder conjugate q ∈ [1,∞]. The numerical-range
spectral constant (3.1) of the Jordan block in the �p-induced norm satisfies

Ψ(Jn ,B(Cn , ∥⋅∥p)) ≥ sup
f ∈C[z]

f≠0

∥ f (Jn)∥p

∥ f ∥∞,D
≥ 1√

6
nmax{ 1

p , 1
q }−

1
2

for all n ∈ N.

Proof The first inequality follows from the fact that ∥Jn∥ ≤ 1. To see the second one
observe that for any polynomial f of degree n − 1 with coefficients α0 , α1 , α2 , . . . , αn−1
the polynomial functional calculus of Jn is given by

f (Jn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α1 α2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ αn−1
α0 α1 ⋮

⋱ ⋱ ⋮
⋱ α1 α2

α0 α1
α0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From this it quickly follows that

∥ f (Jn)∥p ≥ ∥ f (Jn)en∥p =
⎧⎪⎪⎨⎪⎪⎩

(∑n−1
j=0 ∣α j ∣p)

1
p p < ∞

maxn−1
j=0 ∣α j ∣ p = ∞

and, under the Banach space isomorphism (Cn , ∥⋅∥p)′ = (Cn , ∥⋅∥q),

∥ f (Jn)∥p = ∥ f (Jn)′∥q ≥ ∥ f (Jn)′e1∥q =
⎧⎪⎪⎨⎪⎪⎩

(∑n−1
j=0 ∣α j ∣q)

1
q q < ∞

maxn−1
j=0 ∣α j ∣ q = ∞

.

Applying this to the polynomials from (4.1), we conclude that

sup
f ∈C[z]

f≠0

∥ f (Jn)∥p

∥ f ∥∞,D
≥
∥ fn(Jn)∥p

∥ fn∥∞,D
≥ max{n

1
p , n

1
q }√

6
√

n
= 1√

6
nmax{ 1

p , 1
q }−

1
2

as desired. ∎

It remains unknown whether ΨA is finite for every matrix algebra A.
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The algebraic numerical range as a spectral set in Banach algebras 11

5 Infinite-dimensional algebras with finite constant ΨA

The numerical-range spectral constant of the algebraB(H), where H is a Hilbert space
of any infinite dimension, has a special role. Namely, it follows from [21] that

ΨB(H) = ΨCro ∶= sup
n≥1

ΨB(Cn ,∥⋅∥2) < ∞.(5.1)

The universal constant ΨCro appearing above is called the Crouzeix constant, see the
introduction for a brief review on related results. Here we recall that 2 ≤ ΨCro ≤ 1 +

√
2.

It follows from (3.3) that if A is a C*-algebra, then, as a subalgebra of B(H) for
some Hilbert space H, we obtain

ΨA ≤ ΨCro .(5.2)

Further, there exist several sufficient conditions for embeddability of a given algebra
(not necessarily a *-algebra) in B(H)), see e.g., [9, 10], guaranteeing in turn (5.2). Let
us now present two instances where the numerical range-spectral constant (3.2) can
be computed explicitly.

Theorem 5.1 Let X be a compact space and let B be a Banach algebra. Let C(X ,B)
be the Banach algebra of B-valued continuous functions on X with the norm ∥ f ∥ ∶=
supx∈X ∥ f (x)∥B. Then the corresponding numerical-range spectral constants, defined
in (3.2), satisfy

ΨC(X ,B) = ΨB ,

regardless of whether ΨB is finite or not. In particular, for any unital commutative
C*-algebra A the constant ΨA equals 1.

Proof Assume first that ΨB is finite. Let f ∈ C(X ,B). Note that each pair (x , ϕ),
where x ∈ X and ϕ ∈ B′ with ∥ϕ∥ = 1 = ϕ(I), constitutes a functional f ↦ ϕ( f (x)) in
the dual space C(X ,B)′. Therefore,

∥p( f )∥C(X ,B) = sup
x∈X

∥p( f )(x)∥

= sup
x∈X

∥p( f (x))∥

≤ ΨB sup
x∈X

sup
ϕ∈B′

∥ϕ∥=1=ϕ(I)

∣p(ϕ( f (x))∣

which shows the inequality ΨC(X ,B) ≤ ΨB. The reverse inequality, and the case
ΨB = ∞ follow by identifying B with constant functions in C(X ,B) and applying
(3.3).

The second statement follows from identifying A with the algebra C(X ,C) and
Proposition 3.1(i). ∎

Given a Hilbert space H, the Calkin algebra is defined as the quotient

C(H) ∶= B(H)/K(H),

where K(H) denotes the ideal of compact operators in the bounded linear operators
B(H) on H. For an operator T ∈ B(H) its equivalence class will be denoted by [T].
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12 H. Blazhko et al.

In the proof below a mapping between two C*-algebras is called an embedding if it is
a linear isometry that is multiplicative and preserves the involution and identity.

Theorem 5.2 For a separable infinite-dimensional Hilbert space H we have the follow-
ing equality between the numerical-range spectral constants (3.2)

ΨC(H) = ΨCro .(5.3)

Furthermore, for any T ∈ B(H), we have

Ψ([T],C(H)) ≤ Ψ(T + K ,B(H))(5.4)

for some K ∈K(H).

Proof Let us recall that the quotient of a C*-algebra by a closed *-ideal is again a
C*-algebra. Thus the Calkin algebra is a C*-algebra. Then the inequality ΨC(H) ≤ ΨCro
follows from (5.2) and (5.1) via the fact thatC(H) can be embedded in a C*-subalgebra
ofB(H̃) for some Hilbert space H̃. The reverse inequality follows again from (5.2) and
(5.1) and the fact that the algebra B(Cd , ∥⋅∥2) can be embedded in a C*-subalgebra of
the Calkin algebra ΨC(H). Below we present a simple proof of the latter fact, referring
also to [25] for a rich theory of embedings of C*-algebras into the Calkin algebra.

Note that it is enough to embed B(Cd , ∥⋅∥2) in C(H0) for some separable Hilbert
space H0. We define H0 ∶= �2 ⊗C

d and let π(T) = [I�2 ⊗ T] ∈ C(H0). Let Pk be an
orthogonal projection on the first k basis vectors of �2 and let Qk = (I�2 − Pk) ⊗ ICd .
By [37, Proposition 6], we have that

∥π(T)∥C(H0) = lim
k→∞

∥Qk(I�2 ⊗ T)Qk∥B(H0) = ∥T∥B(H0) .

Hence, the mapping π is an isometry, it is also clearly linear, multiplicative, and
preserves the adjoint and identity.

Let us show now (5.4). By [18] (see also [37]) there exists K ∈K(H) such that
V(T +K(H)) = V(T + K). It follows that

∥p([T])∥C(H) = ∥[p(T)]∥C(H)
≤ ∥p(T + K)∥B(H)
≤ Ψ(T + K) ⋅ supV(T+K) ∣p∣
= Ψ(T + K) ⋅ supV([T]) ∣p∣

for any polynomial p. ∎

6 Algebras with infinite constant ΨA

Below we show that the numerical-range spectral constant Ψ(⋅) (see (3.1)) can attain
the value ∞ as soon as we step away from C*-algebras or matrix Banach algebras. We
use the classical left- and right-shift operators and compute their algebraic numerical
range V(T) for completeness.
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The algebraic numerical range as a spectral set in Banach algebras 13

Theorem 6.1 Let p ∈ [1,∞]. The left-shift L and right-shift R satisfy:
(i) V(L,B(�p)) = V(R,B(�p)) = D;

(ii) Ψ(L,B(�p)) = Ψ(R,B(�p)) =
⎧⎪⎪⎨⎪⎪⎩

1 p = 2
∞ p ≠ 2

.

Proof Suppose that p ∈ [1,∞) with Hölder conjugate q ∈ (1,∞], then (�p)′ = �q

(i.e., �q is the dual space of �p) with R′ = L and using Lemma 3.2 we deduce that

V(R,B(�p)) = V(R′ ,B((�p)′)) = V(L,B(�q)),
Ψ(R,B(�p)) = Ψ(R′ ,B((�p)′)) = Ψ(L,B(�q)).

For p = ∞ we have �∞ = (�1)′ with R = L′ and therefore

V(R,B(�∞)) = V(L′ ,B((�1)′)) = V(L,B(�1)),
Ψ(R,B(�∞)) = Ψ(L′ ,B((�1)′)) = Ψ(L,B(�1)).

Hence it suffices to prove both (i) and (ii) only for the left-shift L.
(i) Assume p ∈ [1,∞). Since ν(L,B(�p)) ≤ ∥L∥p = 1, we have V(L,B(�p)) ⊆ D. To

see that the reverse inclusion holds, define for each θ ∈ R and n ∈ N the vector

xθ ,n ∶= n−
1
p (1, e−iθ , e−2iθ , . . . , e−(n−1)iθ , 0, . . .) ∈ �p

and observe that

lim
α↓0

∥I�p + αeiθ L∥p − 1
α

≥ lim
α↓0

∥(I�p + αeiθ L)xθ ,n∥p − 1
α

= lim
α↓0

n−
1
p (1 + (n − 1)(1 + α)p)

1
p − 1

α
= n − 1

n
,

which after letting n →∞ yields sup Re eiθ V(L,B(�p)) ≥ 1 by the equality (2.6). The
case p = ∞ follows from a similar but more direct argument using the vector xθ ∶=
(1, e−iθ , 0, . . .) for θ ∈ R.

(ii) The case p = 2 follows directly from von Neumann’s inequality as
V(L,B(�2)) = D and ∥L∥2 = 1. Assume p ∈ [1,∞]/{2} and let n ∈ N be arbitrary. Let
Pn ∶ �p → (Cn , ∥⋅∥p) and Qn ∶ (Cn , ∥⋅∥p) → �p be defined by

Pn(x1 , . . . , xn , xn+1 , . . .) ∶= (x1 , . . . , xn), Qn(x1 , . . . , xn) ∶= (x1 , . . . , xn , 0, . . .).

Clearly, Pn Qn = ICn and Pn LQn = Jn and ∥Pn∥ = ∥Qn∥ = 1. For every f ∈ C[z], we
infer

Pn f (L)Qn = f (Pn LQn) = f (Jn)

and therefore ∥ f (L)∥p ≥ ∥ f (Jn)∥p . It follows that

Ψ(L,B(�p)) ≥ sup
f ∈C[z]

f≠0

∥ f (Jn)∥p

∥ f ∥∞,D
≥ 1√

6
nmax{ 1

p , 1
q }−

1
2 ,

by Theorem 4.3. Thus p ≠ 2 implies Ψ(L,B(�p)) = ∞ as desired. ∎
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14 H. Blazhko et al.

Theorem 6.1 says that both shifts on �p (p ≠ 2) are examples of operators with
operator norm 1 and numerical-range spectral constant ∞, the latter being due to the
fact that they are both not polynomially bounded. In the next example, we construct a
polynomially bounded operator T on a Banach space X with ∥T∥ = 1 and Ψ(T) = ∞.
Example 6.2 Consider the left-shift operator L∶ �p → �p for p ≠ 2. Endow C

2 with
the standard Hilbert norm and consider the algebraic direct sum

X ∶= C
2 ⊕ �p .

Equip X with a Banach norm so that the induced operator norm on B(X) satisfies
∥A⊕ B∥ = max{∥A∥2 , ∥B∥p} for all A ∈ B(C2) and B ∈ B(�p). Consider the matrix

E ∶= [0 1
0 0]

and define the operator from X to X as

T ∶= E ⊕ 1
2 L.

It is clear that ∥T∥ = 1. Since V(E ,B(C2)) = V( 1
2 L,B(�p)) = 1

2D, it quickly follows
that

sup Re eiθ V(T ,B(X)) = lim
α↓0

∥IX − αeiθ T∥ − 1
α

= max{ lim
α↓0

∥IC2 − αeiθ E∥ − 1
α

, lim
α↓0

∥I�p − αeiθ 1
2 L∥ − 1

α
} = 1

2

for all θ ∈ R and therefore V(T ,B(X)) = 1
2D as well.

Let us now prove that T is polynomially bounded. By the von Neumann inequality
we have ∥ f (E)∥2 ≤ sup

D
∣ f ∣ for all polynomials f, while by Proposition 3.3 we have

∥ f ( 1
2 L)∥p ≤ 2

√
3

3 sup
D
∣ f ∣ for all polynomials f. We deduce that

∥ f (T)∥ = max{∥ f (E)∥2 , ∥ f ( 1
2 L)∥p} ≤

2
√

3
3

sup
D

∣ f ∣(6.1)

for all polynomials f.
Finally, we show that Ψ(T ,B(X)) = ∞. Since V( 1

2 L,B(�p)) = 1
2D and

Ψ( 1
2 L,B(�p)) = ∞, there exists for each positive integer n some polynomial fn

such that

∥ fn( 1
2 L)∥p ≥ n sup

1
2 D

∣ fn ∣.

From this we deduce that

∥ fn(T)∥ ≥ ∥ fn( 1
2 L)∥p ≥ n sup

1
2 D

∣ fn ∣ = n sup
V(T ,B(X))

∣ fn ∣

for all n ∈ N and the claim follows. It remains an open question whether the constant
2
√

3
3 in (6.1) is optimal. In particular, it is unknown whether there exists an operator

T of norm 1 which is polynomially bounded with constant 1 but with Ψ(T) = ∞.
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The algebraic numerical range as a spectral set in Banach algebras 15

We now turn our attention to combinatorial Banach spaces. We will show that
for a large class of these spaces the universal spectral constant is infinite. Our idea
is based on the spreading property, hence it will include important examples such as
the Schreier space and the Tsirelson space, see, e.g., [14] and the references therein. Let
F be a family of subsets of the positive integers N, satisfying the following properties:

(1) every i ∈ N belongs to some F ∈ F;
(2) if {l1 , l2 , . . . , ln} ∈ F and l i ⩽ k i for k i ∈ N and all i = 1, . . . , n, then

{k1 , k2 , . . . , kn} ∈ F, (spreading property);
(3) for each n ≥ 1 there exists F ∈ F such that ∣F∣ ≥ n.

See also [28]. Consider the following norm on the space c00 of finitely supported
sequences:

∥x∥S ∶= sup
F∈F

∑
i∈F

∣x i ∣, x = (x i)∞i=1 ∈ c00 .(6.2)

We define the combinatorial Banach space S as the completion of c00 with respect to
the above norm. Below we show that the numerical-range spectral constant (3.2) of
the algebra B(S) is infinite.

Theorem 6.3 Let S be a combinatorial Banach space, defined as above, satisfying (1)–
(3). Then ΨB(S) = ∞.

Proof Let us fix a number k ∈ N. By property (3) of a combinatorial Banach space,
there exists n ≥ k such that there exists a subset (k1 , . . . , kn) ∈ F. Thanks to the
spreading property we have that

(kn , kn + 1, . . . , kn + n − 1) ∈ F.(6.3)

Let Pn denote the projection onto the coordinates kn + 1, . . . , kn + n and R be the right
shift, both defined on c00. Define the following linear operator

Sn = Pn ○ R, Sn((x j)∞j=1) = (0, . . . , 0
@AAAAAAAAABAAAAAAAAAC

kn

, xkn , . . . , xkn+n−1 , 0, 0, . . . ).

Observe that ∥Sn∥ ≤ 1, hence, it extends to a bounded operator of norm not greater
than 1 on the whole space S. Indeed, we have

∥Sn x∥S ≤ ∥Sn x∥�1
=

n−1
∑
i=0

∣xkn+i ∣ ≤ ∥x∥S ,

where the last inequality follows due to (6.3).
Further, observe that ∥Sn + λI∥S ≤ ∣λ∣ + 1 for λ ∈ C. In fact, we have equality. To see

this, take x = ekn = (0, . . . , 0, 1, 0, . . . ) (unit on the knth position) and note that it is a
unit vector, due to (6.3). Hence,

∥Sn + λI∥S = ∣λ∣ + 1, λ ∈ C,

again thanks to (6.3). From this, together with (2.3), we obtain that V(Sn) is the closed
unit disk.
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16 H. Blazhko et al.

Let fn be the polynomials as in (4.1). From the form of Sn we see that

fn+1(Sn)ekn = (0, . . . , 0
@AAAAAAAAABAAAAAAAAAC

kn−1

, α0 , α1 , . . . , αn−1 , 0, 0, . . . ),

where fn+1(z) = α0 + α1z + ⋅ ⋅ ⋅ + αnzn and α j ∈ {−1, 1} ( j = 0, . . . , n). Hence, using
(6.3) for the final time,

∥ fn+1(Sn)∥S ≥ n,

while supz∈D ∣ fn+1(z)∣ ≤
√

6
√

n + 1, which shows that ΨB(S) = ∞. ∎

Remark 6.4 There are several possibilities to extend the results of the current section
using similar methods. First, Theorem 6.3 can be easily extended to higher order
spaces, cf. [1, 5]. Second, one can show that for the algebra B(C(K)) the spectral
constant of the numerical range is infinite, under mild assumptions on K, in particular
covering Theorem 6.1 for p = ∞. We refrain from doing this, and in the subsequent
section we concentrate on the analysis of the case where the numerical range is not
necessarily a disk.

7 �1-induced norm

In this section we give explicit bounds of the numerical-range spectral constant ΨA,
see (3.2), for the algebra of 2 × 2-matrices with the operator norm ∥⋅∥1 induced by the
�1-norm on C

2.

Theorem 7.1 The following inequalities hold: 1.1 < ΨB(C2 ,∥⋅∥1) ≤ 13.

We divide the proof of this estimate into several steps. First we show that the
algebraic numerical range in the �1-induced norm algebra is the Gershgorin column
set. This natural result is crucial and, to the best of our knowledge, cannot be found in
the literature. The statement of Theorem 7.1 follows directly from Lemma 7.4, Lemma
7.5 (the upper bound), and Example 7.7 (the lower bound).

Theorem 7.2 In the algebra B(�1 , ∥⋅∥1) the algebraic numerical range of a bounded
operator T equals

V(T ,B(�1 , ∥⋅∥1)) = conv
∞
⋃
j=1

{D(t j, j ,
∞
∑

k=1,k≠ j
∣tk , j ∣)},

where (tk , j)k∈N ∶= Te j and e1 , e2 , . . . is the canonical basis of �1.
Therefore, the algebraic numerical range of a matrix T = [t i , j]n

i j=1 in the algebra
B(Cn×n , ∥⋅∥1) is given by the convex hull of the Gershgorin disks corresponding to its
columns.

Proof Before we proceed with the proof let us note that the operator norm of T ∈
B(�1 , ∥⋅∥1) can be calculated similarly to �1-matrix norm. Namely, let e1 , e2 , . . . be the
canonical basis of �1 and let e∗1 , e∗2 , . . . denote their dual operators (i.e., the coefficient
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The algebraic numerical range as a spectral set in Banach algebras 17

functionals corresponding to the Schauder basis (e j)∞j=1). Define tk , j = e∗k Te j . Then
the norm is given by

∥T∥1 = sup
j∈N

∑
k∈N

∣tk , j ∣.

Now let us fix an angle θ ∈ [0, 2π). Our goal is to find the supporting hyperplane
Hθ for the set V(T) using formulas (2.4)–(2.6). To simplify calculations let us rotate
the coordinate complex plane by θ, so that

T ′ ∶= [t′i , j]i , j∈N ∶= e−iθ T , H′ ∶= H0(T ′) = Hθ(T), r′ ∶= r0(T ′) = rθ(T).

Then the distance r′ can be expressed as

r′ = lim
α↓0

∥I + αT ′∥1 − 1
α

= lim
α↓0

sup
j∈N

{
∣1 + αt′j, j ∣ − 1 +∑∞k=1,k≠ j ∣αt′k , j ∣

α
} .

For each α let us choose a sequence of indices ( jm)m∈N approaching the supremum
above and define a function

f (α, m) ∶=
∣1 + αt′jm , jm

∣ − 1
α

+
∞
∑

k=1,k≠ jm

∣t′k , jm
∣, a ∈ (0, 1), m ∈ N.

Note that the function g(α) ∶= 1
α (∥I + αT∥ − 1) is decreasing, as for any α < β we have

g(α) =
∥ β

α I + βT∥
1
− β

α

β
≤
∥I + βT∥1 + ∥( β

α − 1) I∥ − β
α

β
= g(β).

Hence, we infer that

r′ = lim
n→∞

lim
m→∞

f (1/n, m).

Next we show that f (1/n, m) satisfies the conditions of the Moore–Osgood theorem
to switch the order of the limits. Note that lim

m→∞
f (1/n, m) = ∥I+1/nT′∥1−1

1/n < ∞ for each
n ∈ N by the definition. To find the other limit observe that for an arbitrary complex
number z = a + bi, we have

lim
n→∞

(∣z + n∣ − n) = lim
n→∞

a2 + 2an + b2
√
(a + n)2 + b2 + n

= a = Re(z).

And consequently,

lim
n→∞

f (1/n, m) =
∞
∑

k=1,k≠ jm

∣t′k , jm
∣ + Re(t′jm , jm

).(7.1)

Let us show that lim
n→∞

f (1/n, m) is also uniform in m. Observe that ∣t′k , j ∣ ≤ ∥T∥1 for
all k, j. For ε > 0 let us choose n > 2

ε M2, where M ∶= max{1, ∥T∥1}. For simplicity let
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18 H. Blazhko et al.

Figure 1: Illustration of the Gershgorin disk D(t′j, j ,∑∞k=1,k≠ j ∣t′k , j ∣) together the tangent line l j,θ .
Its radius and the distance from 0 to its center is highlighted. The left picture shows an example
when Re(t′j, j) is positive and the right one corresponds to the negative case.

t′jm , jm
= am + ibm be the decomposition into real and imaginary parts. Then

0 ≤ f (1/n, m) − lim
n→∞

f (1/n, m) =
√
(am + n)2 + b2

m − n − am

= b2
m√

(am + n)2 + b2
m + n + am

≤ M2

n − M
≤ ε

for all m ∈ N. Hence, we can change the order of the limits in the definition of r′, which
together with the equality (7.1) provides

r′ = lim
m→∞

⎛
⎝

∞
∑

k=1,k≠ jm

∣t′k , jm
∣ + Re(t′jm , jm

)
⎞
⎠
= sup

j∈N

⎧⎪⎪⎨⎪⎪⎩

∞
∑

k=1,k≠ j
∣t′k , j ∣ + Re(t′j, j)

⎫⎪⎪⎬⎪⎪⎭
.

Let us now fix j and consider the Gershgorin disk corresponding to the jth
column of T ′, i.e., D(t′j, j ,∑∞k=1,k≠ j ∣t′k , j ∣). Let us look at its vertical tangent lines. If
the Gershgorin disk is just a point there is only one such line passing through t j, j , let
us call it l j,θ . Otherwise there are two such lines. Let us denote their touch points as p1
and p2 and without loss of generality assume that Re(p1) < Re(p2). Then we denote
the line corresponding to p2 by l j,θ (see Figure 1).

Now it can be easily seen that the expression∑n
k=1,k≠ j ∣t′k , j ∣ + Re(t′j, j) is equal to the

distance from 0 to the tangent line l j,θ , which, in turn, is equal to Re(p2). So, r′ is equal
to the supremum of such distances from 0 to l j,θ over all j ∈ N. Hence, half-plane H′
contains all Gershgorin disks and, moreover, it is tangent to the closure of their convex
hull. That means that H′ = Hθ(T) is simultaneously a supporting half-plane for the
algebraic numerical range V(T) and for the convex hull of the disks. Since both these
sets are convex, they must be equal. ∎

Remark 7.3 Note that Theorem 7.2 along with the inclusion σ(T) ⊆ V(T) discussed
in Section 2, provides a broader explanation of why the Gershgorin set contains the
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eigenvalues. Additionally, it is worth recalling the relationship between the Gershgorin
sets and the classical numerical range, as discussed in [15, 30]. Namely, the classical
numerical range is always contained in the convex hull of the union of the disks

D(t i , i ,
1
2

n
∑

k=1,k≠i
∣t i ,k ∣ + ∣tk , i ∣),

which makes the latter set automatically a (1 +
√

2)-spectral set in the algebra
B(Cn×n , ∥⋅∥�2) and a

√
n(1 +

√
2)-spectral set in the algebra B(Cn×n , ∥⋅∥�1). It is,

however, easy to verify that in general neither V(T ,B(Cn , ∥⋅∥1)) contains the classical
numerical range nor conversely.

Now let us consider separate cases depending on the Jordan form of the 2 × 2
matrix.

Lemma 7.4 If T ∈ C2,2 is similar to a Jordan block of size 2 then Ψ(T ;B(C2 , ∥⋅∥1)) ≤
2 +

√
2.

Proof Observe that T can be written in the following from

T = [a b
c d] [

x 1
0 x] [

d −b
−c a ] , a, b, c, d , x ∈ C, with ad − bc = 1.

Since Ψ(αT + βI) = Ψ(T) (see Proposition 3.1), we can assume x = 0. Then T takes
form

T = [−ac a2

−c2 ac]

and its algebraic numerical range V(T) is given by the convex hull of two
disks D(−ac, ∣c∣2) and D(ac, ∣a∣2). Let us take a polynomial p ∈ C[z] such that

sup
z∈V(T)

∣p(z)∣ = 1. By a straightforward computation, we have

p(T) = [a b
c d] [

p(0) p′(0)
0 p(0) ] [

d −b
−c a ] = [p(0) − acp′(0) a2 p′(0)

−c2 p′(0) p(0) + acp′(0)] .

and so ∣∣p(T)∣∣1 = max{∣p(0) − acp′(0)∣ + ∣c2 p′(0)∣, ∣p(0) + acp′(0)∣ + ∣a2 p′(0)∣}.
Notice that the disk D (0, ∣a∣

2+∣c∣2
2 ) is contained in the algebraic numerical range

V(T). This can be seen by calculating the midline of the trapezoid formed by a
common tangent to two disks D(−ac, ∣c∣2) and D(ac, ∣a∣2) and radii drawn to this
tangent (see Figure 2). So, p is analytic in D (0, ∣a∣

2+∣c∣2
2 ) and bounded by 1. Hence, by

Cauchy’s inequality for the Taylor series coefficients of a complex analytic function,
we get ∣p′(0)∣ ≤ 2

∣a∣2+∣c∣2 .
Therefore,

∥p(T)∥1 ≤ ∣p(0)∣ + (∣ac∣ + max(∣a∣2 , ∣c∣2))∣p′(0)∣ ≤ 1 + 2 ∣ac∣ + max(∣a∣2 , ∣c∣2)
∣a∣2 + ∣c∣2 .
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Figure 2: Illustration of the two disks D(−ac, ∣c∣2) and D(ac, ∣a∣2) with highlighted trapezoid
formed by their common tangent and radii drawn to this tangent. The circle with dotted
line illustrates the disk D (0, ∣a∣

2+∣c∣2
2 ) which is contained in the closure of the convex hull of

D(−ac, ∣c∣2) and D(ac, ∣a∣2).

Using the fact that the function f (α, β) = αβ+β2

α2+β2 is bounded by (1 +
√

2)/2 for 0 < α ≤
β we obtain

∥p(T)∥1 ≤ 2 +
√

2

as desired. ∎
Lemma 7.5 If T ∈ C2,2 is a diagonalizable matrix then Ψ(T ;B(C2 , ∥⋅∥1)) ≤ 13.

Proof The matrix T can be written in the form

T = [a b
c d] [

x 0
0 y] [

d −b
−c a ] , a, b, c, d , x , y ∈ C, ad − bc = 1.

As Ψ(λI) = 1, let us assume x ≠ 0, x ≠ y. Also, since Ψ(T) = Ψ( 1
x (T − yI)), we can

assume x = 1 and y = 0. Then

T = [a, c][d ,−b]T = [ad −ab
cd −bc] .

Let us fix a polynomial p ∈ C[z] such that sup
z∈V(T)

∣p(z)∣ = 1. Notice that

p(T) = [a b
c d] [

p(1) 0
0 p(0)] [

d −b
−c a ] = (p(1) − p(0))T + p(0)I,

and hence by the triangle inequality

∥p(T)∥1 ≤ ∣p(1) − p(0)∣ ∥T∥1 + ∣p(0)∣.(7.2)

Since supV(T) ∣p∣ ≤ 1, we clearly have ∣p(0) − p(1)∣ ≤ 2 and ∣p(0)∣ ≤ 1. Thus, if ∥T∥1 ≤
6, then

∥p(T)∥1 ≤ 2 ⋅ 6 + 1 = 13.

Now assume that ∥T∥1 > 6. Observe that the algebraic numerical range V(T) is given
by the convex hull of Gershgorin disks D1 ∶= D(ad , ∣cd∣) and D2 ∶= D(−bc, ∣ab∣) =
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Figure 3: Illustration of the disks D1 ∶= D(ad , ∣cd∣) and D2 ∶= D(−bc, ∣ab∣) with highlighted
trapezoid formed by their common tangent l closest to 0 and radii drawn to it.

D(1 − ad , ∣ab∣). Each of the eigenvalues 0 and 1 of T belongs to at least one of the
disks D1 and D2 by the Gershgorin circle theorem.

Define a polynomial q ∈ C[z] as q(z) ∶= p(z) − p(0). Notice that q(0) = 0 and also
∣q(z)∣ ≤ ∣p(z)∣ + ∣p(0)∣ ≤ 2 for z ∈ V(T). Let r0 denote the maximal radius such that
D(0, r0) ⊆ V(T). If r0 ≥ 1, then, by Schwarz’s lemma,

∣p(1) − p(0)∣ = ∣q(1)∣ ≤ 2
r0

.

Otherwise, if r0 < 1, then the same inequality holds trivially, as then ∣q(1)∣ ≤ 2 ≤ 2
r0

.
Next we estimate r0. Draw the line l tangent to disks D1 and D2 which is closer

to 0 (see Figure 3). Let t0 and t1/2 denote the orthogonal projections of 0 and 1/2
onto l. Consider the trapezoid formed by the centers of D1 and D2, and the points
where l meets the disks. Let us recall that ad − bc = 1, so the midpoint of ad and −bc
is (ad − bc)/2 = 1/2. Then it is easy to see that the line segment with endpoints 1/2
and t1/2 is a midline of this trapezoid and hence ∣t1/2 − 1/2∣ = 1

2 (∣ab∣ + ∣cd∣).
Let m0 denote the projection of 0 onto the midline. Then we have ∣t0∣ = ∣t1/2 − m0∣ =

∣t1/2 − 1/2∣ − ∣m0 − 1/2∣. It is easy to see that ∣m0 − 1/2∣ ≤ 1/2 as it is a leg in a right
triangle with hypotenuse of length 1/2. Altogether we get

r0 = ∣t0∣ ≥
∣ab∣ + ∣cd∣ − 1

2
(7.3)

Depending on the values of ∣a∣, ∣b∣, ∣c∣ and ∣d∣ we now distinguish between several
cases.

Case 1: ∣a∣ ≤ ∣c∣ and ∣b∣ ≤ ∣d∣, or equivalently 0, 1 ∈ D1. In this case, we have ∥T∥1 =
∣ad∣ + ∣cd∣ ≤ 2∣cd∣. Inequality (7.2) together with (7.3) gives

∥p(T)∥1 ≤ 4 ∣ad∣ + ∣cd∣
∣ab∣ + ∣cd∣ − 1

+ 1 ≤ 4 2∣cd∣
∣cd∣ − 1

+ 1.
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Since we also assumed ∥T∥1 > 6, we have ∣cd∣ > 3 and hence 2∣cd ∣
∣cd ∣−1 < 3. Altogether we

get

∥p(T)∥1 ≤ 4 ⋅ 3 + 1 = 13.

Case 2: ∣a∣ > ∣c∣ and ∣b∣ > ∣d∣, or equivalently 0, 1 ∈ D2. This case is symmetrical to
the previous Case 1. Indeed, we have 6 < ∥T∥ = ∣ab∣ + ∣cb∣ ≤ 2∣ab∣ and

∥p(T)∥1 ≤ 4 ∣ab∣ + ∣bc∣
∣ab∣ + ∣cd∣ − 1

+ 1 ≤ 4 2∣ab∣
∣ab∣ − 1

+ 1 ≤ 13.

Case 3: ∣a∣ ≤ ∣c∣ and ∣b∣ > ∣d∣, or equivalently 0 ∈ D1 and 1 ∈ D2. In this case inequal-
ity (7.2) together with (7.3) gives

∥p(T)∥1 ≤ 4 ∣ab∣ + ∣bc∣
∣ab∣ + ∣cd∣ − 1

+ 1 = 4 ∣ab∣ + ∣bc∣
(∣ab∣ + ∣bc∣) + (∣cd∣ − ∣bc∣) − 1

+ 1.

Let us estimate difference ∣bc∣ − ∣cd∣. Firstly 0 < ∣bc∣ − ∣cd∣ due to our assumption ∣b∣ >
∣d∣. On the other hand, since ∣a∣ ≤ ∣c∣ and ad − bc = 1, by the triangle inequality we
have ∣bc∣ − ∣cd∣ ≤ ∣bc∣ − ∣ad∣ ≤ ∣bc − ad∣ = 1. So,

∥p(T)∥1 ≤ 4 ∣ab∣ + ∣bc∣
∣ab∣ + ∣bc∣ − 2

+ 1 ≤ 7,

where in the last line we use the assumption ∥T∥ = ∣ab∣ + ∣bc∣ > 6 which implies
∥T∥
∥T∥−2 ≤ 3

2 .
Case 4: ∣a∣ > ∣c∣ and ∣b∣ ≤ ∣d∣, or equivalently 0 ∈ D2 and 1 ∈ D1. This case is sym-

metrical to Case 3. Similar reasoning gives 0 < ∣ad∣ − ∣ab∣ ≤ ∣ad∣ − ∣bc∣ ≤ ∣ad − bc∣ = 1
and

∥p(T)∥1 ≤ 4 ∣ad∣ + ∣cd∣
(∣ad∣ + ∣cd∣) + (∣ab∣ − ∣ad∣) − 1

+ 1 ≤ 4 ∣ad∣ + ∣cd∣
∣ad∣ + ∣cd∣ − 2

+ 1 ≤ 7.

∎

Directly from Theorems 5.1 and 7.1 we receive the following explicit example of an
infinite-dimensional algebra, which is not a C*-algebra, but nonetheless has a finite
spectral constant.

Corollary 7.6 Let X be a compact space, consider the Banach algebra A = C(X ,C2,2)
of matrix-valued functions on X with the norm ∥ f ∥ ∶= supx∈X ∥ f (x)∥1. Then ΨA ∈
[1.1, 13].

The following example illustrates that the constant ΨB(C2 ,∥⋅∥1) is greater than 1.

Example 7.7 Consider the matrix T = [2 1
0 0] and the function f (z) = cos(z). Since

T = [−1 1
2 0] [

0 0
0 2] [

0 1/2
1 1/2] ,
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a straightforward calculation shows that

∥ f (T)∥1 = max(∣ cos(2)∣, ∣ cos(2) − cos(0)∣
2

+ ∣ cos(0)∣) > 1.708

and that the algebraic numerical range is given by V(T) = conv(D ∪ {2}). On the
other hand, notice that

cos(x + iy) = cos(x) cosh(y) − i sin(x) sinh(y)

and so

∣ cos(x + iy)∣2 = cos(x)2(1 + sinh(y)2) + sin(x)2 sinh(y)2 = cos(x)2 + sinh(y)2 .

Hence we have

max
z∈V(T)

∣ f (z)∣ ≤
√

1 + sinh(1)2 < 1.55

and

Ψ(T ,B(C2 , ∥⋅∥1)) > 1.708/1.55 > 1.1.

8 Conclusions

We have discussed the spectral constant of the numerical range for various Banach
algebras. Summarizing, we see three appearing questions for future research.

1. Is it true that ΨA < ∞ for any matrix algebra A? More generally, is Ψ(T)
uniformly bounded for all Banach-algebra elements that are algebraic of a fixed degree
n?

2. Does there exist an operator T which is polynomially bounded with constant 1,
but with Ψ(T) = ∞?

3. Is it true that Ψ(T) < ∞ for all bounded operators on a combinatorial Banach
space with the spreading property, in particular on the Schreier space?
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