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Abstract

By a theorem of G. Birkhoff, every algebra in an equationally defined class of algebras K is a subdirect
product of subdirectly irreducible algebras of K. In this paper we show that this result is true for any class
of structures, not necessarily algebraic, closed under isomorphisms and direct limits. Quasivarieties in the
sense of Malcev are examples of such classes of structures. This includes BirkhofTs result as a particular
case.

19X0 Mathematics subject classifuatttm(Amer. Math. Soc.): primary 08 A 05; secondary 08 C 15,03 C 52.

Introduction

A well-known theorem of Birkhoff (1944) states that if K is an equationally denned
class of algebras fa variety) then every algebra in K is a subdirect product of
subdirectly irreducible algebras of K. From this result many representation
theorems follow, including Stone's representation theorem for Boolean Algebras
and representation theorems for Abelian Groups, see Pierce (1968). This theorem is
also important in Algebraic Logic since completeness of a logic with respect to a
given semantics follows sometimes from a representation theorem as in Halmos
(1962) and Rasiowa (1974).

We are interested in knowing if the subdirect decomposition theorem is true for
quasivarieties in the sense of Malcev (1971). It is shown in this paper that the answer
is positive, not only for quasivarieties but for any class of structures closed under
isomorphisms and direct limits. In particular, Birkhoffs theorem may be shown
without using the notion of congruence relation.
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In Sections 1 and 3, we recall the basic notions in the framework of an arbitrary
class of structures. In the second section we characterize the subdirectly irreducible
structures. In Section 4 we show the existence of enough of such structures for classes
closed under direct limits. The main theorem appears in Section 5.

1. Subdirect products

We assume that all structures mentioned in this work are of a fixed similarity type
T. The equality symbol together with the relation symbols of x are called the basic
predicates. If& is a structure then |9I | denotes its universe and ||W|| denotes its
cardinal. If P and/are , respectively, a basic predicate and a function symbol oft.
then P'n and /'•'' are their interpretations in *il. The interpretation of the equality
symbol is always equality. We recall some basic definitions. Let *il and 93 be
structures, cp: |yi | -> j 95 | a function.

(1) cp is an homomorphism, denoted q>: SU —* 93, if (i) for all o-adic basic predicate P.
{al,...,an)eP'n implies (<p{a,),..,cp{an))eP® and (ii) for all n-adic function symbol /.

(p(f'\au ..., an)) =f*(<p(al), .... <p(an)).
(2) q> is a substructure monomorphism if it is an homomorphism with condition (iij

in (1) strengthened to : (ii*) for all au...,an in 1911 and all /i-adic basic predicate P,
(a, flJeP" if and only if (<p(a1),...,<p(aB))e/J*.

A substructure monomorphism must be a one to one homomorphism. However,
the converse implication is not valid. 91 is a substructure o/95 if | 91 j £ 193 j and the
inclusion function is a substructure monomorphism.

(3) <p is an isomorphism if it is an onto substructure monomorphism. As is well
known, q> is an isomorphism if and only if there is an homomorphism \p : 93 ->9I
such that (p\jj = 1V1 and \j/cp = 1 ,̂ the identity homomorphisms of 'H and 93.
respectively. Note that q> : *H -* 93 is a substructure monomorphism if and only if
there is a substructure 93' of 93 such that q>: j *H | -»• 193' j is an isomorphism from W to
93'.

(4) Let {93,-1 i e 1} be a family of structures. Let B* be the usual cartesian product
of the family of sets {|93,- : i e /} and let KJ\ B * - > | 9 3 J | be the j-projection. The
(cartesian) product of the family of structures is the structure
ft®, = <B*,...,P*,...,/*> where :

(i) (a, flJeP* if and only if Vie/, (n,{al),...,nlUin))eP*\
(ii)V iel,f(ai,...,am)(i) =f*iau...,an).
The projections become onto homomorphisms itj: Vl^i -»93^ provided n ® , is

not empty. Moreover, the product has the following universal property. If
{/•: SH —> 93; | i e 1} is a family of homomorphisms, there exists a unique homomor-
phism g : SU -> n93, such that/ ; = ntg for all ie I. Uniqueness follows because the
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last condition forces g{a)(i) = f]{a). It is routine to check that this definition gives an
homomorphism. The product is characterized up to isomorphism by the above
universal property. In other words, if the family {pf: 93 -> 93, | i e /} is such that for
every family {/•: SH -> 93,11 e /} there is a unique g : *& -> 93 with/ = p, g for all i e /,
then there is an isomorphism h : 93 -> TT93i such that for all iel, pt = 7c,-/i.

Now we introduce the notion of subdirect product, generalizing the definition
usually given for algebras, as in Gratzer (1968) or Pierce (1968).

DEFINITION 1. Let {93,- \ie 1} be a family of structures. A subdirect product of the
family is a substructure monomorphism q>: S& -> ]~[93; such that nt(p is onto for
every / e /. It is called also a subdirect decomposition of VI.

For example, if 33, = Sil for all iel, then the diagonal substructure A : SH
where A(a){i) = a for all i is a subdirect product. In general, one may obtain trivial
subdirect decompositions of H in the following way. Let {/: <H -»93; |;' e /} be a
family of onto homomorphisms that contains at least one isomorphism/,. Let cp be
the map induced by the / ' s into fl®;- Then q> is a substructure monomorphism
because (<p{a,),...,(p(«n))e P* implies

(/(«,) fr{an)) = (nr(p(a,),...,nr<p(an))eP^'

and so («, an)e P'!\ since/ is an isomorphism. Moreover, n{ cp = / is onto for each
i 6 /; hence q> is a subdirect product of {93, \iel}. The first example above is of this
kind. A structure is suhdircctly irreducible if all its subdirect decompositions are
trivial in this sense. Relativizing this notion to a class K of structures closed under
isomorphisms, we have :

DEFINITION 2. sil is subdirectly irreducible (s.i.) in K, if for every subdirect
decomposition q>: W -> YV&i w ^h all 93,'s in K, there is jel such that Ujcp is an
isomorphism.

Birkhoff has shown that if K is an equationally defined class of algebras, then the
s.i. algebras of K are those for which the intersection of their nontrivial congruence
relations is nontrivial. Moreover, for any algebra ^l of K there is a subdirect product
<p : VI —• YV^i where the93,'s are all s.i. algebras of K. For example, if Kis the class of
Boolean Algebras the only s.i. algebra of K is the two element boolean algebra 2, and
each boolean algebra is a subalgebra of a cartesian product of copies of 2 (Stone's
theorem). If K is the class of Abelian Groups the s.i. algebras are the Zpn and Zp, for p
prime (Pierce (1968), pp. 52 56). In the following section we give a characterization
of s.i. structures in an arbitrary class K. Later, we shall generalize the subdirect
decomposition theorem.
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2. Characterization of subdirectly irreducible structures

In the rest of this work, we assume that K is a class of structures closed under
isomorphisms.

LEMMA 1. 91 is subdirectly irreducible in K if and only if there exists an n-adic basic

predicate P and an n-tuple (al,...,an)e\''U " such that {al,.. .,an)£Pn, and for every

onto homomorphism f: 91 -> 93 with 93 in K, which is not an isomorphism,

PROOF. Let P and (ax,...,an) have the property indicated in the statement of the
lemma. Let <•/> :9I -> j~J93t- be a subdirect product. Since (a1,...,an)^Pil and cp is a
substructure monomorphism then (<p(al),...,<p(an))£P*. Hence,

for some i e /. By hypothesis and the fact that nt q> is onto, we conclude that n{ q> is an
isomorphism; this shows that cp is subdirectly irreducible.

Conversely, suppose 91 is subdirectly irreducible. Let C = {(/ 93) \f : 91 -* 93 is an
onto homomorphism but not an isomorphism and 93 eK}. It is a proper class.
Define (/93) ~ (/',93') if and only if there is an isomorphism g : 95 -> 93' such that
/ ' = g / There is only a set of nonisomorphic structures of cardinality^ ||yi|| and
only a set of homomorphisms from SH to 93 for each possible 93. Thus ~ is an
equivalence relation in C which has a set of representatives, since if/ : 91 -• 93 is
onto, then ||9I|| ^ ||93||.

Let F = {(fi, 93,) 11 e /} be a family of representatives. Take the product n ® , and
the homomorphism g : 91 -> n ® ; induced by the /,'s. Since 91 is subdirectly
irreducible and each %x g =ftis not an isomorphism, g is not a subdirect product. But
each Ktg is onto, so g cannot be a substructure monomorphism. This means that
there exist a predicate P (may be equality) and an /?-tuple (a,,...,«„) such that
(g(al),...,g(an))eP*, but (a1,...,an)$P'!l. Now, le t / : 91 — 93 be any onto homomor-
phism, 93 e K, that is not an isomorphism. Then ( / 93) has a representative in F and
so f=hft for some isomorphism h and iel. Therefore, f'= hn{g. Since
(g(al),...,g(an))eP* and /m, is homomorphism it follows that

(f(al),...J(aH)) = (hnig(a1),...,lmifi(an))eP*.

We have shown that (a,,...,«n)^Pvl, but for any homomorphism/ : 91 ->93 (93eK)
which is not isomorphism, (/(a,),... ,/(an))ePs.

COROLLARY (Birkhoff). An algebra of an equationallv defined class K is s.i. in K if
and only if the intersection of all its non-trivial congruence relations is non trivial
(distinct from the diagonal).
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PROOF. The only basic predicate of tl is ' = ' so by Lemma 1 there are elements a, b
in yi such that a # b and for any onto homomorphism/ : W -> 93 which is not an
isomorphism, f(a) =f(b) or (a,b)eCongr(/). By the correspondence between
congruence relations and onto homomorphisms (a, b) belongs to all nontrivial
congruence relations of *&.

3. Direct limits

A partially ordered set <I, < > is directed if for all i,j in £ there is k in E such that
i ^ /candj ^ k. A directed diagram of structures over(JL, < > is a family of structures
{95j | / e £} and a family of homomorphisms {f{j: 93,- -» 93̂  | i ^ j} such that /fi = 19,
and for all i ^ j s= k,fA = fjkfiy

DEFINITION 3. Let D = <{93;|ieZ}, {fij\i <j}> be a directed diagram. The direct
limit of D is the structure limD = (B, ...,P, ...,f, ....> where

(i) B = TJ I SB,. I / ~ , the disjoint union of the | ®( | 's divided by the equivalence
relation :

a ~~ a' if and only if 3 k ^ i,j such that/ft(a) =fjk(a').

(ii) If a denotes the equivalence class of a in TJ | S,-1, then for all a1;..., an in B with ar

in I S8,-r I we have :
(a) (a1 , . . . ,aJe/ ) if and only if 3/c ^ 11,..., iK such that

(b)_/(a! SJ =/**(/,, t(a,),...,/,>„)), where k is such that k ^ („...,!„.

DEFINITION 4. For each l e S the canonical homomorphism g,: U3r-• lim D is
defined by g,(a) = a.

It is a tedious exercise to show that ~ is in fact an equivalence relation, P and/are
well defined, and them's arc homomorphisms. See Gratzer( 1968), p. 128, for the case
of algebras. The following universal property characterizes the family
{gt: 93j -+ lim D} up to isomorphism :

For all 1, j in Z with 1 ^ j , gj/^ = gb and given any family of homomorphisms
{/1,: iB,-> tt| leXj such that hJfij = hi for all i^j, there exists a unique
homomorphism S: limD -> Gsuch that /i, = 8gt for all leE. (Let ae\ ®{|, then
define <5(tf) = /i,(a). It is routine to check that 3 is well defined and has the desired
properties.)
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The important property of directed limits that we shall use is the following:

LEMMA 2. Let D = < {93; | i e £}, {ftJ \ i < j} }bea directed diagram, and fix i e I . ///ft

is onto for all k > i then the canonical homomorphism gt is onto.

PROOF. If xe limD|, then x = a with ae 93 J for some/eE. Choose k ^ i j then
x = a = gj(a) = gk fjk(a). But/ft is onto and fjk(a) =fik{ci) for some a' e 93,-1. Hence,

x=gk fjk(a)=Qk Ma') = g,{a').

Another important observation is the following. If (ah...,an)e|93,-|" and P is a
basic n-adic predicate, then {gi(al),...,gi(an)) ePifand onlyif{fik{al),...Jjk(an))eP'X*
for some k ^ i. This follows from Definition 3 (ii) (a), and Definition 4.

4. Existence of subdirectly irreducible structures

If K is closed under limits it has a good supply of subdirectly irreducible
structures. Actually, closure under direct limits of families of onto homomorphisms
suffices.

LEMMA 3. Let K be closed under direct limits of families of onto homomorphisms. Let
sUeK, (a1,...,an)e|s2l|", and P be a basic n-adic predicate such that (a,,...,an)^P"'1.
Then there exists S e K , subdirectly irreducible in K, and an onto homomorphism

f:M-> « such that (/(a,),...,/(

PROOF. Given onto homomorphisms / : M -> '-B and / ' : M —* ©' define
(/, S3) ~ (/', 93') if and only if there exists an isomorphism g :33—> *-P such that
/ ' = gf. This is obviously an equivalence relation in the class of all pairs (/, iB) with
/ : *.!I->93 an onto homomorphism. As shown in the proof of Lemma 1, this
equivalence relation has a set of representatives for its equivalence classes. Let R be a
set of representatives and let

We define a partial order in F by

(/, 93) < (/', 93') if and only if there is g such that f'=gf.

Reflexivity and transitivity are obvious. Now, if (/, 93) -<(/ ' , 93) and (/', 93) < (f 93)
then/ ' = gf a n d / = hf for some homomorphism g and h. Therefore,/' = ghf and
/ = hgf. S ince /and / ' are onto, gh = lfl and hg = lfl and this shows that g is an
isomorphism. Hence, ( / 93) ~ (/', 93') and (/93) = (/',93'). This shows
antisymmetry.
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Now, we will apply Zorn"s lemma to show that F has maximal elements. Given a
chain in F, {(/j, 33,) | / £ /} with / totally ordered, there is for every i,j e I with i ^ j an
homomorphism/ij: 33 f -> 33,- such that/)- = ftJ ft. Actually ftJ is unique because/) is
onto

-i. 1
(1 )

By uniqueness of/& one has /^ /y =/*• Similarly, fu = 1 .̂. Therefore diagram (1)
above is directed over the directed set {0} u / (make 0 < i, 93O = sil, and/Oi = ft for
i e /). Moreover, every morphism in the diagram is onto (ftj is onto because/) is). Let
X) be a direct limit of the diagram, De K, and let gt: 33, -»I), / : W -^ D be the
canonical homomorphisms. By Lemma 2,/is onto. Therefore, we may assume that
(/,£>)£/?. To conclude that (f,X))eF we must show that (f(al),...,a{an))4Pt>.
Suppose (/(a,),...,/(an))ePT. then for some morphism / t in the diagram

(fk(a,),..., fk(an))eP-\

which contradicts the way the33,'s were chosen. Finally, (/•,©,) -<(./>-8) because

yJi = 9ifOi = yo = /
We have shown that the chain has an upper bound. Let (/,©) be a maximal

element of F, then(/(a1), ..,/(«„)) ̂  Pm. Now let 3 :33 ->• 93' be any onto homomorph-
ism with 33' G K and(g{f{a ^)), ...,g(f(an))) $ P's'. Then(gf, 33') must have a representat-
ive (/", 33") in F and the following diagram, where h is an isomorphism, commutes :

„.

Since f" = h~lgf it follows that ( / ,») -<(/",»") and by maximality
(/,33) = (/", 33"). Therefore. / ; / = hf" = gf. But/ is onto so g = /; is an isomorph-
ism. This shows that for any onto homomorphism g : 33 —> 33' which is not an
isomorphism we must have (g(f(u{),...,g(f{an))ePss>. Hence, 33 is subdirectly
irreducible by Lemma 1.

5. Subdirect decomposition theorem

Let || T || be the number of basic predicates in T.

THEOREM 4. Let K be closed under direct limits (of onto homomorphisms), then every
structure MeK is a subdirect product of at most tf 0 + || *.H|| + ||T || subdirectly
irreducible structures in K.
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PROOF. Let sil e K. Let F = {(/•,93,) | i e /} be a family such that (i)/•: M -> 93,- is an
onto homomorphism, (ii) 93, e K, (Hi) 93; is subdirectly irreducible, and (iv) for each n-
adic basic predicate P (including equality) and n-tuple {a1,...,an)e\s&\" such that
(au...,an)iP

!\ there exists ie I for which(/(a! ),...,/(«„))? Ps<. A family like this exists
by Lemma 3, and it is clear that it may be chosen of cardinality at most

The family of homomorphisms {f{ | / e /} induces an homomorphism g from sil into
the cartesian product n ® ; such that n^j =fj for each / e /. This homomorphism is
actually an isomorphism into a substructure of n*B, because for every basic
predicate P and /?-tupule (a,,...,«„) we have:

( g { a l \ . . . , g { a n ) ) e P * o { n i g ( a l ) , . . . , K i g ( a n ) ) £ P * > for a l l i e /

* ' f o r all i e J

The last implication being true because of condition (iv) in the definition of F. Since
each ntg =f{ is onto by construction, this finishes the proof.

COROLLARY 5. Let K be a class of structures axiomatized by sentences of the form:

Vx,... Vxn(<P^ 3.v,.- 3y,0),

where <I> a»rf 0 are quantifier-free positive formulae, then every structure in K is a
subdirect product of subdirectly irreducible structures of K.

PROOF. It is enough to show that sentences of the above form are preserved by
direct limits. Let <{©,-1 z'e£}, {/,•: 95,- -• 95j}> be a directed diagram over <£, ^ >,
with direct limit {gt: ©̂  -» D | i e I}. It is easy to see by induction in the complexity of
formulae that for every positive formula (built up from conjunctions and disjunc-
tions only) O(x,,...,xn) and all ax,...,an with ar in 93,,.

(2) £ h«>(a!,..,«„) if and only if 3 ke^'A \= 'W/i,*!".)-./;.^',))-

For atomic formulas it is just the definition. The inductive step for A and v is trivial
from right to left. From left to right follows from the directed property of Y. and the
fact that positive sentences are preserved by homomorphisms. Suppose now that <£>
and 0 are positive and 95,- H ^ * i ••• ^ x

n(® ~* ^ )'i ••• 3 y, 0 ) for every i e £ . Suppose
D f=O(Zi,,...,«n) with ar in 93ip then
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for some k and so

»*ho(/il4(fll), ...,/,>„),&„..., ft,)

for some /?,,...,b, in Bk, Since br = fuk(br) we have by (2):

Dhe^,,...,^, £„..., 5,).

Hence,

Since universal-Horn formulas belong to the family described in Corollary 5, and
since equations are universal-Horn formulas, we have :

COROLLARY 6. Tlte subdirect decomposition theorem holds for quasivarieties. In
particular, it holds for varieties (Birkhoff).

RKMARKS. Note that in Theorem 4 or Corollary 5 the class is not required to be
closed under products; therefore, the decomposition may occur 'outside' of the class
but each factor of the product is in the class. Malcev( 1971) has shown that a class K
is a quasivariety if and only if it is closed under direct limits, products, and
substructures (see Eklof (1975) for an elegant proof), in this case the decomposition
occurs 'inside'. All the results in this paper may be extended to classes of many sorted
structures closed under direct limits, the modifications are trivial.
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