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Abstract. This paper is devoted to determine the connectedness of the branch loci
of the moduli space of non-orientable unbordered Klein surfaces. We obtain a result
similar to Nielsen’s in order to determine topological conjugacy of automorphisms
of prime order on such surfaces. Using this result we prove that the branch locus is
connected for surfaces of topological genus 4 and 5.
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1. Introduction. A non-orientable unbordered surface is called a Klein surface if
it is compact and endowed with a dianalytic atlas, see [1]. Non-orientable unbordered
Klein surfaces are also called non-orientable Riemann surfaces and they correspond
to the purely imaginary real algebraic curves.

The study of the moduli space of both Riemann and Klein surfaces is a classic
problem. The subspace of surfaces with non-trivial automorphisms is called the branch
locus of the moduli space. In the case of Riemann surfaces this subspace was studied by
Harvey in [14] and Broughton in [5]. Its connectedness was studied in several papers,
for example in [3, 10, 13, 15]. The main result is that the real locus of the moduli space
of Riemann surfaces is connected (see [11, 12, 20]), while the branch locus of the moduli
space of Riemann surfaces of genus g is connected only when g is 3, 4, 7, 13, 17, 19 or
59 (see [2, 4]).
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In this paper we determine the connectedness of the branch locus for non-
orientable unbordered Klein surfaces of topological genera 4 and 5. We do not consider
surfaces of genus 3 because they are hyperelliptic and it is already known that the
branch locus is connected. In order to make that study in genus 4 and 5 we start from
the results on the moduli space and the branch locus of Klein surfaces obtained by
Macbeath and Singerman in [17], Natanzon in [18] and Seppälä in [20].

In Section 3, we establish an analog of Nielsen’s result on the parameters
determining an automorphism of prime order on a given compact Riemann surface
up to topological conjugation. Here we are concerned with non-orientable unbordered
Klein surfaces. Using this result we obtain in the remaining sections that the branch
loci of these surfaces are connected for genus 4 and 5. Before this, in Section 2, we give
the preliminaries about NEC groups and Klein surfaces, and explain the technique
used to check that the branch locus is connected. In the last sections we consider the
surfaces with genera 4 and 5.

2. Preliminaries.

2.1. NEC groups. An NEC group � is a discrete subgroup of isometries of the
hyperbolic plane H, including orientation-reversing elements, with compact quotient
S = H/�. Each NEC group � has associated a signature [16]:

σ (�) = (g,±, [m1, . . . , mr], {(ni,1, . . . , ni,si ), i = 1, . . . , k}), (1)

where g, k, r, mi, ni,j are integers satisfying g, k, r ≥ 0, mi ≥ 2, ni,j ≥ 2. The number g is
the topological genus of S. The sign determines the orientability of S. The numbers mi

are the proper periods. The brackets (ni,1, . . . , ni,si ) are the period-cycles. The number
k of period-cycles is equal to the number of boundary components of S. Numbers
ni, j are the periods of the period-cycle (ni,1, . . . , ni,si ), also called link-periods. We will
denote by [−] and (−) the cases when r = 0 and si = 0 respectively. Also, we abbreviate
by [(m)r] and {(−)k} the expressions [m, r. . ., m] and {(−), k. . ., (−)} respectively.

The signature determines a presentation [22] of � by means of generators xi

(i = 1, . . . , r); ei (i = 1, . . . , k); ci,j (i = 1, . . . , k; j = 0, . . . , si); and ai, bi (i = 1, . . . , g)
if σ has sign ‘+’ and di (i = 1, . . . , g) if σ has sign ‘−’.

These generators satisfy the following relations: xmi
i = 1 (i = 1, . . . , r); c2

i,j−1 =
c2

i,j = (ci,j−1ci,j)ni,j = 1 (i = 1, . . . , k, j = 1, . . . , si); e−1
i ci,0eici,si = 1 (i = 1, . . . , k);∏r

i=1 xi
∏k

i=1 ei
∏g

i=1(aibia−1
i b−1

i ) = 1 if σ has sign ‘+’; and
∏r

i=1 xi
∏k

i=1 ei
∏g

i=1 d2
i = 1

if σ has sign ‘−’.
The corresponding final relation is called the long relation. The isometries xi are

elliptic, ei, ai, bi are hyperbolic, ci,j are reflections and di are glide reflections.
Every NEC group � with signature (1) has associated a fundamental region whose

area μ(�), called the area of the group, is:

μ(�) = 2π

⎛
⎝ηg + k − 2 +

r∑
i=1

(
1 − 1

mi

)
+ 1

2

k∑
i=1

si∑
j=1

(
1 − 1

ni,j

)⎞
⎠ , (2)
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with η = 2 or 1 depending on whether the sign in the signature is ‘+’ or ‘−’. An NEC
group with signature (1) actually exists if and only if the right-hand side of (2) is greater
than 0.

If � is a subgroup of an NEC group � of finite index N, then also � is an NEC
group and the following Riemann–Hurwitz formula holds:

μ(�) = Nμ(�). (3)

Let S be a non-orientable Klein surface without boundary of topological genus
g ≥3. Then, by [19], there exists an NEC group �g with signature:

σ (�g) = (g,−, [−], {−}), (4)

such that S = H/�g.

2.2. Teichmüller and moduli spaces. Let G be the group of isometries of the
hyperbolic plane H, including reversing-orientation elements. Given an NEC group �,
we denote by R(�) the set of monomorphisms r : � → G such that r(�) is discrete and
H/� is compact.

Two elements r1, r2 ∈ R(�) are said to be equivalent if there exists g ∈ G such that
r1(γ ) = gr2(γ )g−1 for each γ ∈ �. The quotient space T(�) is the Teichmüller space
of �.

When � is a Fuchsian group with signature (g,+, [m1, . . . , mr]), it is known as that
the dimension of T(�), d(T(�)) is 6(g − 1) + 2r. Let now � be a proper NEC group
and call �+ its canonical Fuchsian subgroup. Singerman proved in [21] that d(T(�)) =
1
2 d(T(�+)). The Teichmüller modular group of �, Mod(�), is the quotient group
Aut(�)/Inn(�), where Aut(�) and Inn(�) denote the full group of automorphisms and
the subgroup of inner automorphisms of � respectively [17]. The moduli space of � is
the quotient M(�) = T(�)/Mod(�). For the action of the Mod(�) on the Teichmüller
space, we refer the reader to Section 9 in [17].

Let K be an NEC subgroup of � of finite index. Then following the notation
from Harvey in [14], let I(K, �, H) denote the set of all injections i : K ↪→ � with
�/ i(K) ≈ H. Every such i is determined up to automorphisms of K by a surjection
of � onto H. Let 	(K, �, H) be the family of all equivalence classes of surjections
ϕ : � → H with ker(ϕ) ≈ K , modulo the actions of Aut(�) and Aut(H). Note that 	

is finite since � is finitely generated.
Given i : K ↪→ �, denote by T(ı̂) the image of the associated isometric embedding

T(�) → T(K) (see [17]). Let iϕ be any injection corresponding to a class [ϕ] ∈
	(K, �, H), iϕ : K → ker(ϕ). We denote by �(K, �, H) the set {[r] ∈ T(K) : [r] ∈
T(ı̂), i ∈ I(K, �, H)}. Then,

�(K, �, H) =
⋃

α∈Mod(K)

α

⎛
⎝ ⋃

[ϕ]∈	(K,�,H)

T(ı̂ϕ)

⎞
⎠ .

Let �g be an NEC group with signature (g,−, [−], {−}). Then T(�g) is the
Teichmüller space of compact non-orientable Klein surfaces without boundary of
topological genus g. We denote by �g the subspace of T(�g) corresponding to those
surfaces with non-trivial automorphisms. Then, by [17], �g consists of those points
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which are fixed by some element of Mod(�g), which must have finite order. Let n range
over all possible orders of elements of Mod(�g), in fact, 2 ≤ n ≤ 2g if g is odd, and
2 ≤ n ≤ 2(g − 1) if g is even, see [6]. For each n, let Fn,g denote the set of isomorphism
classes of NEC groups � with non-empty 	(�g, �, Cn), where Cn is the cyclic group of
order n. Then,

�g =
⋃

n

⋃
�∈Fn,g

�(�g, �, Cn).

Hence, �g is a countable union of submanifolds of T(�g). We call Bg =
�g/Mod(�g). Each set �(�g, �, Cn) is mapped into itself by Mod(�g), and the quotient
of this set is made up of connected subsets in a one-to-one correspondence with classes
[ϕ] ∈ 	(�g, �, Cn).

Let θi : �i → G, i = 1, 2 be two epimorphisms with ker θi ≈ �g, where G is a finite
group and �i are NEC groups. We say that θ1 and θ2 are topologically conjugate if and
only if there exist an isomorphism ψ : �1 → �2 and α ∈ Aut(G) such that αθ1 = θ2ψ .

Given two primes p and q and two NEC groups �′ and �′′, consider two
epimorphisms θ ′ : �′ → Cp and θ ′′ : �′ → Cq with ker(θ ′) ≈ ker(θ ′′) ≈ �g. Then we
say that θ ′ and θ ′′ are connected if there exist an NEC group �∗ and an epimorphism
θ∗ : �∗ → G, where G is a group of order pq, and there exist two subgroups of G, G′

and G′′, of orders p and q, satisfying

θ∗−1
(G′) ≈ �′,

θ∗−1
(G′′) ≈ �′′,

θ∗|θ∗−1(G′) is topologically conjugate to θ ′,
θ∗|θ∗−1(G′′) is topologically conjugate to θ ′′.

Since each non-trivial group G contains a subgroup of prime order, for proving that
Bg is connected, it suffices to prove that for each primes p, q, each two epimorphisms θ ′,
θ ′′, there exist a sequence of primes pi, NEC groups �i and epimorphisms θi : �i → Cpi ,
1 ≤ i ≤ k, such that θ1 = θ ′, θk = θ ′′ and θi is connected to θi+1 for i = 1, . . . , k − 1.
This will be done in Sections 4 and 5 for primes 2 and 3 (genus 4) and for 2, 3 and 5
(genus 5). For a similar argument, see for example [2] or [3].

3. Equivalence. Suppose that θi : � → Cp, i = 1, 2 are two epimorphisms, where
� is an NEC group, p is prime and ker θi is isomorphic to the fundamental group of a
non-orientable surface. In this section, we give necessary and sufficient conditions for
θ1 and θ2 to be topologically conjugate.

We list the automorphisms of � which will be used. Most of these are from papers
[7, 14]. If the sign of the signature of � is ‘+’, then we are going to use the following
automorphisms of �:

ω defined by ω(a1) = a1b1 and the identity on the remaining canonical generators.
ξ defined by ξ (a1) = a1b1, ξ (b1) = a−1

1 and the identity on the remaining canonical
generators.

νj defined by νj(aj) = aj+1 , νj(bj) = bj+1, νj(aj+1) = c−1
j+1ajcj+1, νj(bj+1) = c−1

j+1bjcj+1,
where cj+1 = [aj+1, bj+1] and the identity on the remaining canonical generators.

μ defined by μ(a1) = a2a1, μ(a2) = b1a2b−1
1 , μ(b1) = b1, μ(b2) = a2b2a−1

2 b−1
1 and

μ(y) = a2ya−1
2 for every canonical generator y different from a1, b1, a2, b2.
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σ defined by σ (xr) = Ea−1
1 E−1xrEa1E−1, σ (a1) = [a−1

1 , E−1x−1
r E]a1, σ (b1) =

b1a−1
1 E−1xrEa1, where E = e1 · · · ek and the identity on the remaining canonical

generators.
π defined by π (ek) = a−1

1 eka1, π (ck,i) = a−1
1 ck,ia1, π (a1) = [a−1

1 , e−1
k ]a1, π (b1) =

b1a−1
1 eka1 and the identity on the remaining canonical generators.
If the sign in the signature of � is ‘−’, then we are going to use the following

automorphisms.
αj defined by αj(dj) = d2

j dj+1d−2
j , αj(dj+1) = dj and the identity on the remaining

canonical generators.
βj defined by βj(dj) = djd−1

j+1d−1
j , βj(dj+1) = djd2

j+1 and the identity on the remaining
canonical generators.

γ defined by γ (d1) = E−1xrEd1, γ (xr) = xrEd1E−1x−1
r Ed−1

1 E−1x−1
r , where E =

e1 · · · ek and the identity on the remaining canonical generators.
ε defined for sk = 0 by ε(d1) = ekd1, ε(ek) = ekd1e−1

k d−1
1 e−1

k , ε(ck,0) =
ekd1ck,0d−1

1 e−1
k and the identity on the remaining canonical generators.

η defined for g ≥ 4 by

η(d1) = d1d2d3d4d1, η(d2) = (d3d4d1)−1,

η(d3) = d3d4d1d2d3, η(d4) = (d1d2d3)−1,

and η(y) = (d1d2d3d4)y(d1d2d3d4)−1 for every canonical generator different from
d1, d2, d3, d4.

Regardless of the sign in the signature, we are also going to use the following
automorphisms.

ρi defined by ρi(xi) = xixi+1x−1
i , ρi(xi+1) = xi and the identity on the remaining

canonical generators.
λi defined for si = si+1 = 0 by λi(ei) = eiei+1e−1

i , λi(ei+1) = ei, λi(ci,0) = eici+1,0e−1
i ,

λi(ci+1,0) = ci,0 and the identity on the remaining canonical generators.

THEOREM 1. Suppose that p is an odd prime, � is an NEC group of signature
(g; −; [(p)r]; {−}) and θi : � → Cp for i = 1, 2 are two epimorphisms with ker θi isomorphic
to the fundamental group of a non-orientable surface. Then θ1 and θ2 are topologically
conjugate if and only if (θ2(x1), . . . , θ2(xr)) is a permutation of ((θ1(x1))ε1a, . . . , (θ1(xr))εra)
for some a ∈ {1, . . . , p − 1} and εj ∈ {−1, 1}, j = 1, . . . , r.

Proof. The ‘only if ’ part follows from the fact that every automorphism of � maps
xi to a conjugate of some xj or x−1

j , see [16]. We are going to prove the ‘if ’ part.
Suppose that r > 0. By using the automorphisms ρi, γ we may obtain a new

system of canonical generators x′
1, . . . , x′

r, d ′
1, . . . , d ′

g for which θ2(x′
i) = (θ1(x′

i))
a for

i = 1, . . . , r. By using the automorphisms αj we can permute the generators d ′
j so that

θ1(d ′
j ) = 1 for j ≥ m and θ1(d ′

j ) 
= 1 for j < m. Suppose that m > 2. There exists b such
that θ1(d ′

1)(θ (x′
r))

b = 1. With the automorphism (γα1γα1)b we obtain a new system of
generators x′′

1, . . . , x′′
r , d ′′

1 , . . . , d ′′
g such that θ1(x′′

i ) = θ1(x′
i) for i = 1, . . . , r, θ1(d ′′

j ) = 1
for j ≥ m and θ1(d ′′

1 ) = 1. Reordering the d ′′
j , we have a new system of generators such

that θ1(d ′′
j ) = 1 for j ≥ m − 1. By repeating this process we can obtain a system of

generators, where θ1(d ′′
j ) = 1 for j > 1 and θ1(d ′′

1 ) is determined by

θ1(x′′
1 · · · x′′

r (d ′′
1 )2 · · · (d ′′

g )2) = 1.
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Analogously we can find a system of generators x′′′
1 , . . . , x′′′

r , d ′′′
1 , . . . , x′′′

g such that
θ2(x′′′

i ) = θ2(x′
i) for i = 1, . . . , r and θ2(d ′′′

j ) = 1 for j > 1. It follows that there exists
ψ ∈ Aut(�) and α ∈ Aut(Cp) such that θ2ψ = αθ1.

Suppose that r = 0. By using the automorphisms αj and βj we can find a new
system of generators d ′

1, . . . , d ′
g such that θ1(d ′

i ) = X for i > 1, where X 
= 1, and θ1(d ′
1)

is determined by the long relation (cf [7, proof of Theorem 3]). Since we can do the
same for θ2, there exist ψ ∈ Aut(�) and α ∈ Aut(Cp) such that θ2ψ = αθ1. �

The next result can be obtained from [8]. However, we give here a direct proof.

THEOREM 2. Suppose that � is an NEC group of signature (g; ±; [(2)r]; {(−)k}) and
θi : � → C2 for i = 1, 2 are two epimorphisms with ker θi isomorphic to the fundamental
group of a non-orientable surface. Let X be the generator of C2 and

ni = #{j ∈ {1, . . . , k} | θi(ej) = X} for i = 1, 2.

Then θ1 and θ2 are topologically conjugate if and only if
(1) n1 = n2, and if r = n1 = n2 = 0 and the sign is ‘−’ then
(2) θ1(d1 · · · dg) = θ2(d1 · · · dg) and
(3) θ1(d1) = · · · = θ1(dg) = 1 if and only if θ2(d1) = · · · = θ2(dg) = 1.

Proof. Let θ : � → C2 be an epimorphism with ker θ isomorphic to the
fundamental group of a non-orientable surface, and n = #{j ∈ {1, . . . , k} | θi(ej) = X}.

Case 1. r + n > 0.
We are going to show that in this case θ is determined by n up to an automorphism

of �. Since ker θ is torsion-free, we have θ (xi) = X for i = 1, . . . , r and θ (cj,0) = X
for j = 1, . . . , k. The automorphisms λi permute the boundary generators ei up to
conjugation, so we may assume that θ (ei) = 1 for i ≤ k − n and θ (ei) = X for i > k − n.

Subcase 1(a) The sign of the signature is ‘−’. By using the automorphisms αj and
ε if n > 0 or γ if r > 0, we can obtain a new system of canonical generators such that
θ (di) = 1 for i = 1, . . . , g.

Subcase 1(b) The sign of the signature is ‘+’. Suppose that θ (ai) = θ (bi) = 1 for
i = 1, . . . , g. Then by using the automorphism π if n > 0 or σ if r > 0, we obtain a new
system of canonical generators such that θ (b1) = X . Therefore, we may assume that
θ (ai) = X or θ (bi) = X for some i and by the automorphisms νi we may assume that
i = 1. There exists ψ ∈ Aut(�) such that θ (ψ(a1)) = θ (ψ(b1)) = X and θ (ψ(y)) = θ (y)
for every canonical generator y different from a1 and b1. Indeed, if θ (a1) = 1 and
θ (b1) = X , then ψ = ω, whereas if θ (a1) = X and θ (b1) = 1, then ψ = ξ . Therefore,
we may assume that θ (ai) = θ (bi) = X for i ≤ m and θ (ai) = θ (bi) = 1 for i > m
for some m > 0. Suppose that m < g. Then after reordering the generators by the
automorphisms νi we may assume that θ (a1) = θ (b1) = 1 and θ (a2) = θ (b2) = X . Now
for ψ = ξμ we have θ (ψ(a1)) = θ (ψ(b1)) = X and θ (ψ(y)) = θ (y) for every canonical
generator y different from a1 and b1. Repeating this process we arrive at a new system
of canonical generators such that θ (ai) = θ (bi) = X for i = 1, . . . , g.

Case 2. r = n = 0.
Subcase 2(a) The sign of the signature is ‘+’. Since H/ker θ is non-orientable,

θ (ai) = X or θ (bi) = X for some i. Proceeding as in subcase 1(b), we can find a system
of canonical generators such that θ (ai) = θ (bi) = X for i = 1, . . . , g.
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Subcase 2(b) The sign of the signature is ‘−’. Let

m = #{j ∈ {1, . . . , g} | θ1(dj) = X}.

The condition m = 0 clearly determines θ . We are going to show that if m > 0,
then θ is determined up to an automorphism of � by m mod 2. Since H/ker θ is non-
orientable, m < g. Suppose that m ≥ 3. Reordering the dis we may assume that θ (d1) =
θ (d2) = θ (d3) = X and θ (d4) = 1. Then θ (η(d1)) = θ (η(d2)) = θ (η(d3)) = 1, θ (η(d4)) =
X and θ (η(y)) = θ (y) for every canonical generator y different from d1, d2, d3, d4.
Repeating this process we can find a system of canonical generators such that if m was
odd then θ (d1) = X and θ (di) = 1 for i ≥ 2, and if m was even then θ (d1) = θ (d2) = X
and θ (di) = 1 for i ≥ 3.

We have proved that the conditions (1)–(3) are sufficient for θ1 and θ2 to be
topologically conjugate. Now we are going to prove that they are also necessary. The
necessity of condition (1) follows from the fact that every automorphism of � maps ei to
a conjugate of some ej or e−1

j , see [16]. Suppose that the sign is ‘−’, r = n1 = n2 = 0 and
θ2 = θ1ψ for some ψ ∈ Aut(�). Let K be the smallest normal subgroup of � containing
e1, . . . , ek and the commutator subgroup [�,�]. Let H = �/K and ci, dj ∈ H be the
projections of ci,0, dj respectively. As a �-module, H has the presentation

〈c1, . . . , ck, d1, . . . , dg | 2c1 = · · · = 2ck = 2(d1 + · · · + dg) = 0〉.

Observe that ψ(K) = K and K ⊆ ker θi. If ψ∗ : H → H, θ∗
i : H → C2 are the induced

maps, then θ∗
2 = θ∗

1 ψ∗. Let h = d1 + · · · + dg. Note that ψ∗ permutes the ci’s and
ψ∗(h) = h + ci1 + · · · + ci2s for some s ≥ 0 and {i1, . . . , i2s} ⊆ {1, . . . , k}. Thus, θ∗

2 (h) =
θ∗

1 ψ∗(h) = θ∗
1 (h). But θ∗

i (h) = θi(d1 · · · dg), and so we have proved the necessity of
condition (2). To prove the necessity of condition (3), suppose that θ1(d1) = · · · =
θ1(dg) = 1 and θ2(di) = X for some i ∈ {1, . . . , g} and θ2 = θ1ψ for some ψ ∈ Aut(�).
By condition (2) and proof of subcase 2(b), we may assume that θ2(d1) = θ2(d2) = X
and θ2(di) = 1 for i ≥ 3. For i = 1, 2, let Hi = ker θi/[ker θi, ker θi] (Hi is isomorphic
to the first homology group with integral coefficients of the surface H/ker θi) and
let pi : ker θi → Hi be the canonical projection. Let ei = p1(ei) for i = 1, . . . , k,
cl = p1(ck,0cl,0) for l = 1, . . . , k − 1, dj = p1(dj), fj = p1(ck,0djck,0) for j = 1, . . . , g. A
presentation for ker θ1 may be obtained by the Reidemeister–Schreier procedure, then
by taking abelianization we obtain that H1 has a presentation (as a �-module) with
generators ei, cl, dj, fj satisfying the following two defining relations:

e1 + · · · + ek = −2(d1 + · · · + dg),

2(d1 + · · · + dg − (f1 + · · · + fg)) = 0.

Let ẽi = p2(ei) for i = 1, . . . , k, c̃l = p2(ck,0cl,0) for l = 1, . . . , k − 1, d̃j = p2(dj), f̃j =
p2(ck,0djck,0) for j = 3, . . . , g, a1 = p2(d1ck,0), b1 = p2(ck,0d1), a2 = p2(d2ck,0), b2 =
p2(ck,0d2). Then H2 has a presentation with generators ẽi, c̃l, d̃j, f̃j, a1, b1, a2, b2

satisfying the following two defining relations:

ẽ1 + · · · + ẽk = −(a1 + b1 + a2 + b2 + 2(d̃3 + · · · + d̃g)),

2(d̃3 + · · · + d̃g − (f̃3 + · · · + f̃g)) = 0.
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Table 1. Groups G and � for genus 4

G Number �

C2 1 (0,+, [2, 2, 2, 2], {(−)})
2 (0,+, [2, 2], {(−), (−)})
3 (0,+, [−], {(−), (−), (−)})
4 (1,−, [2, 2, 2, 2], {−})
5 (1,−, [2, 2], {(−)})
6 (1,−, [−], {(−), (−)})
7 (2,−, [2, 2], {−})
8 (2,−, [−], {(−)})
9 (3,−, [−], {−})

10 (1,+, [−], {(−)})
C3 (2,−, [3], {−})
C2 × C2 1 (0,+, [2, 2, 2], {(−)})

2 (0,+, [2, 2], {(2, 2)})
3 (0,+, [2], {(2, 2, 2, 2)})
4 (0,+, [−], {(2, 2, 2, 2, 2, 2)})
5 (1,−, [2, 2, 2], {−})
6 (1,−, [2], {(−)})
7 (0,+, [2], {(−)(−)})

D3 (0,+, [2, 2], {(3)})
(0,+, [−], {(−), (3)})
(1,−, [−], {(3)})

Consider the groups H ′
1 = H1 ⊗ C2, H ′

2 = H2 ⊗ C2 (H ′
i is isomorphic to the first

homology group of H/ker θi with coefficients in C2). For every a ∈ Hi, we denote by [a]
the element a ⊗ X ∈ H ′

i . Let h1 = [e1 + · · · + ek], h2 = [ẽ1 + · · · + ẽk]. Note that h1 = 0
and h2 
= 0. On the other hand, we claim that ψ∗(h2) = h1, where ψ∗ : H ′

2 → H ′
1 is the

isomorphism induced by ψ . To see this, note that for every i, ψ(ei) = ye±1
j y−1 for some j

and some y ∈ �. If y ∈ ker θ1 then ψ∗[ẽi] = [ej], and if y /∈ ker θ1 then ycj,0 ∈ ker θ1 and
since ψ(ei) = ycj,0e±1

j (ycj,0)−1, we also have ψ∗[ẽi] = [ej]. Thus, ψ∗(h2) = h1, which is a
contradiction proving that θ1 and θ2 are not topologically conjugate and the condition
(3) is necessary. �

4. Surfaces of topological genus 4. As seen in Section 2.2, we need only to study
the cyclic automorphism groups Cp for p prime. From [6] for g = 4, the only such
primes p are 2 and 3. According to this we are going to consider the groups C2, C3,
C2 × C2 and D3. For each one of these groups, say G, we take from [9] the list of groups
� such that there exists an epimorphism θ : � → G with ker(θ ) = �4. We give this list
in Table 1.

First we consider the 10 signatures of � corresponding to group C2. We are going
to define all epimorphisms θ : � → C2 with kernel �4, and to determine by using
Theorem 2 whether two epimorphisms from the same NEC group are topologically
conjugate.

Signature 1: (0,+, [2, 2, 2, 2], {(−)}).
The unique epimorphism is given by

θ : (x1, x2, x3, x4, e1, c1,0) → (X, X, X, X, 1, X).

Signature 2: (0,+, [2, 2], {(−), (−)}).

https://doi.org/10.1017/S0017089514000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000275


ON THE CONNECTEDNESS OF THE BRANCH LOCI 219

There are two possible epimorphisms:

θ1 : (x1, x2, e1, e2, c1,0, c2,0) → (X, X, 1, 1, X, X),

θ2 : (x1, x2, e1, e2, c1,0, c2,0) → (X, X, X, X, X, X).

By Theorem 2, the epimorphisms θ1 and θ2 are non-conjugate because n1 = 0 and
n2 = 2. We call them cases 2.1 and 2.2.

Signature 3: (0,+, [−], {(−), (−), (−)}).
The unique epimorphism is given by

θ : (e1, e2, e3, c1,0, c2,0, c3,0) → (X, X, 1, X, X, X).

Signature 4: (1,−, [2, 2, 2, 2], {−}).
The epimorphism is given by

θ : (d1, x1, x2, x3, x4) → (1 or X, X, X, X, X),

where the image of d1 is irrelevant according to Theorem 2 since r 
= 0.
Signature 5: (1,−, [2, 2], {(−)}).
The epimorphism is given by

θ : (d1, x1, x2, e1, c1,0) → (1 or X, X, X, 1, X),

again the image of d1 is irrelevant.
Signature 6: (1,−, [−], {(−), (−)}).
There are two kinds of epimorphisms given by

θ1 : (d1, e1, e2, c1,0, c2,0) → (1 or X, X, X, X, X),

θ2 : (d1, e1, e2, c1,0, c2,0) → (1, 1, 1, X, X).

The choice of θ1(d1) is irrelevant because n1 
= 0. On the other hand, θ2 is not
topologically conjugate to θ1 because n1 
= n2. We denote them as cases 6.1 and 6.2.

Signature 7: (2,−, [2, 2], {−}).
The epimorphism is given by

θ : (d1, d2, x1, x2) → (1 or X, 1 or X, X, X),

and as above the choice for the images of d1 and d2 are irrelevant.
Signature 8: (2,−, [−], {(−)}).
The epimorphism is given by

θ : (d1, d2, e1, c1,0) → (1, 1 or X, 1, X),

where the choice for the image of d2 is irrelevant.
Signature 9: (3,−, [−], {−}).
There are three possible epimorphisms given by

θ1 : (d1, d2, d3) → (X, 1, 1),

θ2 : (d1, d2, d3) → (X, X, X),

θ3 : (d1, d2, d3) → (X, 1, X).
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We can see that θ1(d1d2d3) = θ2(d1d2d3) = X , while θ3(d1d2d3) = 1. Hence, by Theorem
2, keeping in mind that r = k = 0, there are two kinds of epimorphisms whose
representatives are θ1 and θ3. We denote them as cases 9.1 and 9.2.

Signature 10: (1,+, [−], {(−)}).
The epimorphism is given by

θ : (a1, b1, e1, c1,0) → (X, 1 or X, 1, X),

where again the choice for the image of b1 is irrelevant.
So we have 13 different cases denoted by 1, 2.1, 2.2, 3, 4, 5, 6.1, 6.2, 7, 8, 9.1, 9.2

and 10. For each of these there exists an epimorphism θ : � → C2 with ker(θ ) = �4.
According to the construction at the end of the Section 2.2, we are going to look for
epimorphisms θ∗ : �∗ → C2 × C2 which connect any pair of epimorphisms.

We have in Table 1 the possible signatures for �∗. We call �∗
i the NEC group with

signature labeled i in Table 1. We shall run through these signatures until we connect
the 13 cases. We exhibit the epimorphism θ∗ in each case and distinguish carefully the
situations 2.1 and 2.2, 6.1 and 6.2 and 9.1 and 9.2.

We denote the generators of �∗ with the corresponding starred letters. The
generators of C2 × C2 are denoted by X and Y .

First we take the group �∗
1 with signature (0,+, [2, 2, 2], {(−)}). Define the

epimorphism θ∗ : �∗
1 → C2 × C2 by

(x∗
1, x∗

2, x∗
3, e∗

1, c∗
1,0) → (X, X, Y, Y, X).

Then θ∗−1
(〈X〉) is an NEC group with signature 1, θ∗−1

(〈Y〉) is an NEC group with
signature 7 and θ∗−1

(〈XY〉) is an NEC group with signature 9. For the last one we
must check whether we are in case 9.1 or 9.2. The generators of group θ∗−1

(〈XY〉) with
signature (3,−, [−], {−}) can be expressed in terms of the generators of �∗

1 as

d1 = x∗
1c∗

1,0,

d2 = c∗
1,0x∗

2,

d3 = x∗
2c∗

1,0x∗
3x∗

2.

Hence, θ∗(d1) = 1, θ∗(d2) = 1 and θ∗(d3) = XY . So this is case 9.1. As a consequence,
cases 1, 7 and 9.1 are connected,

1 − 7 − 9.1

Now we deal with the group �∗
2 with signature (0,+, [2, 2], {(2, 2)}). Define the

epimorphism θ∗ : �∗
2 → C2 × C2 by

(x∗
1, x∗

2, e∗
1, c∗

1,0, c∗
1,1, c∗

1,2) → (X, Y, XY, X, Y, X).

Then θ∗−1
(〈X〉) is an NEC group with signature 5, and θ∗−1

(〈XY〉) is an NEC group
with signature 7. Hence, case 5 is also connected with the previous list,

1 − 7 − 9.1 − 5

We now define a new epimorphism from the same group �∗
2 by

(x∗
1, x∗

2, e∗
1, c∗

1,0, c∗
1,1, c∗

1,2) → (X, X, 1, X, Y, X).
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For this epimorphism we have that θ∗−1
(〈X〉) is an NEC group with signature 1, and

θ∗−1
(〈Y〉) is an NEC group with signature 8. Case 8 is connected with the previous

ones,

1 − 7 − 9.1 − 5 − 8

Let �∗
3 be an NEC group with signature (0,+, [2], {(2, 2, 2, 2}). Define θ∗ : �∗

3 →
C2 × C2 by

(x∗
1, e∗

1, c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3, c∗
1,4) → (X, X, X, Y, X, Y, X).

Then θ∗−1
(〈X〉) is an NEC group with signature 2, θ∗−1

(〈Y〉) is an NEC group with
signature 6 and θ∗−1

(〈XY〉) is an NEC group with signature 4. We must distinguish
which is the respective case for signatures 2 and 6.

We express the generators of θ∗−1
(〈X〉) in terms of the generators of �∗

3 as

x1 = x∗
1,

x2 = c∗
1,3x∗

1c∗
1,3,

e1 = c∗
1,3c∗

1,1,

e2 = c∗
1,1x∗

1c∗
1,3x∗

1,

c1,0 = c∗
1,2,

c2,0 = c∗
1,0.

Then θ∗(e1) = 1 and θ∗(e2) = 1. Hence, this is case 2.1.
We now deal with θ∗−1

(〈Y〉). Its generators can be expressed as

d1 = e∗
1c∗

1,0,

e1 = c∗
1,0c∗

1,2,

e2 = c∗
1,2c∗

1,4,

c1,0 = c∗
1,1,

c2,0 = c∗
1,3.

Then θ∗(e1) = 1, θ∗(e2) = 1 and so this is case 6.2. So we have seen that cases 2.1, 4
and 6.2 are connected. We have up to now

1 − 7 − 9.1 − 5 − 8

and

2.1 − 4 − 6.2

We now define a new epimorphism from the same group �∗ by

(x∗
1, e∗

1, c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3, c∗
1,4) → (X, X, X, Y, XY, Y, X).

Then θ∗−1
(〈X〉) has signature 1, and θ∗−1

(〈Y〉) has signature 6. We now check whether
this is case 6.1 or 6.2. Since θ∗(e1) = θ∗(e2) = Y , this is case 6.1. Hence, this case is
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connected with case 1,

1 − 7 − 9.1 − 5 − 8 − 6.1

Take now �∗
4 with signature (0,+, [−], {(2, 2, 2, 2, 2, 2)}). Define θ∗ : �∗

4 → C2 ×
C2 by

(c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3, c∗
1,4, c∗

1,5, c∗
1,6) → (X, XY, X, Y, X, Y, X).

Then θ∗−1
(〈X〉) has signature 3, and θ∗−1

(〈XY〉) has signature 1 so that case 3 is
connected with 1,

1 − 7 − 9.1 − 5 − 8 − 6.1 − 3

We now define another epimorphism θ∗ : �∗
4 → C2 × C2 by

(c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3, c∗
1,4, c∗

1,5, c∗
1,6) → (X, XY, X, Y, XY, Y, X).

Then both θ∗−1
(〈Y〉) and θ∗−1

(〈XY〉) have signature 2. Consider first θ∗−1
(〈Y〉). Its

generators can be expressed by

x1 = c∗
1,0c∗

1,1,

x2 = c∗
1,1c∗

1,2,

e1 = c∗
1,2c∗

1,4,

e2 = c∗
1,4c∗

1,6,

c1,0 = c∗
1,3,

c2,0 = c∗
1,5.

Then θ∗(e1) = θ∗(e2) = Y and so this is case 2.2.
Take now θ∗−1

(〈XY〉). Its generators are expressed by

x1 = c∗
1,5c∗

1,3c∗
1,2c∗

1,5,

x2 = c∗
1,5c∗

1,6,

e1 = c∗
1,0c∗

1,2,

e2 = c∗
1,3c∗

1,5,

c1,0 = c∗
1,1,

c2,0 = c∗
1,4.

Hence, θ∗(e1) = θ∗(e2) = 1, and this is case 2.1 so that both cases are connected,

2.1 − 4 − 6.2 − 2.2

Now we have the group �∗
7 with signature (0,+, [2], {(−), (−)}) and define θ∗ :

�∗
7 → C2 × C2 by

(x∗
1, e∗

1, e∗
2, c∗

1,0, c∗
2,0) → (Y, 1, Y, Y, X).

https://doi.org/10.1017/S0017089514000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000275


ON THE CONNECTEDNESS OF THE BRANCH LOCI 223

Then θ∗−1
(〈X〉) has signature 10, θ∗−1

(〈Y〉) has signature 2 and finally θ∗−1
(〈XY〉) has

signature 9.
We are going to express the generators of θ∗−1

(〈Y〉) in terms of the generators of
�∗

7 by

x1 = x∗
1,

x2 = c∗
2,0x∗

1c∗
2,0,

e1 = c∗
2,0e∗

1c∗
2,0,

e2 = e∗−1

1 ,

c1,0 = c∗
2,0,

c2,0 = c∗
1,0.

Hence, θ∗(e1) = θ∗(e2) = 1, so this is case 2.1.
We now deal with θ∗−1

(〈XY〉). Its generators can be expressed as

d1 = x∗
1c∗

1,0,

d2 = c∗
1,0x∗

1e∗
1,

d3 = e∗
2c∗

2,0.

Then θ∗(d1) = θ∗(d2) = 1 and θ∗(d3) = XY . So this is case 9.1. Thus, cases 9.1 and 10
are connected with 2.1,

1 7 9.1 5 8 6.1 3

2.1 4 6.2 2.2

10

Up to now all cases are connected except for 9.2. We are dealing with this last case.
We define a new epimorphism θ∗ : �∗

7 → C2 × C2 by

(x1, e1, e2, c1,0, c2,0) → (Y, XY, X, Y, Y ).

Then θ∗−1
(〈Y〉) has signature 2 and θ∗−1

(〈XY〉) has signature 9. We must decide if we
have the case 9.1 or 9.2. The generators of the group θ∗−1

(〈XY〉) can be expressed as
above. Then θ∗(d1) = 1, θ∗(d2) = θ∗(d3) = XY , and so this is case 9.2. Hence, case 9.2
is connected with one of the cases of signature 2 and we are done. We have finished to
check that of all cases appearing for the prime p = 2 are connected.

The following step deals with the other prime p = 3. According to Table 1, the
unique signature is (2,−, [3], {−}). We denote by � a group with this signature. We are
going to see that there are two epimorphisms θ : � → C3 with kernel �4 and check
that they are conjugate by Theorem 1. Call X the generator of C3. The epimorphisms
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Table 2. Groups G and � for genus 5

G Number �

C2 1 (0, +, [2, 2, 2, 2, 2], {(−)})
2 (0, +, [2, 2, 2], {(−), (−)})
3 (0, +, [2], {(−), (−), (−)})
4 (1, −, [2, 2, 2], {(−)})
5 (1, −, [2], {(−), (−)})
6 (2, −, [2], {(−)})
7 (1, +, [2], {(−)})

C3 1 (1, −, [3, 3, 3], {−})
2 (3, −, [−], {−})

C2 × C2 1 (0, +, [2, 2], {(2, 2, 2)})
2 (0, +, [2], {(2, 2, 2, 2, 2)})
3 (0, +, [−], {(2, 2, 2, 2, 2, 2, 2)})
4 (0, +, [−], {(2, 2, 2), (−)})
5 (1, −, [−], {(2, 2, 2)})

C5 (1, −, [5, 5], {−})
D3 1 (0, +, [2, 3], {(3)})

2 (0, +, [2], {(3, 3, 3)})
3 (0, +, [2, 2, 2], {(−)})
4 (0, +, [2], {(−), (−)})
5 (1, −, [2], {(−)})

D5 1 (0, +, [2, 5], {(−)})
2 (0, +, [2], {(5, 5)})

are defined by

(d1, d2, x1) → (X, 1, X) or (d1, d2, x1) → (X2, X2, X)

and because the images of x1 are the same, both epimorphisms are conjugate.
By [9], the action of � extends to a group �∗ such that there exists an epimorphism

θ∗ : �∗ → D3 with kernel �4. Let X, Y ∈ D3 have orders 2 and 3. Then θ∗−1
(〈X〉) is one

of the above studied groups corresponding to C2, while θ∗−1
(〈Y〉) is �. So the unique

case corresponding to C3 is connected to one of the cases of C2, and then to all of
them. We have finished to prove the following.

THEOREM 3. The space B4 is connected.

5. Surfaces of topological genus 5. We are going to consider the groups Cp for p
prime acting on surfaces of genus g = 5. From [6], the values of p are 2, 3 or 5. Hence,
we consider the groups C2, C3, C5, C2 × C2, D3 and D5. For each of these groups, say G,
the list of groups � such that there exists an epimorphism θ : � → G with ker(θ ) = �5

is taken from [9] and collected in Table 2.
We are going to consider the seven signatures of � corresponding to the group

C2. We determine all epimorphisms θ : � → C2 with kernel �5 which are topologically
non-conjugate. As in the previous section, we call X the generator of C2.

Signature 1: (0,+, [2, 2, 2, 2, 2], {(−)}).
The unique epimorphism is given by

θ : (x1, x2, x3, x4, x5, e1, c1,0) → (X, X, X, X, X, X, X).

Signature 2: (0,+, [2, 2, 2], {(−), (−)}).
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The unique epimorphism is given by

θ : (x1, x2, x3, e1, e2, c1,0, c2,0) → (X, X, X, X, 1, X, X).

Signature 3: (0,+, [2], {(−), (−), (−)}).
There are two possible epimorphisms given by

θ1 : (x1, e1, e2, e3, c1,0, c2,0, c3,0) → (X, X, X, X, X, X, X),

θ2 : (x1, e1, e2, e3, c1,0, c2,0, c3,0) → (X, X, 1, 1, X, X, X).

By Theorem 2, the epimorphisms θ1 and θ2 are non-conjugate because n1 = 2 and
n2 = 0. We call these cases 3.1 and 3.2.

Signature 4: (1,−, [2, 2, 2], {(−)}).
The unique epimorphism is given by

θ : (d1, x1, x2, x3, e1, c1,0) → (1 or X, X, X, X, X, X).

The choice of the image of d1 is irrelevant according to Theorem 2 because r 
= 0.
Signature 5: (1,−, [2], {(−), (−)}).
The unique epimorphism is given by

θ : (d1, x1, e1, e2, c1,0, c2,0) → (1 or X, X, X, 1, X, X).

Again, the choice of the image of d1 is irrelevant.
Signature 6: (2,−, [2], {(−)}).
The unique epimorphism is given by

θ : (d1, d2, x1, e1, c1,0) → (1 or X, 1 or X, X, X, X).

As in the previous cases, the choice of the images of d1 and d2 are irrelevant.
Signature 7: (1,+, [2], {(−)}).
The unique epimorphism is given by

θ : (a1, b1, x1, e1, c1,0) → (1 or X, 1 or X, X, X, X).

Again, the choice of the images of a1 and b1 are irrelevant.
Hence, we have eight different cases denoted by 1, 2, 3.1, 3.2, 4, 5, 6 and 7. For

each of these there exists an epimorphism θ : � → C2 with ker(θ ) = �5. We are going
to look for epimorphisms θ∗ : �∗ → C2 × C2 which connect all epimorphisms θ .

The possible signatures for �∗ appear in Table 2. We call �∗
i the NEC group with

signature labeled i in Table 2 for the group C2 × C2. We denote the generators of �∗

with the corresponding starred letters, and call X and Y the generators of C2 × C2.
First we take the group �∗

1 with signature (0,+, [2, 2], {(2, 2, 2)}). Define an
epimorphism θ∗ : �∗

1 → C2 × C2 by

(x∗
1, x∗

2, e∗
1, c∗

1,0, c∗
1,1, c∗

1,2, c∗
1,3) → (X, X, 1, X, Y, XY, X).

Then θ∗−1
(〈X〉) is an NEC group with signature 1, and θ∗−1

(〈Y〉) is an NEC group with
signature 6. Hence, cases 1 and 6 are connected,

1 − 6
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We define a different epimorphism from the same group �∗
1 by

(x∗
1, x∗

2, e∗
1, c∗

1,0, c∗
1,1, c∗

1,2, c∗
1,3) → (X, Y, XY, X, Y, XY, X).

For this epimorphism we have that θ∗−1
(〈X〉) is an NEC group with signature 4, and

θ∗−1
(〈XY〉) is an NEC group with signature 6. Hence, case 4 is connected with the

previous ones,

1 − 6 − 4

Now we take �∗
2 as an NEC group with signature (0,+, [2], {(2, 2, 2, 2, 2)}). Define

θ∗ : �2 → C2 × C2 by

(x∗
1, e∗

1, c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3, c∗
1,4, c∗

1,5) → (X, X, Y, X, Y, XY, X, Y ).

Then θ∗−1
(〈X〉) is an NEC group with signature 2, θ∗−1

(〈Y〉) is an NEC group with
signature 5 and θ∗−1

(〈XY〉) is an NEC group with signature 4. Hence, cases 2 and 5
are connected with the three previous ones,

1 − 6 − 4 − 2 − 5

Now, let �∗
3 be an NEC group with signature (0,+, [−], {(2, 2, 2, 2, 2, 2, 2)}). Define

an epimorphism θ∗ from this group onto C2 × C2 by

(c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3, c∗
1,4, c∗

1,5, c∗
1,6, c∗

1,7) → (X, XY, X, XY, Y, X, Y, X).

Then θ∗−1
(〈X〉) is an NEC group with signature 3, and θ∗−1

(〈Y〉) is an NEC group
with signature 2. We must distinguish whether this is case 3.1 or 3.2. We express the
generators of θ∗−1

(〈X〉) as follows:

x1 = c∗
1,3c∗

1,4,

e1 = c∗
1,4c∗

1,6,

e2 = c∗
1,6c∗

1,1,

e3 = c∗
1,1c∗

1,3,

c1,0 = c∗
1,5,

c2,0 = c∗
1,7,

c3,0 = c∗
1,2.

Then θ∗(e1) = 1, θ∗(e2) = X and θ∗(e3) = 1. So this is case 3.2 and is connected with
case 2,

1 − 6 − 4 − 2 − 5 − 3.2

We now consider an NEC group �∗
4 with signature (0,+, [−], {(2, 2, 2), (−)}).

Define an epimorphism θ∗ from this group onto C2 × C2 by

(e∗
1, e∗

2, c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3, c∗
2,0) → (X, X, X, XY, Y, X, X).
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Then θ∗−1
(〈X〉) is an NEC group with signature 3, and θ∗−1

(〈Y〉) is an NEC group with
signature 7. We must distinguish whether the former is case 3.1 or 3.2. We express the
generators of θ∗−1

(〈X〉) as follows:

x1 = c∗
1,2c∗

1,1,

e1 = c∗
1,1e∗

1c∗
1,2e∗−1

1 ,

e2 = e∗−1

2 ,

e3 = c∗
1,2e∗

2c∗
1,2,

c1,0 = c∗
1,0,

c2,0 = c∗
2,0,

c3,0 = c∗
1,2c∗

2,0c∗
1,2.

Then θ∗(e1) = θ∗(e2) = θ∗(e3) = X . So this is case 3.1 and is connected with Case 7,

7 − 3.1

Take an NEC group �∗
5 with signature (1,−, [−], {(2, 2, 2)}). Define θ∗ : �∗

5 →
C2 × C2 by

(d∗
1 , e∗

1, c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3) → (XY, 1, X, Y, XY, X).

Then θ∗−1
(〈X〉) is an NEC group with signature 7 and θ∗−1

(〈XY〉) is an NEC group
with signature 6. Hence, case 7 (and also case 3.1) is connected with the previous ones,

1 − 6 − 4 − 2 − 5 − 3.2 − 7 − 3.1

We have proven that all cases for prime p = 2 are connected.
We now deal with the prime p = 3. We denote by X the generator of C3. According

to Table 2 we must consider two signatures.
Signature 1: (1,−, [3, 3, 3], {−}).
There are three possible epimorphisms given by

θ1 : (d1, x1, x2, x3) → (1, X, X, X),

θ2 : (d1, x1, x2, x3) → (X, X, X, X2),

θ3 : (d1, x1, x2, x3) → (X2, X, X2, X2).

In order to apply Theorem 1, observe that the respective images of the elliptic elements
are {X, X, X}, {X, X, X2} and {X, X2, X2}. Since X2 = X−1, the epimorphism θ1 is
topologically conjugate to both θ2 and θ3, and so these are all equivalent.

Signature 2: (3,−, [−], {−}).
There are two possible epimorphisms given by

θ1 : (d1, d2, d3) → (X, X, X),

θ2 : (d1, d2, d3) → (1, X, X2).

Since r = 0, both of these are topologically conjugate by Theorem 1.
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We are going to extend both actions to D3, and so these two cases will be connected
to those corresponding to p = 2. For that we consider an NEC group �∗

2 with signature
(0,+, [2], {(3, 3, 3)}), which is the second signature in Table 2 corresponding to group
D3. We denote by X and Y the generators of D3 satisfying X2 = Y 2 = (XY )3 = 1. We
define an epimorphism θ∗ : �∗

2 → D3 by

(x∗
1, e∗

1, c∗
1,0, c∗

1,1, c∗
1,2, c∗

1,3) → (Y, Y, X, Y, X, YXY ).

Then θ∗−1
(〈XY〉) has signature 1, and θ∗−1

(〈X〉) is a group corresponding to C2. So
case 1 is connected with a case of C2 and so with all of them.

We are now going to make the same with signature 2. Call �∗
5 an NEC group with

signature (1,−, [2], {(−)}), the fifth signature in Table 2 corresponding to D3. Define
θ∗ : �∗

5 → D3 by

(d∗
1 , x∗

1, e∗
1, c∗

1,0) → (XY, X, Y, Y ).

Then θ∗−1
(〈XY〉) has signature 2 and θ∗−1

(〈X〉) is a group corresponding to C2. So case
2 is connected with a case of C2 and so with all of them.

Finally, we deal with the prime p = 5. There exists a unique signature for group
C5 in Table 2, which is (1,−, [5, 5], {−}). Call � an NEC group with this signature.
Applying Theorem 1 as in the previous case, we see that there are two kinds of
topologically non-conjugate epimorphisms from � onto C5 represented by

θ1 : (d1, x1, x2) → (X4, X, X),

θ2 : (d1, x1, x2) → (X, X, X2),

where X denotes a generator of C5. In order to keep the same notation, we call them
cases 1.1 and 1.2. We are going to connect both cases to those of C2 by extending the
action to D5. As usual we call X and Y the generators of D5 satisfying X2 = Y 2 =
(XY )5 = 1.

First, let �∗
1 be an NEC group with signature (0,+, [2, 5], {(−)}), the first signature

for D5 in Table 2. Define θ∗ : �∗
1 → D5 by

(x∗
1, x∗

2, e∗
1, c∗

1,0) → (X, XY, Y, Y ).

We consider the group θ∗−1
(〈XY〉). Its generators can be expressed in terms of the

generators of �∗
1 by

d1 = x∗
1c∗

1,0,

x1 = c∗
1,0x∗

2c∗
1,0,

x2 = x∗
2.

Then θ∗(x1) = YX = (XY )−1 and θ∗(x2) = XY , hence by applying Theorem 1, this
epimorphism is topologically conjugate to θ1 and this is case 1.1. Since θ∗−1

(〈X〉) is an
NEC group corresponding to C2, case 1.1 is connected with those corresponding to
C2.
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Take now �∗
2 an NEC group with signature (0,+, [2], {(5, 5)}), the second signature

for D5 in Table 2. Define θ∗ : �∗
2 → D5 by

(x∗
1, e∗

1, c∗
1,0, c∗

1,1, c∗
1,2) → (XYXYX, XYXYX, X, XYX, Y ).

We consider the group θ∗−1
(〈XY〉). Its generators can be expressed in terms of the

generators of �∗
2 by

d1 = x∗
1c∗

1,0,

x1 = c∗
1,0c∗

1,1,

x2 = c∗
1,1c∗

1,2.

Then θ∗(x1) = YX = (XY )−1 and θ∗(x2) = (XY )2. So this epimorphism is
topologically conjugate to θ2, and this is case 1.2. Arguing as above, this case is
connected to those corresponding to C2.

We have finished to connect all possibilities for the primes p = 2, 3 and 5, and so
we have proved the following.

THEOREM 4. The space B5 is connected.
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11. P. Buser, M. Seppälä and R. Silhol, Triangulations and moduli spaces of Riemann
surfaces with group actions, Manuscr. Math. 88 (1995), 209–224.

https://doi.org/10.1017/S0017089514000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000275


230 E. BUJALANCE ET AL.

12. A. F. Costa and M. Izquierdo, On the connectedness of the locus of real Riemann
surfaces, Ann. Acad. Fenn. Math. 27 (2002), 341–356.

13. A. F. Costa and M. Izquierdo, On the connectedness of the branch locus of the moduli
space of Riemann surfaces of genus 4, Glasgow Math. J. 52 (2010), 401–408.

14. W. J. Harvey, On branch loci in Teichmüller space, Trans. Am. Math. Soc. 153 (1971),
387–399.

15. R. S. Kulkarni, Isolated points in the branch locus of the moduli space of compact
Riemann surfaces, Ann. Acad. Fenn. Sci. Math. 16 (1991), 71–81.

16. A. M. Macbeath, The classification of non-Euclidean crystallographic groups, Can. J.
Math. 19 (1967), 1192–1205.

17. A. M. Macbeath and D. Singerman, Spaces of subgroups and Teichmüller space, Proc.
London Math. Soc. 31 (1975), 211–256.

18. S. M. Natanzon, Klein surfaces, Russ. Math. Surv. 45 (1990), 43–108.
19. R. Preston, Projective structures and fundamental domains on compact Klein surfaces,

PhD Thesis (University of Texas, Austin, TX, 1975).
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