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ABSTRACT

The problem of determining optimal retention levels for a non-life portfolio consisting
of a number of independent sub-portfolios was first discussed by de Finetti (1940). He
considered retention levels as optimal if they minimised the variance of the insurer's
profit from the portfolio subject to the constraint of a fixed level of expected profit. In
this paper we consider a similar problem, changing the criterion for optimality to mi-
nimising the probability of ruin, either in discrete or continuous time. We investigate
this problem through a series of case studies based on a real portfolio.
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1. INTRODUCTION

This paper is a risk-theoretic discussion of the problem of determining the relative
reinsurance retention levels for a non-life portfolio consisting of a number of indepen-
dent sub-portfolios. We consider only simple forms of proportional and excess loss
reinsurance. Our discussion will be based largely on numerical results derived from a
"pseudo-real" portfolio. The characteristics and construction of this portfolio are
described in detail in Section 2 below.

The classical results in this area are due to de Finetti (1940) (see also Biihlmann
(1970, section 5.2)). De Finetti derived relative retention levels which have simple
forms by considering the insurer's net (of reinsurance) profit from the portfolio at the
end of a given time period. He then minimised the variance of this profit subject to its
expected value being fixed. A summary of de Finetti's results is given in Section 3
below.

In Section 4 we discuss some alternative criteria for determining relative retention
levels. These alternatives are to minimise the insurer's probability of ruin over a finite
time horizon, either in continuous or in discrete time. Questions of interest to us are:
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(1) Do some or all of our probability of ruin criteria produce relative retention levels
close to those given by de Finetti's approach?

(2) Are the relative retention levels produced by a probability of ruin in continuous
time criterion close to those produced by a discrete time criterion?

(3) How do the relative retention levels produced by our probability of ruin criteria
depend on:
(i) the insurer's expected net profit?
(ii) the time horizon for ruin?
(iii) the insurer's initial surplus?

These questions are investigated in Section 5 (proportional reinsurance) and Section 6
(excess loss reinsurance). Our conclusions are set out in Section 7.

2. THE PORTFOLIO

In order to investigate the problems outlined in the previous section, we have con-
structed a non-life insurance portfolio based on a study by Ramlau-Hansen of data
supplied by a Danish insurance company. Ramlau-Hansen's work is detailed in a
series of working papers (1986a, 1986b, 1986c and 1986d) and a conference paper
(1983) and summarised in two papers (1988a and 1988b).

Ramlau-Hansen analysed data from the Nye Danske Lloyd insurance company co-
vering the period 1977 to 1981. The data related to policies on:
- single-family houses, and,
- dwellings (mainly apartment buildings, but also some office buildings).
These policies covered the buildings, but not their contents, against:
- glass damage, i.e. damage to windows and sanitary fittings,
- fire damage, and,
- windstorm damage.
Claims from these three sources will have very different characteristics:
- Glass claims: these will be relatively numerous but for rather small amounts.
- Fire claims: these will be far less frequent than glass claims but will be for far grea-

ter amounts.
- Windstorm claims: the number of windstorms will be very small but each wind-

storm will produce a large number of individual claims.
In terms of claims experience, we would expect glass claims to be relatively stable,
fire claims to be less stable and windstorm claims to be even less stable over time.

Our portfolio is based on Ramlau-Hansen's "Standard Portfolio" (1986d, section
4.3). It consists of three sub-portfolios covering glass, fire and windstorm claims, each
of which can be reinsured separately. However, within each subportfolio, single-
family houses and dwellings cannot be reinsured separately. The total annual expected
claim amount, before reinsurance, is 500 x 106 of which 25% (125 x 106) is expected
to come from glass claims, 70% (350 x 106) from fire claims and the remaining 5%
(25 x 106) from windstorm claims. (Ramlau-Hansen's monetary unit was Danish Kro-
ner at 1981 values. For our purposes only relative monetary values are important, not
absolute values.)
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Ramlau-Hansen modelled in some detail the annual claim numbers and amounts
distributions for each sub-portfolio. We have adopted Ramlau-Hansen's models for
our portfolio with some very minor simplifications. Our models are as follows:

Glass claims: Since glass claim amounts are almost always relatively small, we
have assumed that this sub-portfolio would not be reinsured under an excess loss
treaty, but would be reinsured under a proportional reinsurance treaty. (This agrees
with Ramlau-Hansen's study (1988b, section 3.2).) For this reason we need to specify
a model for the aggregate annual glass claims but not for claim numbers and claim
amounts separately. We have assumed that the aggregate annual glass claims have a
normal distribution. This is a slight simplification of Ramlau-Hansen's model but his
analysis (1986a, Table 12) does show that the skewness of aggregate annual glass
claims is very small. The expected aggregate annual glass claims are 125 x 106, as
explained above, and we have taken the standard deviation to be 4.3 x 106. The
standard deviation has been inferred from the information given by Ramlau-Hansen
(1986a, Table 14).

Fire claims: The annual fire claim rate for dwellings is about 0.0885. (See Ramlau-
Hansen (1986b, Tables 1 and 2).) The annual fire claim rate for single-family houses
is 0.0127. (See Ramlau-Hansen (1983, Tables 1 and 7).) In 1981, the numbers of
dwellings and single-family houses in Ramlau-Hansen's data were 12,318 and 83,699,
respectively. These figures indicate that the expected number of claims each year is
approximately the same for dwellings and single-family houses. Ramlau-Hansen
(1988a, section 2.1) assumes claim numbers have a Poisson distribution. We have
assumed the Poisson parameter for dwellings and for single-family houses is 7,893.9.
(This value, when combined with the claim amount distributions specified below,
gives a mean aggregate annual fire claim amount of 350 x 106, as required.)

We use different claim amount distributions for dwellings and for single-family
houses. In each case, the distribution is loggamma, truncated at an expected maximum
loss (EML), with a density function of the form:

a1 1
f(x;a,y) = (log(x/xo))

r~\x/xo)~
(a+n forx0 < x < EML

r(y) x0

where in each case the lower limit x0 is 100. The other parameters and the resulting
moments are:

Dwellings Single-family houses

EML
a
7
Mean
St. Dev.
Skewness

35 x 106

1.4177
5.1003
33,611

490,721
51.64

402,500
1.1220
3.2477
10,727
42,560
7.338

Ramlau-Hansen (1988a, section 2.2 and 1983, section 3) uses parameter values which
depend on the floor area of the dwelling or house. We have selected a "typical" distri-
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bution for each type of property. Let F(x; a, y) denote the distribution function corres-
ponding to the density function/x; a, f). Then the aggregate annual fire claims have a
compound Poisson distribution with Poisson parameter 15,787.8 and individual claim
amount distribution F(x), where:
F(x) = 0 forx< 100
F{x) = (F(x; 1.4177,5.1003) +F(x; 1.1220,3.2477))/2 for 100 <x < 402,500
F(x) = (1 +F(x; 1.4177,5.1003))/2 for402,500 <x< 35 x 106

l fo rx>35xl0 6

For our model, aggregate annual fire claims have the following moments:
Mean 350 x 106

St. Dev. 43.875 x 106

Skewness 0.571

Windstorm claims: Ramlau-Hansen (1988a) developed a complicated model for
windstorms. He modelled the number of storms per annum, the number of claims from
each storm and the amount of the individual claims. For the purposes of proportional
reinsurance we need model only the aggregate annual windstorm claims. When we
consider excess loss reinsurance, we shall assume the insurer protects the windstorm
(sub-)portfolio with a catastrophe excess loss treaty whereby the reinsurer reimburses
the insurer for the amount by which the total claim amount caused by a storm exceeds
a given retention. See Ramlau-Hansen (1986c, p. 42). This means that we need model
only the annual number of windstorms and the total claim amount from each wind-
storm.

The number of windstorms per annum (in Denmark) in Ramlau-Hansen's model
has a Poisson distribution with mean 4.36 and the expected cost of a single windstorm
is 9.3 x 106. Since we require the expected aggregate annual cost of windstorms to be
25 x 106, we need to scale down either the expected number of windstorms or the
expected cost of a single windstorm. We decided to do the latter, which is equivalent
to an insurer-(in Denmark) having fewer windstorm policies than in Ramlau-Hansen's
portfolio.

Our model for windstorm claims is as follows:
The number of storms per annum has a Poisson distribution with mean 4.36.
The total claim amount from a single windstorm has the following moments:

Mean 5.734x10"
St. Dev. 13.14xlO6

Skewness 2.649
We have assumed that the total claim amount from a single windstorm has a translated
gamma distribution with the above moments, i.e. has the distribution of K+ Y, where Y
has a T(a,p) distribution. The parameters of this distribution are:

a = 0.5700
P = 5.746 x 108

K = -4.187 xlO6

https://doi.org/10.2143/AST.27.2.542048 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.2.542048


RELATIVE REINSURANCE RETENTION LEVELS 2 1 1

This model gives the following moments for the aggregate annual claims from wind-
storms:

Mean 25 x 106

St. Dev. 29.936 x 106

Skewness 1.49
Following Ramlau-Hansen, we assume that all random variables in our model are
independent unless specified otherwise, so that, for example, aggregate claims from
the three sub-portfolios are independent and aggregate claims in separate years are
independent. In addition, we assume that the distributions do not change from year to
year. It would not be difficult to relax this assumption, for example by incorporating
inflation and business growth, but this would complicate the presentation without
adding significantly to the study.

For the remainder of the paper we will work in units of one million, so that the ex-
pected aggregate annual claim amount from the portfolio is 500.

3. A REVIEW OF DE FlNETTI' S RESULTS

This section contains a brief summary of the essential points of de Finetti's results.
More details, and proofs, can be found in de Finetti (1940) (see also Biihlmann
(1970)). The basic idea underlying these results is as follows. An insurer has a portfo-
lio on n independent risks and wishes to effect the same type of reinsurance for each
risk. The insurer's profit level from these risks clearly depends on the level of reinsu-
rance. The insurer fixes a level for its expected profit from the portfolio over a given
time period, say one year, and chooses retention levels to minimise the variance of the
profit from the portfolio over this period. De Finetti's results state how retention levels
for proportional and excess loss reinsurance should be calculated under this criterion,
which we shall refer to as the minimum variance criterion.

Consider first proportional reinsurance. For a portfolio of n independent risks, let 5,-
denote aggregate claims from the ith risk in a fixed time period for i = 1,2, ..., n, and
let P, denote the premium received by the insurer to cover this risk. The insurer effects
proportional reinsurance for each risk with proportion a, retained for the ith risk, pay-
ing a reinsurance premium of (1 + 0,-)(l - a,)E(S) for this reinsurance cover. Thus, the
reinsurance premium is calculated by the expected value principle with a loading #, for
the ith risk. The insurer's profit over the period is

n

Z(a) = £ ( / > - (1 + 0,. )(1 - at )E(Si) - aiSt)

Subject to the constraint E[Z( a)] = k, where k is a constant, V[Z( a)] is minimised by

c6tE(Si) f . , ,
at =—• — for i = l,2,...,n

V(S,)
where c is a constant which is determined by the condition E[Z( a)] = k. If this proce-
dure produces a value of a, > 1, the solution is to set that value of a, equal to 1, with
the remaining retentions being of the above form.
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In the case of excess loss reinsurance, let 5, and P, have the same meaning as
above. We assume that each St has a compound Poisson distribution. The insurer ef-
fects excess loss reinsurance with retention level M, for the ith risk and pays a reinsu-
rance premium of (1 + d^E{St - Si) where S/denotes the insurer's aggregate retained
claim amount from the ith risk. The insurer's profit over the period is

n

Z(M) = X (Pi ~ (1 + Oi )E(Si - S/) - 5/)

Subject to the constraint E[Z(M_)] = k, where k is a constant, V[Z(A£)] is minimised
by

M^cQi fon"= 1,2, ...,n

where c is a constant which is determined by the condition E[Z{M_)} = k.
Tables 1 and 2 show optimal retention levels for the portfolio described in Section 2

for proportional and excess loss reinsurance respectively. In the case of proportional
reinsurance, the loadings in the reinsurance premiums are 10% (glass), 40% (fire) and
80% (windstorm), while for excess loss reinsurance they are 40% (fire) and 80%
(windstorm). The tables also show the mean and variance of the insurer's retained
aggregate claims. We can see in each case that these quantities increase as the expec-
ted net profit increases. We note that for each level of expected net profit, the values
of mean retained aggregate claim amounts under each type of reinsurance are similar.
However, for a given level of expected net profit, the variance of the retained aggre-
gate claim amount is considerably smaller under excess loss reinsurance. For example,
when the expected net profit is 90, a reduction of just 10 from its maximum value, the
variance of the insurer's retained aggregate claim amount can be reduced by 44%
using excess loss reinsurance, compared to a reduction of only 24% using proportional
reinsurance.

TABLE 1

OPTIMAL RETENTIONS - PROPORTIONAL REINSURANCE

Expected
Net Profit

50
60
70
80
90
100

Glass
Retention

1
1
1
1
1
1

Fire
Retention

0.753
0.821
0.890
0.958

1
1

Windstorm
Retention

0.231
0.252
0.273
0.294
0.5

1

Mean

394
419
443
468
488
500

Variance

1,157
1,373
1,609
1,863
2,168
2,840

Note that in the case of proportional reinsurance, there is in fact no reinsurance for
the glass sub-portfolio, nor for the fire sub-portfolio as the expected net profit incre-
ases. In all other cases in Table 1, the retentions for the fire and windstorm portfolios
are in the same proportion. In Table 2, the retention levels for windstorm claims are
twice those for fire claims since the reinsurance premium loading factors are in the
ratio 2:1.
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TABLE 2

OPTIMAL RETENTIONS - EXCESS LOSS REINSURANCE

Expected
Net Profit

50
60
70
80
90
100

Fire
Retention

2.08
3.55
5.86
9.66
16.88

oo

Windstorm
Retention

4.15
7.09
11.72
19.32
33.77

oo

Mean

397
418
438
458
478
500

Variance

213
351
582
961
1,602
2,840

Thus, de Finetti's results provide simple formulae from which optimal retention le-
vels can be calculated. In the case of proportional reinsurance, the optimal retention
levels depend on the first two moments of aggregate claims from each sub-portfolio.
This is perhaps not surprising since the problem is specified in terms of the first two
moments of profit from the n sub-portfolios considered together. In the case of excess
loss reinsurance, the optimal retention level for each sub-portfolio depends only on the
reinsurer's loading for that sub-portfolio. An interesting feature of this result is that the
distribution of individual claims for a sub-portfolio has no bearing whatsoever on the
retention level.

The results are independent of the insurer's premium income (before reinsurance)
and of the amount of the insurer's surplus. Intuitively we would expect these factors to
play a part. We also note that these results hold for a single period analysis. If we
assume that claims in successive time periods are independent, then a change in the
time period considered does not alter the optimal retention levels.

Finally, we note that if the optimality criterion is altered from minimising V[Z( b)]
subject to the constraint E[Z(b)] = k (where b denotes the vector of retention levels)
to minimising V[Z(b)] subject to the constraint E[Z{b)] > k then it is not difficult to
prove that the solution to the problem is unchanged. In our case studies in Sections 5
and 6, where we apply different criteria for optimality, we will see that a change in the
constraint from E[Z( b)] = klo E[Z( b)]>k can make a considerable difference.

4. AN ALTERNATIVE CRITERION FOR OPTIMALITY

In this section we consider an alternative criterion for optimality. We will consider a
vector of retention levels to be optimal if those retentions minimise the insurer's pro-
bability of ruin (net of reinsurance) subject to the constraint that the insurer's expected
profit per unit time is greater than or equal to some constant. Thus we have not only
changed the objective function from variance of profit to probability of ruin, but we
have also altered the constraint. It will be clear in the examples in the next sections
why it is sensible to do this. In our examples we will consider finite time ruin, both in
discrete and in continuous time.

Since the probability of ruin depends on all the characteristics of the surplus pro-
cess, we might expect this new criterion to produce different optimal retention levels
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to those produced by the minimum variance criterion. However, the following exam-
ples suggest that this new criterion may not produce very different results.

Example 1: It is well-known that if the adjustment coefficient, denoted R, for a risk
exists, it can be approximated as

2 x Expected Profit
R

Variance of Profit

Let us treat profit in this approximation as being the net of reinsurance profit from a
portfolio of risks over a fixed time period. A natural (and approximate) way of obtai-
ning retention levels to minimise the insurer's probability of ultimate ruin would be to
find retention levels that maximise this approximation to R. When we apply the con-
straint that the expected profit is constant, maximising R is equivalent to minimising
the variance of profit, i.e. minimising the variance of net retained claims.

Example 2: Suppose that an insurer has a portfolio of n risks and receives a total
premium of P per annum to cover these risks. Suppose further that the insurer effects
some form of reinsurance for each of these risks, defined by a vector b of retention
levels. Let Tl(b) denote the total premium paid by the insurer for this reinsurance, and
let Sn{b_) denote the aggregate claims, net of reinsurance, paid by the insurer up to
time n. Finally, let U denote the insurer's initial surplus.

We assume that the insurer's expected net profit per unit time, P-Tl(b)- [S,(fc)],
is positive. Assuming that Sn(b) has a normal distribution, and that aggregate claims
are independent and identically distributed from year to year, the insurer's probability
of ruin at the end of n years is

, ^'nP-nU(b)-nE(S,(b)) + u)1-O| ^ "-^ I

where <E> denotes the standard normal distribution function. Minimising this probabi-
lity of ruin (as a function of b) subject to the insurer's expected net profit per unit
time being fixed is equivalent to minimising the variance of the insurer's net profit per
unit time subject to the same constraint.

Example 3: Now let us extend the previous example by assuming in addition that the
insurer's aggregate gain process [G,(b) },>,, is a Brownian motion with (positive) drift.
Let *F(U,T I b) denote the probability of ruin in continuous time before timer, which
may be finite or infinite. Let b, and b_2 be two reinsurance retention vectors which
result in the same expected net profit for the insurer, say fj. per unit time, but different
variances. Then using a coupling argument, i.e. regarding G,( b ,) as equivalent to

it is easy to see that x¥{U,T\b[) > lF(U,T\bJis equivalent to V[Glb])]>V\G,(b2j\.
Hence, minimising the probability of ruin in continuous and finite or infinite time
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subject to the insurer's expected net profit per unit time being fixed is equivalent to
minimising the variance of the insurer's net profit subject to the same constraint.

Each of these last two examples relies on being prepared to approximate the insu-
rer's net surplus process by a process determined by just its mean and variance (see,
for example, Grandell (1977)). They also apply the constraint that the expected net
profit equals some constant, rather than is greater than or equal to that constant.
Nevertheless, they suggest that a change in the optimality criterion from minimising
variance to minimising a ruin probability may not result in very different retention
levels. We shall see in Sections 5 and 6 that this can be the case, although we shall
also see that the change in optimality criterion can lead to very different results.

Since our new optimality criterion is to minimise a probability of ruin, we need to
be able to calculate ruin probabilities. Our approach to this problem will not be to
attempt to calculate exact ruin probabilities. Rather, we will use an approximation. We
will approximate the retained aggregate claims process by a translated gamma process.
There are two reasons for using this approximation. First, formulae exist from which
ruin probabilities can be calculated. Second, recent evidence shows that this approach
provides very good approximations to ruin probabilities, particularly in problems
involving reinsurance. See Dickson and Waters (1993 and 1996).

We conclude this section by describing how we calculated ruin probabilities. Con-
sider first the discrete time ruin problem. We require probabilities of the form

x¥l(u,t) = Pr(u + Pn-Xn < 0 for some n, n = 1,2,...,0

where P represents the insurer's premium income, net of reinsurance, per unit time,
and Xn denotes aggregate claims up to time n, again net of reinsurance. We approxi-
mated Xn by Yn + kn where Yn has a gamma distribution with parameters na and ft and
calculated probabilities from

P*n-Yn < 0 for some n, n = \,2,...,t)

where P* = P - k. The parameters a, fl and k are found by matching the first three
moments of Xn and Yn + kn. Let G(x) and g{x) respectively denote the distribution
function and density function of a gamma distribution with parameters a and p\ so that
the mean of the distribution is a/p\ Then

and for t= 1,2,3, ...

'"+P*xvUx,t)g(u + P*-x)dx

Values of ^"(u, 1) were calculated directly from computer routines which compute
the gamma distribution function. Values of *?,*(«, t) for t > 1 were calculated by nume-
rical integration. For each value of u required we performed numerical integration on
the interval (0, [u + P*\), where [u + P*] denotes the greatest integer less than or
equal to u + P*, by applying the repeated trapezoidal rule on unit steps. The integral
over the range ([u + P*], u + P*) was calculated by the trapezoidal rule. Thus, except
for the integral over the final part of the range, *¥*{x, t) values were required only for
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integer values of x. For the integral over ([u + P*], u + P*) values of *¥*,(x, t) were
required for non-integer x. These were obtained by linear interpolation. For our nume-
rical examples, a unit step size was deemed to be sufficiently large in view of the
parameter values in our examples. In particular, the value off* was typically between
300 and 500.

In the case of continuous time ruin probabilities, we require probabilities of the
form

"¥(u, t) = Pr(w + Px - S{T) < 0 for some T, 0 < T < t)

where P is as above and {S{t)}t>0 denotes the aggregate claims process, net of reinsu-
rance. We approximate the process {S(t)}ti0 by the translated gamma process {SG(i) +
kt}t>0 where {SG(f)},>0 is a gamma process with parameters aand/J. The parameters
a, ji and k are found by matching the first three moments of the two processes. Ruin
probabilities for the translated gamma process were calculated by the method descri-
bed by Dickson and Waters (1993).

5. PROPORTIONAL REINSURANCE

In this section we consider the problem of choosing proportional reinsurance retention
levels for each of the three sub-portfolios, glass, fire and windstorm, of the portfolio
described in Section 2. We will discuss two case studies which reveal rather different
features.

Case Study 1: We have set the insurer's premium income (before reinsurance) to be
600 per unit time, i.e. 120% of the expected aggregate claims. The insurer's initial
surplus has been set at 20. The initial surplus was chosen so that the one-year discrete
time ruin probability is about 1% when the vector of retentions a is given by the solu-
tion under the minimum variance criterion with an expected net profit of 50. The rein-
surer's premium loading factors are#= (0.044, 0.1605, 1.533). These loading factors
are in proportion to the standard deviation of aggregate claims per unit time for the
three sub-portfolios and are such that, if the insurer reinsured the whole of each sub-
portfolio, the reinsurance premium would be 600.

Table 3A shows for the time horizons t = 1, 2, 5, 10 and 20, the probability of ruin
in continuous time and in discrete time assuming the insurer does not effect any rein-
surance. In this case the insurer's expected net profit per unit time is 100, as shown in
the final column of Table 3A.
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TABLE 3 A

CASE STUDY 1 - NO REINSURANCE

t

1
2
5
10
20

a

(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)
(1,1,1)

Prob'y of ruin
(continuous)

0.2413
0.2484
0.2494
0.2495
0.2495

Prob'y of ruin
(discrete)

0.0237
0.0262
0.0267
0.0267
0.0267

Expected
net profit

100
100
100
100
100

The proportional reinsurance retention levels which minimise the variance of the
insurer's net (of reinsurance) aggregate claims subject to the constraint that the insu-
rer's expected net profit per unit time should be 50 are a= (1, 0.396, 0.581). Table 3B
shows the insurer's probabilities of ruin with these retention levels.

TABLE 3B

CASE STUDY 1 - MINIMUM VARIANCE

1 (1,0.396,0.581)
2 (1,0.396,0.581)
5 (1,0.396,0.581)
10 (1,0.396,0.581)
20 (1,0.396,0.581)

Prob'y of ruin
(continuous)

0.0898
0.0948
0.0955
0.0955
0.0955

Prob'y of ruin
(discrete)

0.0103
0.0115
0.0117
0.0117
0.0117

Expected
netprofit

50
50
50
50
50

Table 3C shows for each time horizon, the retention levels which minimise the in-
surer's probability of ruin in continuous time subject to the insurer's expected net
profit being at least 50, the corresponding minimum probability of ruin, the probability
of ruin in discrete time for these retention levels and finally the insurer's expected net
profit. In this case, the optimal retention levels are such that the insurer's expected net
profit is equal to 50 for each of the five time horizons.

TABLE 3C

CASE STUDY 1 - MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME

t

1
2
5
10
20

a

(1,0.438,0.519)
(1,0.438,0.519)
(1,0.439,0.518)
(1,0.439,0.518)
(1,0.439,0.518)

Prob'y of ruin
(continuous)

0.0882
0.0929
0.0935
0.0935
0.0935

Prob'y of ruin
(discrete)

0.0095
0.0106
0.0108
0.0108
0.0108

Expected
netprofit

50
50
50
50
50

Table 3D is similar to Table 3C except that for each time horizon, the retention le-
vels are those which minimise the insurer's probability of ruin in discrete time subject
to the insurer's expected net profit being at least 50.
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TABLE 3 D

CASE STUDY 1 - MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME

t

1
2
5
10
20

a

(1,0.456,0.493)
(1,0.456,0.493)
(1,0.456,0.493)
(1,0.456,0.493)
(1,0.456,0.493)

Prob'y of ruin
(continuous)

0.0885
0.0933
0.0939
0.0939
0.0939

Prob'y of ruin
(discrete)

0.0094
0.0105
0.0107
0.0107
0.0107

Expected
net profit

50
50
50
50
50

Case Study 2: We have again set the insurer's premium income to be 600 but have
increased the initial surplus to 35. This initial surplus gives a one-year discrete time
probability of ruin of about 1 % when there is no reinsurance. We have set the reinsu-
rance premium loading factors as# = (0.1, 0.4, 0.8). These are somewhat arbitrary
choices but are designed to reflect the relative risk for the three sub-portfolios. With
these loadings, the premium for reinsuring the whole portfolio is greater than 600.
Adopting the same constraints as for Case Study 1, the retention levels which minimi-
se the variance of the insurer's net claims are (1, 0.753, 0.231).

Tables 4A, 4B, 4C and 4D give the information relating to Case Study 2 which cor-
responds to the information relating to Case Study 1 in Tables 3A, 3B, 3C and 3D.

TABLE 4A
CASE STUDY 2 - NO REINSURANCE

t

1
2
5
10
20

/

1
2
5
10
20

a

(1,1,1)
(1,1,1)
(1,1,1)
(1.1.1)
(1,1,1)

Prob'y of ruin
(continuous)

0.1282
0.1347
0.1357
0.1357
0.1357

TABLE 4B

Prob'y of ruin
(discrete)

0.0146
0.0164
0.0167
0.0167
0.0167

CASE STUDY 2 - MINIMUM VARIANCE

a

(1,0.753,0.231)
(1,0.753,0.231)
(1,0.753,0.231)
(1,0.753,0.231)
(1,0.753,0.231)

Prob'y of ruin
(continuous)

0.0746
0.0861
0.0894
0.0895
0.0895

Prob'y of ruin
(discrete)

0.0147
0.0185
0.0199
0.0199
0.0199

Expected
net profit

100
100
100
100
100

Expected
net profit

50
50
50
50
50
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TABLE 4 C

CASE STUDY 2 - MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME

t

1
2
5
10
20

a

(1,0.749,0.257)
(1,0.749,0.257)
(1,0.749,0.257)
(1,0.749,0.257)
(1,0.749,0.257)

Prob'y of ruin
(continuous)

0.0745
0.0860
0.0893
0.0894
0.0894

Prob'y of ruin
(discrete)

0.0147
0.0184
0.0198
0.0199
0.0199

Expected
net profit

50
50
50
50
50

TABLE 4 D

CASE STUDY 2 - MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME

t

1
2
5
10
20

a

(1, 1,0.42)
(1, 1,0.43)
(1, 1,0.43)
(1, 1,0.43)
(1, 1.0.43)

Prob'y of ruin
(continuous)

0.0957
0.1011
0.1018
0.1018
0.1018

Prob'y of ruin
(discrete)

0.0103
0.0115
0.0118
0.0118
0.0118

Expected
net profit

88.4
88.6
88.6
88.6
88.6

Comparison of Tables 3A-D and 4A-D:

(a) Comparing the ruin probabilities in Table 3A (no reinsurance) with those in Tables
3B-D, and also those in Table 4A with those in Tables 4B-D, it is apparent that
proportional reinsurance can reduce the probability of ruin considerably, although
in many cases 50% of the maximum expected profit has been sacrificed to achieve
this reduction.

(b) A feature of Tables 3C-D and Tables 4C-D is that the optimal reinsurance reten-
tions are not very sensitive to changes in the time horizon for ruin. This suggests
that if we wish to choose proportional reinsurance retentions which minimise the
insurer's probability of ruin in either continuous or discrete time, subject to a mi-
nimum level for the insurer's expected net profit, it may be sufficient to calculate
the optimal retentions for a short time horizon.

(c) A feature of Case Study 1 is that the optimal retentions in Tables 3C (1, 0.438/9,
0.519/8), and 3D, (1, 0.456, 0.493), are close to each other and not too far from
those in Table 3B, (1, 0.396, 0.581). Also, the corresponding probabilities of ruin
in Tables 3B-D are all very close to each other. This suggests that, in this example,
if we wish to choose retention levels which minimise a probability of ruin, in either
continuous or discrete time, an approximation can be obtained by calculating re-
tention levels using the minimum variance criterion. This could be a significant
point since the computational effort required for the latter is considerably less than
that required for the former.

(d) The comments in (c) above, all of which related to Case Study 1, do not apply to
Case Study 2. For Case Study 2, the optimal retentions, and ruin probabilities, cal-
culated using a minimum variance criterion, Table 4B, and a continuous time ruin
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criterion, Table 4C, are very close to each other. Also, the optimal retentions in
Table 4C give an expected net profit for the insurer of exactly 50. However,
the optimal retentions and ruin probabilities calculated using the discrete time
ruin criterion, Table 4D, are very different from those in Tables 4B and 4C. A no-
ticeable feature of Table 4D is that the optimal retentions give expected net profits,
88.4/6, well in excess of the constrained minimum value of 50.

(e) A common feature of Tables 3A-D and 4A-D is that, for a given set of retentions
and a given time horizon, the probaility of ruin in continuous time is a factor of
almost 10 times greater than the probability of ruin in discrete time. To see why
this is the case, consider Table 3B. The insurer's initial surplus is 20 and the ex-
pected surplus at the end of the first year is 70. This indicates that if ruin occurs in
continuous time, it is likely to occur soon after time 0, so that there will be a large
part of the year remaining in which the surplus can recover to a positive value. In
fact, the probability of ruin in continuous time within the first half year is 0.0758
so that the probability of ruin in the following half year, having not been ruined in
the first half year, is 0.0140. In general we would expect the probabilities of ruin
within a given time period (continuous) and at the end of the time period (discrete)
to be much closer if either the insurer's initial surplus were larger and/or the ex-
pected net profit in the time period were smaller. Referring again to the example in
Table 3B, the probability of ruin at the end of 0.1 years is 0.0166. The important
feature in this case is that the insurer's expected net profit in the time period is
only 5.

o.ooo

• t - i
o t = 1 0

50 55 60 65 70 75 80 85 90 95

FIGURE 1: Proportional reinsurance, discrete time ruin, U = 35, loadings are 10% , 40% and 80%.
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Further discussion of Case Study 2:

Figure 1 shows minimum discrete time ruin probabilities as a function of the insu-
rer's expected net profit for t - 1 and / = 10. This figure shows the advantage to the
insurer of constraining the expected net profit to be at least 50. In particular, when t =
10 we see that any expected net profit greater than 50 results in a lower probability of
ruin than when the expected net profit equals 50. Results showing the effect of diffe-
rent values for the initial surplus are shown in Tables 5A, 5B, 6A and 6B, in all cases
the reinsurance premium loadings are as in Case Study 2. Tables 5A and 6A show
figures for an initial surplus of 20 and Tables 5B and 6B show figures for an initial
surplus of 50. Tables 5A and 5B show for each of the five time horizons the optimal
retention levels calculated using a continuous time ruin criterion, together with the
resulting expected net profit for the insurer and the minimum value of the ruin proba-
bility. These values should be compared with those in Table 4C. Tables 6A and 6B
show the optimal retention levels calculated using a discrete time ruin criterion. These
values should be compared with those in Table 4D.

The optimal retentions in Table 5B are very close to those in Table 4C, indicating
that increasing the insurer's initial surplus from 35 to 50 has had little effect in terms
of optimal retention levels and the insurer's expected net profit. However, Table 5A
displays different features. The optimal retention levels change as the time horizon
increases, appearing to converge to (1, 0.827, 0.256), and the insurer's expected net
profit moves away from the constrained minimum value. Table 5A indicates that the
optimal retentions under a continuous time ruin criterion may depend on the time
horizon and, by comparison with Tables 4C and 5B, on the insurer's initial surplus.
Turning to Tables 6A and 6B, we see that a change in initial surplus has only a small
impact on optimal retention levels and the insurer's expected net profit.

TABLE 5A
MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME, U = 2 0

t

1
2
5
10
20

a

(1,0.753,0.231)
(1,0.799,0.247)
(1,0.827,0.256)
(1,0.827,0.256)
(1,0.827,0.256)

Prob'y of ruin
(continuous)

0.1883
0.2025
0.2050
0.2050
0.2050

Expected
net profit

50.0
56.8
60.9
60.9
60.9

TABLE 5B

MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME, U = 5 0

t

1
2
5
10
20

a

(1,0.747,0.271)
(1,0.747,0.271)
(1,0.748,0.264)
(1,0.748,0.264)
(1,0.748,0.264)

Prob'y of ruin
(continuous)

0.0288
0.0362
0.0387
0.0387
0.0387

Expected
netprofit

50
50
50
50
50
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TABLE 6A
MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME, U = 2 0

t

1
2
5
10
20

a

(1, 1,0.460)
(1, 1,0.470)
(1, 1,0.470)
(1, 1,0.470)
(1, 1,0.470)

Prob'yofruin
(continuous)

0.0186
0.0205
0.0208
0.0208
0.0208

Expected
net profit

89.2
89.4
89.4
89.4
89.4

TABLE 6B
MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME, V = 5 0

t

1
2
5
10
20

a

(1, 1,0.390)
(1, 1,0.400)
(1, 1,0.405)
(1, 1,0.405)
(1, 1,0.405)

Prob'y of ruin
(continuous)

0.0055
0.0063
0.0065
0.0065
0.0065

Expected
net profit

87.8
88.0
88.1
88.1
88.1

6. EXCESS LOSS REINSURANCE

Case Study 3: In this Case Study we investigate different optimal retention levels for
excess loss reinsurance of the fire and windstorm sub-portfolios. For the reasons given
in Section 2, we assume that the glass sub-portfolio is not reinsured under an excess
loss treaty. The insurer's premium income is 600, as in the previous two Case Studies,
and the initial surplus is 35. The reinsurance premium loading factors are 100% (fire)
and 200% (windstorm). These factors are higher than those in the previous two Case
Studies, a consequence of the fact that excess loss, by its very nature, should be more
expensive than proportional reinsurance.

The probabilities of ruin, for continuous and discrete time, and for different time
horizons, when there is no reinsurance are as in Table 4A. We will assume that the
insurer wishes to find the optimal excess loss retentions subject to the constraint that
the expected net profit is at least 50. The minimum variance solution to this problem is
M= (oo, 9.66, 19.32). The ruin probabilities with this set of retention levels are shown
in Table 7B. Table 7C shows the optimal continuous time retentions and ruin probabi-
lities for different time horizons, together with the discrete time ruin probabilities for
these retentions and the insurer's expected net profit, which in every case is 50. Table
7D shows the optimal discrete time retentions and ruin probabilities for different time
horizons, together with the continuous time ruin probabilities for these retentions and
the insurer's expected net profit.
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TABLE 7 B

CASE STUDY 3 - MINIMUM VARIANCE

1
2
5
10
20

(°°,

(oo,

M

9.66, 19.32)
9.66, 19.32)
9.66, 19.32)
9.66, 19.32)
9.66, 19.32)

Prob'y of ruin
(continuous)

0.0420
0.0485
0.0499
0.0499
0.0499

Prob'y of ruin
(discrete)

0.0068
0.0083
0.0087
0.0087
0.0087

Expected
net profit

50
50
50
50
50

TABLE 7C

CASE STUDY 3 - MINIMUM PROBABILITY OF RUIN IN CONTINUOUS TIME

t

1
2
5
10
20

(oc

(oc

(oc

( ~

M

', 10.43, 17.39)
', 10.39, 17.48)
>, 10.38, 17.50)
', 10.38, 17.50)
', 10.38, 17.50)

Prob'y of ruin
(continuous)

0.0414
0.0479
0.0492
0.0493
0.0493

Prob'y of ruin
(discrete)

0.0066
0.0081
0.0085
0.0085
0.0085

Expected
net profit

50
50
50
50
50

TABLE 7D
CASE STUDY 3 - MINIMUM PROBABILITY OF RUIN IN DISCRETE TIME

M
Prob'y of ruin
(continuous)

Prob'y of ruin
(discrete)

Expected
net profit

1
2
5
10
20

(oo

(oo
(oo

(oo

( ~

11.52, 19.09)
12.56,20.78)
12.91,21.37)
12.91,21.37)
12.91,21.37)

0.0451
0.0543
0.0564
0.0564
0.0564

0.0066
0.0078
0.0081
0.0081
0.0081

54.7
58.8
60.1
60.1
60.1

A comparison of Tables 7B-D shows that the ruin probabilities in these tables, ei-
ther continuous or discrete time, do not change significantly from one table to the
next. This indicates that for many practical purposes the probability of ruin, in either
discrete or continuous time, can be assumed to attain its minimum value at the solution
to the minimum variance problem. However, the extra computational effort required to
compute the optimal retentions for discrete time ruin in Table 7D may be considered
worthwhile since they result in an expected net profit for the insurer in excess of 60,
for t > 5, rather than 50 for the minimum variance optimal retentions.
Other features of Tables 7B-D are:
(a) the different time horizons in Tables 7C and 7D have little effect on the values of

the optimal retention levels, and no effect for t > 5, and,
(b) optimal retentions for continuous time ruin, Table 7C, are closer to the minimum

variance solution than are the optimal retentions for discrete time ruin, Table 7D.
In particular, the former give an expected net profit for the insurer of 50, i.e. on the
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boundary of the constraint, as for the minimum variance solution, whereas the lat-
ter give an expected net profit away from the boundary.

Figure 2 shows the minimum discrete time ruin probabilities as a function of the in-
surer's expected net profit for t = 1 and t = 10. As in Figure 1, we can again see the
advantage of constraining the expected net profit to be at least 50 rather than exactly
50.

The effect of altering the insurer's initial surplus is shown in Table 8. This table
shows for U = 20 and U = 50 the optimal retentions for both the continuous time and
the discrete time ruin criteria, together with the minimum value for the probability of
ruin and the resulting expected net profit for the insurer. In all cases the time horizon
for ruin is 20 years.

0.035 -

0.030

0.025

0.020

0.015

0.010

0.005

0.000

« t = 1 0

o © o

• • •

20 30 40 50 60 70

Expected Net Profit

80 90 100

FIGURE2: Excess loss reinsurance, discrete time ruin, U = 35, loadings are 100% and 200%.

TABLE 8

CASE STUDY 3 - DIFFERENT VALUES FOR THE INITIAL SURPLUS: t = 20

Continuous 1
discrete M Prob'yofruin

Expected
net profit

20
50
20
50

Continuous
Continuous

Discrete
Discrete

(~, 10.08, 18.22)
(oo, 10.49, 17.25)
(oo, 16.18,27.00)
(~, 10.89, 17.89)

0.1569
0.0155
0.0182
0.0031

50
50

70.5
51.8
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The important point revealed by Table 8 is that changing the insurer's initial surplus
has little effect, in terms of the optimal retentions or the insurer's expected net profit,
in the case of continuous time ruin but makes a considerable difference in the case of
discrete time ruin.

7. CONCLUSIONS

Our purpose in this paper has been to investigate different criteria for determining the
optimal relative retention limits for a non-life portfolio consisting of a number of in-
dependent sub-portfolios. For the reasons discussed in Examples 1, 2 and 3 in Section
4, the minimum variance criterion could be regarded as a proxy for a probability of
ruin criterion. The advantages of the minimum variance criterion are:
(a) it is possible to express the retention levels in closed form,
(b) the optimal retention levels depend only on the reinsurance premium loadings and,

in the case of proportional reinsurance, on the first two moments of aggregate
claims for the sub-portfolios, and,

(c) the optimal retention levels can be calculated very easily. In contrast, the optimal
retention levels using a ruin probability criterion cannot be expressed in closed
form and can be time consuming to compute, particularly for the longer time hori-
zons.

Our method of investigation has been to carry out several "case studies" for a single
portfolio. Using this method it can be difficult to draw any conclusions. Nevertheless,
we consider that the numerical results in Sections 5 and 6, and the other examples we
have investigated in the course of this study, enable us to reach the following tentative
answers, for both proportional and for excess loss reinsurance, to the questions posed
in Section 1:
(1) The minimum variance criterion produces optimal relative retention levels close to

those produced by the continuous time ruin criterion (see Tables 3B and 3C, Ta-
bles 4B, 4C, 5A and 5B and Tables 7B, 7C and 8 (Continuous)) but not necessarily
similar to those produced by the discrete time ruin criterion (see Tables 4B, 4D, 6A
and 6B and Tables 7B, 7D and 8 (Discrete)). The three examples in Section 4 all
indicated that optimality with respect to the minimum variance criterion might be
approximately the same as optimality with respect to the probability of ruin in
continuous time (Examples 1 and 3) and the probability of ruin in discrete time
(Example 2). Specifically, we assumed in Examples 2 and 3 that the (retained) ag-
gregate claim amount distribution could be reasonably approximated by a normal
distribution, and hence is symmetric. However, with an expected net profit of at
least 50 the coefficient of skewness of the retained aggregate claim amount distri-
bution in Case Studies 1 and 2 turns out to be above 0.5 for all combinations of
retention levels, and hence the distribution is not symmetric. For this reason it
should not be surprising that optimality with respect to the minimum variance cri-
terion can produce different results to optimality with respect to the probability of
ruin in discrete time (Case Study 2). What may be considered surprising is the clo-
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seness of the results in all three case studies under the minimum variance criterion
and the continuous time ruin criterion.

(2) As indicated in (1) above, the discrete time ruin criterion can produce very diffe-
rent optimal retentions from those produced by the continuous time ruin criterion.
This should not be too surprising since these two probabilities are rather different
both in nature and, in our examples, numerically. See comment (e) in Section 5.
That these two probabilities behave differently has already been observed in a so-
mewhat different setting. See Dickson and Waters (1996, Section 8 and 9).

(3) (i) In most cases we investigated, the optimal retention levels for continuous time
ruin give an expected net profit for the insurer on the boundary of its constrained
values (see Tables 3C, 4C, 5B, 7C and 8 (Continuous)). In one example this was
not the case (see Table 5A). The exact reverse is true for the optimal retentions for
discrete time ruin (see Table 3D for the former case and Tables 4D, 6A, 6B, 7D
and 8 (Discrete) for the latter case).
(ii) A marked feature of all our calculations is that the time horizon for ruin, for
one year and longer, has very little effect on the optimal retention levels in either
continuous time or discrete time. In all cases the optimal retention levels are un-
changed to three significant figures as the time horizon increases from five years to
twenty years.
(iii)The insurer's initial surplus, which is not considered by the minimum variance
criterion, can have a considerable effect on the optimal retention levels using a
probability of ruin criterion (see Tables 7D and 8 (Discrete)).
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