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Abstract

This paper gives variants of results from classical algebraic geometry and commutative alge-
bra for quadratic algebras with conjugation. Quadratic algebras are essentially two-dimensional
algebras with identity over commutative rings with identity, on which a natural operation of con-
jugation may be defined. We define the ring of conjugate polynomials over a quadratic algebra,
and define c-varieties. In certain cases a close correspondence between standard varieties and
c-varieties is demonstrated, and we establish a correspondence between conjugate and standard
polynomials, which leads to variants of the Hilbert Nullstellensatz if the commutative ring is
an algebraically closed field. These results may be applied to automated Euclidean geometry
theorem proving.

1991 Mathematics subject classification (Amer. Math. Soc.) primary 17 A 45; secondary 16 A
28, 13F20.

1. Introduction

The connection between the complex numbers C (with conjugation) and the
orthogonal transformations of E2 is well known. Indeed, the product of two
complex numbers has a geometrical interpretation in terms of the two Argand
plane vectors in R2 corresponding to those two complex numbers.

This generalises to F2 where F is an arbitrary field. In particular, F(z) =
{a + bi\a, b e F, i2 = -1} is a two-dimensional associative algebra over
F (the "complexification" of F). Choosing {1, /} as an orthonormal basis
of the F-vector space ¥(i), we may define a symmetric bilinear product for
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elements a = a + bi, /? = c + di in F(/) : a- fi = (a + bi)-(c + di) = ac + bd,
which, when F = R, is the usual dot product of vectors in the Euclidean
plane. Furthermore, a x j j = (a+bi)x(c+di) =ad-bc is an antisymmetric
product. However, denning conjugation on W(i) as for C = R(/), we have,
using the algebra product on F(i), a/? = (a + bi)(c + di) — (a-bi)(c + di) =
ac + bd + i{ad - be), so that a • P = ±(afi + aj), a x j 8 = =j-i(a0 - a% .
Consequently, geometrical relations in the plane F2 may be represented using
a formalism based on the ring with involution F(i).

We generalise further by considering quadratic algebras over commutative
rings with identity, as denned in Bourbaki [1]. These are essentially two-
dimensional associative algebras with identity over a commutative ring with
identity. Again, a natural conjugation operation may be denned and viewed
as an additional unary operation. If the commutative ring is an algebraically
closed field, then there is only one quadratic algebra with conjugation up to
isomorphism over that field.

We formally define the ring of "conjugate polynomials" associated with
a fixed quadratic algebra R, and, in the case where R is a quadratic alge-
bra over a field, define " c-varieties" and " c-ideals". Using the earlier results
concerning quadratic algebras over commutative rings, we exhibit a close cor-
respondence with standard elementary algebraic geometry as in Zariski and
Samuel [4]. In particular, we prove variants of the Hilbert Nullstellensatz.
These variants permit the development of techniques for the automation of
plane metric geometry theorems in which the basic entities are plane vectors,
analogous to methods which utilise coordinatizations of the plane in which
the basic entities are the coordinates of points, such as those occurring in
Chou and Schelter [3]. It follows from results in this paper that the scope of
these two approaches is essentially the same.

Throughout what follows, all rings are commutative with identity and all
fields are assumed to have characteristic other than 2.

2. Rings with involution and conjugate polynomials

DEFINITION 2.1. A ring with involution, R, is a commutative ring with
identity 1 together with a unary operation of involution ~ satisfying, for all
r,s eR, f = r, r + s -r + s, rs = rs and T = 1.

We note that this is narrower than the usual definition of a ring with
involution. The class of rings with involution as defined above may be viewed
as being a variety (in the sense of universal algebra) in which the algebras
have two nullary operations (0 and 1), two unary operations ( - and ~) and
two binary operations (+ and •). Every ring K may be considered a ring
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with involution in which a = a for all a e K.
DEFINITIONS 2.2, 2.3. Let R be a ring with involution. Then / is a c-

ideal of R if / is an ideal of R for which a € / implies a e / . Let 5 be a
subset of i? . The c-ideal generated by S is the smallest c-ideal containing
S, and is denoted by (S).

The ideal generated by S will be denoted by (5) . (Clearly if a — a for
all a e R, then c-ideals and ideals of R coincide.) It is easy to see that if
S = {s{, s2, ... , sr} is a finite subset of a ring with involution R, then

<k=\ fe=l J
Moreover, the set on the left is easily verified to be a c-ideal containing S
(remembering that R has an identity), and is therefore equal to (S). For
such finite S, we will often denote (S) by (st, s2,... , sr).

For c-ideals I{ and I2 of R, the ideal-theoretic product / , / 2 and inter-
section / , n l2 are in fact c-ideals, as is easily checked.

The following result links c-ideals with homomorphisms of rings with
involution and is a special case of a more general result concerning rings with
involution which are not necessarily commutative or possessing an identity.

T H E O R E M 2.4. Let R be a ring with involution, I an ideal of R. Then
I is a c-ideal if and only if R/I is a ring with involution, with involution
defined by a +1 — a +1 for all a e R.

PROOF. If / is a c-ideal of R, then for a, b e R_ such that a = b
(mod / ) , we have a — b € I, and so a — b € / . Thus a — b e / (as ^ a = -a)
and so a = b (mod / ) . Of course, / is an ideal, so that / defines a ring
congruence.

Conversely, suppose R/I is a ring with involution. Then a +1 = a + I
is well defined. If r e / , then a + I = a + I = a + (r + /) = (a + r) + / , so
a + r -a — (a + r)-a — rel. T h u s / i s a c - idea l .

DEFINITIONS 2.5, 2.6, 2.7. Let R be a ring with involution. A c-prime
c-ideal P of R is a c-ideal such that, for any r , , r2 e R, if rxr2 and lxr2

are in P then at least one of r{ and r2 is in P. An ideal / of R is said
to be radical if, for all r e R, r e / whenever there is a positive integer p
such that rp e / . The radical of an ideal / of R is the smallest radical ideal
containing / , and is equal to 3%{I) = { a e R\3p > 0, ap e /} .

If a = a for all a e R, then the c-prime c-ideals of R are exactly its
prime ideals (see Zariski and Samuel [4]). The definition of <^(/) is the
usual one for commutative rings (see [4] for example).
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THEOREM 2.8. Let R be a ring with involution, I a c-ideal of R. Then
3HJ) is a c-ideal of R. If I is c-prime, then &{I) = I.

PROOF. If / is a c-ideal of R with a € &(I), then a? € I for some
p > 0 . Hence (a)p = a" e / , so that ae^(I), and so «S?(/) is a c-ideal.

Let / be a c-prime c-ideal of R, c € R. If cp e / for some p > 0 , then
cp cp — (cc)p € / . Hence (cc)p~\cc) and (cc ) ' ' " 1 ^ ) = (cc)p~l(cc) are in
/ , so that either (cc)p~ or cc is in / . It follows by induction that cc e / ,
whence cp~x eel and cp~lc — cp~2(cc) are in / . Hence cp~x or c is in
/ . Again, induction yields c e / , so / is radical.

DEFINITION 2.9. For a ring with involution R,

s{R) = {r\r = r, r e R}

is the set of symmetric elements of R.
It is easy to verify that the set of symmetric elements of a ring with invo-

lution R is always a subring of R.
DEFINITIONS 2.10, 2.11, 2.12, 2.13. We define the conjugate polynomial

ring of order (n, m) over the ring with involution R,

R[xx ,x2,... ,xn;wl,w2, ..., wm] = R[x{n); w(m)],

to be the ring with involution generated by R together with the vector vari-
ables {xx, x2, ... , xn) and the scalar variables {wx ,w2, ... , wm} , sub-
ject to wk = wk, k = 1, 2, . . . , m, and otherwise free. The elements of

R[x{n); w(m)] are c-polynomials. (If m = 0 , then we abbreviate to R[x(n)],
and if n = 0 , t o R[w{m)].)

That the conjugate polynomial ring exists uniquely and is a ring with in-
volution, for any choice of n and m and for any ring with involution R, is
easily seen; it may be constructed analogously to the way in which a multivari-
ate polynomial ring over a ring is constructed. We note that R is embedded
in R[xw; w(m)]. A typical element of R[x(n); w(m)] is denoted by

f{xx,x2,... ,xn,wl,w2,...,wm)

or, more briefly, f(x{n), w(m)).
The definition of the conjugate polynomial ring over a ring with involution

in a sense generalises that of the polynomial ring over a ring: let n = 0 and
let R be such that s(R) = R; then, as a ring, /?[u/m)] is isomorphic to the
polynomial ring in m indeterminates over R, and s(i?[u;(m)]) = R[w^m)].
However, if R is such that s(R) ^ R, then i?[io(m)] is not to be confused
with the polynomial ring in m indeterminates over the ring R, because the
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conjugation operation can still act non-trivially on elements of R and hence
on c-polynomials in R[w ] .

Occasionally, characters other than x. or w. will be employed to denote
variables, but it will always be the case that underlined variables denote vector
variables and those not underlined denote vector variables.

For the remainder of this section, let L be a ring with involution such that
R is a subring of L closed under involution. For every / G R[x ; w ]
there is a natural action on elements of L" x s(L)m: for

a = (al,a2,...,an,bl,b2,...,bj

in L" x s(L)m, replace x; by a (j — 1, 2, . . . , n) and Wj by £>. {j =

1, 2, . . . , m) in /(x ( n ) , w( m )), thereby yielding in the obvious way an el-
ement of L, denoted by f{a). In this way, we associate with every / G
R[x{n); w{m)] a polynomial function / : Ln x s{L)m -» L.

For example, if L = C with the usual conjugation, then s(L) = K; let i? =
Q(i) = {a + bi\a, 6 G Q} . We let / ( x , , x2, to,) = iw,x2 - 3 /x ,^ + 4xf ,
an element of R[x(2) ;w(l)]; then

/ ( I + i, i, f) = 1(1 + if - 3/(1 + /)(-/) + 4(-/)3 = - 3 + §/.

DEFINITION 2.14, 2.15. Given F c i?[x(n); w{m)], we define

2^ m(F) = {aeLnx s(L)m\f(a) = 0 for all f e F],

the c-variety corresponding to F. Given S c Ln x s(L)m , we define

j ^ m(5) = {/ e ^[x'"'; u/m)]|/(«) = 0 for all a e 5},

the c-ideal corresponding to S.

It is easy to verify that J^ m(5) is in fact a c-ideal in R[x(n); io(m)], for
each S C l ' x s(L)m.

3. Quadratic algebras and c-ideals

Throughout the remainder of the paper, K will be a fixed ring and F will
be a fixed field.

The following family of rings with involution will feature in what follows.
The definition is essentially that found in Bourbaki [1].

DEFINITION 3.1. Let a, ft G K. The quadratic algebra of type (a, /?)
over K is the free module of dimension 2 over K, with distinguished basis
{1, /} , on which is defined a distributive product • (sometimes denoted by
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juxtaposition) for which 1-1 = 1, \ • i = i • I = i and i • i = a\ + fii; it is
denoted by Q(ap)(K).

Clearly the basis element 1 is an identity for the algebra £?(a P){K). For
a e K, we blur the distinction between a and fll e Q(a p){K), thereby
viewing K as being embedded in Q. pdK) in the obvious fashion.

The most familiar examples of quadratic algebras are those in which a =
- 1 (the additive inverse of the identity in K) and /? = 0,suchas Q,x O)(Z)
= Z(/), the Gaussian integers, and Q,_x 0)(K) = C, the complex numbers.
Another familiar example is

where Q is the rational field and n e Z . Indeed any quadratic extension of
Q may be viewed as a quadratic algebra over Q in like manner.

The following facts concerning Q, PAK) appear in Bourbaki [1].

PROPOSITION 3.2. (1) Every K-algebra admitting a basis of two elements
is isomorphic to (?(a p)(K) for some a, /? € K.

(2) Q, g<,(K) is associative and commutative.

(3) The mapping ~: Q(a,P){K) -» Q(aJ)(K) defined by

a + bi = (a + fib) - bi

for all a, b € K, is an involution, and is uniquely determined by the structure
of <2(a p)(K) as an algebra.

(4) The mapping N: Q(a p){K) -> K defined by

N(a + bi) = (a + bi){a + bi) = a + fiab - ab

is a quadratic form, and c e Q, P){K) is invertible in Q(a ^j(^) if and only
if N(c) is invertible in K.

(5) If F is a field containing no element y such that y1 = a + 0y, then
G(a,,)(F) is a field.

(6) Suppose K contains an element y such that y2 = a + fiy. If 0 -2y
is zero, then Q{ap)(K) =• Q{Q0)(K). If fi - 2y is invertible, then

with the associated involution on K x K given by (a, b) — (b, a) for all
a, b G K, and the second isomorphism defined by a + bi H-> (a, a + b). In
each case the isomorphism respects involution.

DEFINITIONS 3.3, 3.4, 3.5, 3.6. The involution of Proposition 3.2.3 above
is called conjugation; ~c is the conjugate of c for any c e Q, pdK) • If
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fi2 + 4a is invertible in K, then Q, a\(K) *s non-singular, otherwise it is
singular.

From now on, Q, ^(K) will refer to the ring with involution consisting
of the quadratic algebra of type (a, fi) together with involution given by
conjugation as above. Clearly, s(Q, pdK)) = K.

Returning to the examples after Definition 3.1, we see that the induced
conjugations on Z(/) = Q(_, 0)(Z) and C = Q{_{ 0)(K) are the usual ones.

For a + byfn in Q(y/n), a + by/n = a - by/n .
Examples of non-singular quadratic algebras are easily obtained and in-

clude Q(y/n) where the positive integer n is not a perfect square. Each of
these is a field by Proposition 3.2.5, as is Q,_x 0 )W • However, by Proposi-
tion 3.2.6, g,_, 0)(C) is not a field. Indeed we may generalise this. Writing
F(/) = G(_i 0)(F)'xX f oUo ws from Proposition 3.2.5 and 3.2.6 that F(/) is a
field if and only if there is no a e F such that a2 = - 1 . Hence in particular
we may employ the following result appearing in Burn [2]: if p is an odd
prime, then p is congruent to 1 (modulo 4) if and only if there exists a e Z
such that p divides a2 + 1. Thus for an odd prime p, Zp(/) is a field if and
only if p is not congruent to 1 (modulo 4). The singular algebra Q(0 0)(R)
is, as an algebra, the exterior algebra of order 1 over R.

LEMMA 3.7. Let Q(ap)(K) be non-singular. If c = a + bi e Q(a<p){K)
with a, b e K, then 2/ - fi is invertible, and

PROOF. NOW 2i - ft is invertible if and only if iV(2/ - 0) is invertible,
by Proposition 3.2.4; and iV(2/ — fi) = —(P + 4a) which is by assumption
invertible in K.

If c = a + bi, then c = a + fib - bi by Proposition 3.2.3, so c - c =
2bi -fib = (2/ - fi)b. Thus if 2/ - fi is invertible, b = (2/ - fi)~\c - c).
Similarly c + c — 2a + fib, so a = \[c + c - fib], that is,

a = \{2i - fi)~\{2i - fi)(c + c) - fi(c - c)] = (2i - ^ [ ( i - fi)c + ic].

DEFINITIONS 3.8, 3.9. For a subset T of Q(a p){K), crd(T), is the set

{a € K\3b eK,a + bi eT or b + aieT}.

For 5 c K, we define S{i) = {a + bi\a, b e S} . We define crdy(a, +a2 • i) =
aj for all aj e K, j = 1, 2 .
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Clearly, for T c Q{a p)(K), we have

crd(r)= (J{crd,(a),crd2(a)}.
aeT

THEOREM 3.10. Let S c K. Then, in Q(a fi)(K), (S) = (S)(i). Con-
versely, suppose Q, g)(K) is non-singular and T c. Q. »AK). Then (T) =

PROOF. If S C K, then 5 e (S) in Q{a>fi)(K) if and only if there are
rl,r1,...,rk in Q(aJi)(K) such that

s = 5 Z r / y fo r { s l , s 2 , . . . , s k } c s
j=i

since J. = 5 for j = 1, 2, ... , k, which happens if and only if there
are ax,a2, ... , ak,b{,b2, ... , b k i n K s u c h t h a t ri = aj + bji fo r j =
1,2,... , k, and such that we have

k k k

s = $ > , . + bji)Sj ^ ajSj + i-Y, bjsj •
j=\ j=i j=i

Hence s e (5) if and only if s e (S){i).
Now suppose Q(a ^(K) is non-singular and T C <2(a ^)(^) • Then by

Lemma 3.7, if a + bie T, with a,beK, then a,be(T). Thus crd(r) c
(r> and so (crd(r)) C (T). Further, if t = a + bi is in T with a,b&K,
then a,b e crd(T), and so t e (crd(r)), so that (T) c (crd(r)). Hence
(7) = (crd(r)), and (T) = (crd(T))(i) by the first part of the proof.

We note that Q,_{ 0)(Z) = Z(/), the Gaussian integers with conjugation,
is an example of a quadratic algebra in which there are subsets T for which
the c-ideal generated by T does not equal the c-ideal generated by crd(T).
For instance, we have Z(i) — (1) / (1 + / ) . Now - 4 has no inverse in Z,
so that Z(/) is singular. Hence the converse of the above theorem does not
apply to singular Q{afl){K).

COROLLARY 3.11. Let Q, «)(%) be non-singular. If J is a c-ideal of
Q{a fi)(K), then crd(J) = J nK.

PROOF. By Theorem 3.10, crd(/) C Jr\K. Conversely, any c e Jr\K is
by definition in crd(7).
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THEOREM 3.12. Let Jx be the lattice of ideals of K and J2 the lattice
of c-ideals of g ( a ^(K) (both lattices ordered by inclusion). Then the map
6: Jx —> J2, defined by 6(1) = I(i) for all I 6 Jx, is an injective homomor-
phism. If Q(a p)(K) is non-singular, then 6 is an isomorphism with inverse

6~l :J2-^JX defined by 0~\j) = crd(J) for all J eJ2.

PROOF. Let / be an ideal of K. Then (/) = (/)(/) = /(/) by Theorem
3.10, so that we may define 0: / , -• J2 such that 6(1) = I(i) for all I e Jx.
Then 6 is clearly order preserving, and so is a homomorphism of partially
ordered sets. Indeed it is injective, since if / and J are non-equal ideals of
K, then /(/) ^ J(i).

Suppose now that Q, oAK) is non-singular. If J is a c-ideal of K(i)
then J = (crd(/)) = (crd(/))(/) by Theorem 3.10. We show crd(/) is an
ideal of K. By Corollary 3.11, crd(7) = JnK. Hence, if a, be crd(J) c J,
then a-b e Jr\K = c rd( / ) , and if r 6 K, then ra e JnK, so that crd(/)
is indeed an ideal of K. Hence / = crd(/)(/) = 0(crd(/)). Thus 6 as
above is surjective, and so is an isomorphism, with inverse 6~x: J2 -» Jx

defined by d(J) = crd(J) for all J eJ2.

If the c-ideal (1 + /) of Z(i) were equal to /(/) for any ideal / of K,
then

l€crd( ( l + i» = crd(/(/)) = 7,

so that (1 + /) = (1) = Z(i), a contradiction.

THEOREM 3.13. The ideal I of K is prime if I(i) is a c-prime c-ideal
of Q, pAK) • If Q,a «)(^) « non-singular, then the converse holds, namely
that J is a c-prime c-ideal of Q, ^(K) if crd(J) is a prime ideal of K.

PROOF. Suppose that / is an ideal of K and that /(/) is c-prime. If
ab e I for some a, b e K then ab e /(/) also, so ab and ab = ab are in
/ ( / ) . Thus a or b is in /(/) n K = I, so / is prime.

Conversely, suppose Q, gAK) is non-singular. If J is a c-ideal of
Q(a p)(K), then J = I(i) for some ideal / = crd(/) of K, by Theorem
3.12. Suppose / is a prime ideal of K, and that cxc2 and CjC2 are in
/(/) for some cx, c2 e Q(a p)(K), with cx = a, 4- bxi, c2 = a2 + b2i, for
ax, bx, a2, b2e K. By Lemma 3.7, 2i - /} is invertible. Hence

bxb2 = (2i-fi)-l(cx-cx)-(2i-f})-\c2-c2)

= (2i - 0)~2(cxc2 - cxc2 -cxc2 + cfr) e I(
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so bx or b2 is in / , by the primeness of / . But cxc2 = (ax + bxi)(a2 + b2i)
is in / ( / ) , so

a\a2 + bxb2a, axb2 + bxa2 + bxb2fi e I.
Since bxb2 G / , we have axa2, axb2 + bxa2 G / . Hence ax or a2 is in / .
Suppose without loss of generality that bx e / . Then axb2e I and if b2 $ I
then ax e I and so cx — ax+ bxi e / ( / ) ; if bx, b2 G / then, since a, or a2

is in / , either cx = ax + bxi or c2 = a2 + 62/ is in / ( / ) . Hence in all cases,
either c, or c2 is in / ( / ) , which is therefore c-prime.

Now (2) is a prime ideal of Z and yet (2)(j) is not a c-prime c-ideal of
Z(i): (1 + if = 2/ and (1 + i)(TTl) = 2 are both in (2)(z), yet 1 + / is
not. Hence if Q, adK) is singular, it need not be the case that /(/) is a
c-prime c-ideal of Q(Q ^(K) whenever / is a prime ideal of K.

THEOREM 3.14. The ideal I of K is radical if I(i) is a radical c-ideal of
Q. oAK). If Q, gAK) is non-singular, then the converse holds, namely that
J is a radical c-ideal of Q(a ^(K) if crd(/) is a radical ideal of K.

PROOF. Let / be an ideal of K with /(/) a radical c-ideal of K, a e K.
If ap € / for some p > 0, then ap e / ( / ) . Thus a e /(/) and so a 6
I(i) n K = I, whence / is radical.

Conversely, suppose g ( a ^{K) is non-singular. By Theorem 3.12, if J
is a c-ideal of Q,a a\(K), then / = /(/) for some ideal / = crd(/) of K.
Suppose / is a radical ideal of K. If c = a + bi € Q, pAK) where a, b e

K, then, by Lemma 3.7, b = (2i-p)~\c-c). If c" = {a + bi)p € / ( i ) , then
c V = {ccf € /(/) . But cc = a2 + Pab - ab2 e_K, so {cc)p eKn/(/) = / .
Thus cc G / , since / is radical. Further, cp — cp e / ( / ) . Hence

b" = ((2i - fi)~\c - c))p G /(/) n K = I,
2 2 2

so b G / , since / is radical. But a + Pab — ab G / , so a el and hence
a G / , again since / is radical. Thus c = a + bi G / ( / ) , so /(/) is a radical
c-ideal of <2(a,/,)(*)•

The c-ideal (2)(i) of Z(J) is not radical, since (1 + i)2 G (2)(/), yet
1 + / ^ (2)(/). However, (2) is a prime ideal of K and hence radical, again
showing that not even an appropriately weakened converse of Theorem 3.13
holds in case Q, gAK) is singular.

COROLLARY 3.15. Every c-prime c-ideal of Q, gdK) is radical.

This readily follows in the non-singular case as a consequence of Theorems
3.12, 3.13 and 3.14, and the fact that every prime ideal of K is radical (see
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Zariski and Samuel [4]). We have already given a direct proof (Theorem
2.8) which holds for all rings with involution R and hence does not require
Q, p\(K) to be non-singular.

COROLLARY 3.16. Let Q(a p)(K) be non-singular, I an ideal of K. Then
31(1) =

PROOF. Let / = crd(^(/(/))). Then J is an ideal of K by Theorem 3.12
and is radical by Theorem 3.14. Then /(/) C <&(I(i)) = /(/) by Theorem
3.12, so / c J and hence 31(1) c / .

If ; e J, then j e J(i) = 32(I(i)), so there is p > 0 such that / € /(/).
But / e K, so that j " e /(/) n^T = / , and hence j e 3l{l). Thus
/ c 31(1), and so / = 31(1).

LEMMA 3.17.

Moreover, Q, oAK[w^]) is non-singular if and only if Q. gAK) is non-
singular.

PROOF. The isomorphism is clear. Now Q, », (K) is non-singular if and

only if >S +4a is invertible in K, which is if and only if /? +4a is invertible
in K[w{m)], and this holds if and only if Q(a p)(K[w(m)]) is non-singular.

4. C-polynomials and c-varieties for Q(a ^(F)

Throughout the remainder of the article, k will be a subfield of F con-
taining a and ft, and K = k(i) = Q, oAk) will denote the corresponding
sub-quadratic algebra of G(a,^)(F) •

We employ some additional abbreviations: we let

f ( ( y , z ) ( n ) , w ( m ) ) = f { y x , z l , y 2 , z 2 , . . . , y n , z n , w i , w 2 , . . . , w m )

be a c-polynomial in

H[(y, z) ( n ) , w(m)] - H\yx, z , , y2, z2, ... , yn , zn, wl, w2, ... , wj,

where H — k or K. We view k[(y, z)^, tu(m)] as being embedded in
K[(y, z) ( n ) , w(m)] in the obvious way.

DEFINITIONS 4.1, 4.2, 4.3, 4.4. Define

sea: K[x{n); w{m)] -» K[(y, z)(n), w{m)]
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by setting

sca(/) = f(yl + izl, y2 + iz2, . . . , yn + izn, to,, w2, . . . , wm).

For F C K[x{n); w{m)], define sca(F) = {sca(/) | / e F} . Lemma 3.17 per-
mits us to define crd(ir) in the obvious way for all F c K[(y, z)( / l ) , w(m)];
similarly we define crd,(/) and crd2(/) for all / e K[{y, z)(n), w(m)].

DEFINITIONS 4.5, 4.6. Let Q. gJW) be non-singular. We define the map

vec: K[(y, z)(n), w{m)] -» K[x{n); w{m)] by setting

= g[(2i-pyl[(xl+isl)i-fixl\,(2i-pr\xl-xl),...,

For G c AT[(y, z){n), w{m)], we define vec(G) = {vec(g)|g G G} .
DEFINITIONS 4.7, 4.8. We define vec and crd to act on elements of w2n+m ,

[Q(a ^(F)]" x Fm respectively, as follows:

vec(cl,d1,...,cn,dn,bl,...,bm)

= (cl + idl,...,cn + idn,bl,...,bm),

crd(al + ibl,...,an + ibn,cl,...,cm)

= (a1,bl,...,an,bn,cl,...,cj.

Clearly the meaning of vec in Definition 4.7 depends upon the choices of
n and m (as well of course on the choice of basis element / of Q, ^(F)) ;
knowledge of 2n + m alone is not sufficient. Thus we really have a different
definition of vec and crd in Definitions 4.5 and 4.7 for each different pair of
values for n and m .

The next two results follow immediately from Definitions 4.1 to 4.8 with
the help of Lemma 3.7. The theorem that follows them spells out the cor-
respondence between c-varieties and the varieties of standard elementary
algebraic geometry.

LEMMA 4.9. The mappings

vec:F2 n + m-[0( a > / , )(F)]nxFm

and
crd:[Q(a />)(F)]' IxFm-F2' I+m

are mutually inverse, in case Q. ^(F) is non-singular, so are the isomor-
phisms

vec: K[(y, z) , wK '] -> K[xy ; ur ;]

and
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LEMMA 4.10. Let f e K[x(n); w(m)], a e [C(a>w(F)]n x Fm . Then

/(«) = crd(/)(crd(*)) = crd^/HcrdW) + i • crd2(/)(crd(*)).

Suppose Q,a gJF) « non-singular,

geK[(y,z)in),wlm)],SzW2n+m.

Then g(/) = vec(g)(vec(/)).

THEOREM 4.11. Let Q, ^(F) be non-singular. The partially ordered set

Lj of c-varieties in [Q{a ^)(F)]"xFm associated with subsets of K[x{n); I D W ] ,
ordered by inclusion, is naturally isomorphic to the partially ordered set L2

of (c-)varieties in w2n+m associated with subsets of k[(y, z)<n), w{m]], also
ordered by inclusion. The map O: Ll —• L2 defined by

/or all F C ^T[JC('I) ; w ( w ) ] , is an isomorphism with inverse *¥: L2

defined by

/or a// G c % , z)(B), w{m)).

PROOF. Let f C ^[x ( n ) ; w(m)\. Now 6 6 crd(2^ M(F)) if and only if
vec(b) e 3^>M(F), which is if and only if /(vec(fc))' = 0 for all / e F ,
which holds if and only if

crd,(/)(crd(vec(6))) = crd2(/)(crd(vec(&))) = 0

for all / e F by Lemma 4.10, and this holds if and only if crd, ( / ) ( / ) =
crd2( /)( / ) = 0 for all crd,(/) and crd2(/) in crd(F), which holds if and
only if

This establishes that

whence crd(^j m(f)) is a variety.

Similarly, let G C jfc[(y, z)( / l ) , w ( m ) ] . Then

G = scaCvecCG)) = crd(sca(vec(G))),

as each element of vec(G) is symmetric, so
v e c(^,2 n +m(G)) = vec(^>2M+m(crd(sca(vec(G))))

= vec(crd(^m(vec(G))) = ^ > m

by the first part.
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Both O and *F are clearly order preserving and mutually inverse. Conse-
quently each is an isomorphism.

Clearly, the same c-varieties are associated with both K[(y, z) ( n ) , u/w )]
and k[{y, zfn), w(m)]-a c-polynomial / in K[(y, z)(n), w{m)] vanishes
exactly when crd,(/) and crd2(/) in k[(y, z){n), w{m)] vanish.

Much is known about L2 . We refer the reader to Zariski and Samuel [4].
Although the results there concerning algebraic varieties apply to cases where
the "coordinate domain" is an algebraically closed field, it is easy to see that
the assumption of algebraic closure is not required in the proof of many of
the elementary results which will be employed in what follows. The lattice
L2 is a complete distributive lattice, in which meets and finite joins are set-
theoretic intersections and unions respectively. Theorem 4.11 allows us to
say exactly the same things about Ll. In fact, the isomorphism between
the lattice of c-ideals of the form J^ m(S) and the associated lattice of
c-varieties, and between the lattice of (c-)ideals of the form J^ n(S) and
the associated lattice of varieties in standard algebraic geometry, yields the
corollary that the two lattices of such c-ideals are isomorphic. We return to
the details of this relationship shortly.

First we deal with the correspondence between polynomial ideals and c-
polynomial c-ideals in general.

THEOREM 4.12. Let Q(a ^,(F) be non-singular. The lattice Z>3 of c-ideals

in K[x^; u/m)] is naturally isomorphic to the lattice D{ of (c-)ideals in

k[(y, z)( n ) , u / m ) ] , an isomorphism q>: Z>3 —> D{ defined by

<p({F)) = crd(sca((F))) = (crd(sca(F))) for all F e K[x{n); w{m)].

PROOF. Suppose Q, pJ¥) is non-singular. Then so is Q, »Jk). Also

K[x(n); w{m)] s Q(a,p){k)[{y, z)(n), w{m)] (by Lemma 4.9)

By Lemma 3.17, Q{a p){k\y, z)(n), w{m)]) is non-singular. Let D2 be the

lattice of c-ideals of K[(y, z)(n), w(m)]. Then by Theorem 3.12, the map
\ff:D2—*Dl taking J € D2 to crd(/) e Dl is a lattice isomorphism, as is
the map sea: Z>3 —• D2 , taking I e D3 to sca(/) € D2, by Lemma 4.9. Then
cp = \f/ o sea: D3 —» Dj is an isomorphism.
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THEOREM 4.13. Let Q(a ^(F) be non-singular. The lattice / , of radical

c-ideals in K[xw ; u/m )] is isomorphic to the lattice I2 of radical ideals in

K[(y, z) ( n ) , u / m ) ] , an isomorphism given by <?:/,—• I2 defined by

^nm{S)) = crd(sca(j;>m(5))) =^0 2 n + m(crd(sca(5))) ,

forallSC[Q{afi)(¥)]nx¥m.

PROOF. That 8 is an isomorphism of partially ordered sets follows from
the fact that

„ , (n) (m), v... An) (m)-,

sea: K[xy , tu ']-> K[(y, zy ' ; wy ]
is an isomorphism by Lemma 4.9, and from Theorem 3.14: 8 does indeed
map all radical ideals to all radical c-ideals, and, since it is injective and order
preserving, is an isomorphism. That each partially ordered set is in fact a
lattice follows from the fact that 72 is known to be one (see [4]). Finally,
for S C [ < 2 ( Q J 0 ( F ) ] " x Fm , we have

= crd(sca({/ £ K[x(n); w{m)]\f{s) = 0 for all s e S}))

= {crd, ( / ) , crd2(/) € K[(y, z){n), w{m)]\f € K[x(n); w{m)]

satisfies crd, (/(/)) = crd2(/(f)) = 0 for all t e crd(S)}

(by Lemma 4.10)

C{ge K[(y, z) ( n ) , w{m)]\g(t) = 0 for all t G crd(S)}

Hence crd(sca(J^m(S))) CJ^O 2n+m(crd(5)).
Conversely, if g € ~^j2n+m(crd(5 '))» t n e n g(t) = 0 for all t e crd(S),

so vec(g)(.s) = 0 for all s e S — vec(crd(5)) by Lemma 4.10. Hence we
have vec(g) e J^ m(S), whence g = sca(vec(g)) e sca (^ m(S)). Indeed,

d ( ( ^ (

JS))).
Thus in fact

We now examine the case where F is an algebraically closed field. We
shall obtain variants of the Hilbert Nullstellensatz, together with some other
results corresponding to basic results of classical algebraic geometry, as occur
in Zariski and Samuel [4]. We begin by giving the structure of Q, »,(F) in
the case where F is algebraically closed.
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THEOREM 4.14. Let F be algebraically closed. If Q(Q „,(¥) is non-singular,
then it is isomorphic to F x F , with conjugation defined by (a, b) — (b, a).
If Q(a fi)(¥) is singular, then it is isomorphic to Q(Ojo)(F) •

PROOF. Since F is algebraically closed, it contains an element y such that
y2 = a + fiy. Then

(y? - 2y)2 = f - 4py + Ay2 = p2 - 4{y2 - a) + Ay2 = j82 + 4a.

If Q, „,(¥) is non-singular, then fi2 + 4a / 0, so that /? - 2y / 0 and so
by Proposition 3.2.6, Q, »j(F) = F x F as algebras. If Q, gJ¥) is singular,

then 02+4a = 0, and so 0-2y = 0. Hence, by Proposition 3.2.6, Q{a>P)(V)
is isomorphic to Q,Q 0)(F) as an algebra. That conjugation is preserved by
each of these isomorphisms is a consequence of Proposition 3.2.3.

The above theorem shows that, for each algebraically closed field F , there
is up to isomorphism (of rings with involution) only one non-singular quad-
ratic algebra Q. gJ¥).

We now give variants of the Hilbert Nullstellensatz.

THEOREM 4.15. Let Q, gJ¥) be non-singular. Let ¥ be algebraically

closed. Let F be a finite subset of K[x(n); w(m)]. Then 1 e (F) if and only

PROOF. If Tn>m(F) = 0, then>m(

( d ( ( F ) ) ) dCr(F)) = 0

by Theorem 4.11, so l € (crd(sca(F))), by the Hilbert Nullstellensatz (see
cite3). Therefore 1 = vec(l) e (F) by Theorem 4.12. The converse is clear.

Algebraic closure of F is necessary and sufficient for such a theorem to
hold, just as it is in the standard case. If F is not algebraically closed, then
there is a non-constant g e F|>] C ¥[y, z] without a root, and 1 £ (g)
in ¥[y, z] (and hence also 1 £ (g) in F[>>]) as g is not invertible. Then
vec(g) e F[x], and, by Theorem 4.11, vec(#) has no zero in 6 ( a J J ) (F) , so
2^ 0({g}) = 0 ; however, by Theorem 4.12, 1 £ (vec(g)). Thus for no such
non-algebraically closed F will Theorem 4.15 hold.

We next obtain a result analogous to the most familiar version of the
Hilbert Nullstellensatz.
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THEOREM 4.16. Let Q,a gJW) be non-singular. Let F be algebraically

closed and let {/} l> F be a finite subset of K[x(n); w{m)]. Then we have

PROOF. NOW / e ~^ > m (^ > m (-H) i f ai*d only if

if and only if

crd.C/"), crd2(/) G c r d ( s c a ( J ^ > ^

Theorem 4.13)

o>2n +m^)2n + m (by Theorem 4.11);

that is, if and only if

crdi, crd2(/) € ^(crd(sca(F)))

by the Hilbert Nullstellensatz [4]; which is if and only if

crd , ( / ) , crd2(/) e ^(crd((sca(F)»)

since, by Theorem 3.10,

crd((sca(JF))) = crd((crd(sca(F))(/)) = (crd(sca(F)));

this holds if and only if

crd , ( / ) , crd2(/)

by Corollary 3.16; this holds if and only if

sca(/) = crd,(/) + i • crd2(/) 6 crd(^((sca(F)»)(i) =

by Theorem 3.10; and this holds if and only if / e £Z((F}) by Lemma 4.9.

In fact Theorem 4.16 implies Theorem 4.15: if "Vn m{F) = 0, then
1 e ^ , m ( ^ > m ( ^ ) ) , and so l" = l e (F) for some ^, 'by Theorem 4.16.
Consequently, the remarks following Theorem 4.15 apply equally to Theorem
4.16.

Corollary 3.15 shows that c-prime c-ideals are all of the form J^ m(3^)
where 2^ is a ovariety; we later characterise those c-varieties 2^ which
arise in this way.

We note that we have not considered the property corresponding to al-
gebraic closure for Q. ^ (F ) , that is, whether or not all non-constant c-
polynomials in Q, gA¥)[x] have at least one zero in Q, gJ¥). Now the
non-constant c-polynomial in one vector variable x-x+1 e R[x] has no root
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in G(_i o) W — ^ > but does ^ a v e o n e m Q(-\ o)(^) > which seems analogous
to x2 + 1 € R[x] having no root in E but having one in C. This seemingly
simplest possible example encourages the hope that Q, ^(F) will be "c-
algebraically closed" if F is algebraically closed. In fact, if it is the case that
T'if) = 0 if and only if 1 e (/) for all / e ¥[w], so that any / without a
root is invertible and hence a constant other than zero, then F is algebraically
closed. Thus if the Hilbert Nullstellensatz "holds" for an arbitrary field F,
then that field must be algebraically closed. Similarly we might hope that if
Q. gJ¥) is non-singular and Theorem 4.15 "holds" (equivalently, if F is
algebraically closed) then Q. ^(F) is "c-algebraically closed".

Let F be algebraically closed and Q(a ^(F) non-singular. Then by The-
orem 4.15, any / e Q,a ^(F)[.x] without a root generates the unit c-ideal.
Thus, for such / , there are p, q € Q(a fi)(¥)[x] for which pf + qf= 1.
However, in contrast to the standard case, this does not imply that / is a
constant: let f(x) = j ( l + x - x~), and then 1 • / + 1 • / = 1. Hence / has
no root in Q^a „,(¥). Indeed this choice of / is non-constant and gener-
ates the unit ideal for any choice of F , algebraically closed or not, and any
choices of a and /? in F , so that quadratic algebras over fields are never
" c-algebraically closed".

The following theorem provides a direct proof of the closure under unions
of c-varieties in [Q. „,(¥)]" x Fm , as well as providing a link between the
lattices of c-varieties and c-ideals, and holds for all fields F .

THEOREM 4.17. Let Q(a p){¥) be non-singular. Let H - k or K. Let

/, and I2 be c-ideals in H[x(n]; w{m)] and let ^ and 2^ be c-varieties in
[<2( Q > / ! ) (F)]nxFm. Then we have

PROOF. For all F c K[x(n); w{m)],
V^JF) = vec(crd(^ JF))) by Lemma 4.9

= vec(^,2 n + m(crd(F))) by Theorem 4.11.

Hence if Ix and I2 are c-ideals of K[x^ ; « / m ) ] , then we have

rH,m(W = v ^ [^ ) 2 n + n l ( ^d ( / 1 / 2 ) ) ] = vec[^2 n + m(crd(/1) • crd(/2))]

(since crd is an isomorphism by Lemma 4.9)

= vec[2^ 2n+m(crd(7,) n crd(/2))] (by a basic result in [4])

' / 1 n 72))] = VHtJlx n I2)

(by Theorem 4.11).
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But also

^ , m ( V 2 ) = vec[^> 2 n + m(crd(/ ,)) U ^> 2 n + m(crd(/2))] (again by [4])

= ^ m(7i) u 'K mih) ( b v Theorem 4.11).

The second part is immediate.

DEFINITION 4.18, 4.19. An irreducible c-variety is one which cannot be ex-
pressed as the union of two proper sub- c-varieties (proper subsets which are
c-varieties). An irreducible representation of a c-variety is a (finite) collection
of proper sub- c-varieties whose union is equal to the given c-variety.

The isomorphism between Lx and L2 , discussed in Section 3, enables us
to state the following

THEOREM 4.20. Let Q. „,(¥) be non-singular. For every c-variety %,
there is a unique irreducible representation ^ = 2 ^ U ? ^ U - - U ^ of 2^ as
a union of irreducible c-varieties.

The proof of the corresponding fact for L2 may be found in Zariski and
Samuel [4]. Both results are in any case corollaries of a more general result
holding for all distributive lattices with descending chain condition.

We conclude with a characterisation of those c-ideals which correspond
to irreducible c-varieties, a result readily seen to be a generalisation of the
standard result in [4], for example.

THEOREM 4.21. Let Q. «\(F) be non-singular. A c-variety 2^ is irre-
ducible if and only if J^ m(^o) w c-prime.

Suppose F is algebraically closed. A c-ideal I of K[x^; it/"1'] is c-
prime if and only if I — J mC%) for some irreducible c-variety %C. in

PROOF. NOW 2^ is irreducible in [G(Qj^(F)]" x Fm if and only if

c rd(^) is irreducible in ¥2n+m (by Theorem 4.11), which is if and only if
J^ 2n+m (crd(2^)) is prime (by a basic result in [4]), which holds if and only if
crd(sca(J^ m(3^))) is prime (by Theorem 4.13), and this holds if and only
if J^ m(2^) is c-prime (by Theorem 3.13 and Lemma 4.9).

Also / is c-prime in K[xw ; w(m)] if and only if crd(sca(/)) is prime in
k[y, z){n),w{m)] (by Theorem 3.10), which is if and only if crd(csa(/)) -
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J^ ;2/.+m(^i) f o r ^ i a n irreducible variety in F2 n + m (again by a result ap-
pearing in [4]), which holds if and only if

crd(sca(/)) = crd(sca(J^ m (vec(^)))) (by Theorem 4.13),

and this holds if and only if / = J^ m(vec(2^)) by Theorem 4.12, with
vec(2^) an irreducible c-variety in [Q(a ^(F)]" x Fm by Theorem 4.11.
(Moreover, all irreducible c-varieties arise in this way by Theorem 4.11.)

The second part of Theorem 4.21 may be proved more simply by using
Theorem 4.16, as is done for the corresponding result in Zariski and Samuel
[4]. However, we wished to show how it could be proved from Theorems
4.11, 4.12 and 4.13. Indeed, other results concerning c-prime and radical c-
ideals flow directly from the correspondence between polynomial ideals and
c-polynomial c-ideals as given in Theorems 4.12 and 4.13. Essentially, any
statement concerning set-theoretic properties of prime, radical or ordinary
ideals in any polynomial ring over a field F , such as those occurring in Zariski
and Samuel [4], will be translatable into a result for the corresponding c-
polynomial ring over the corresponding non-singular quadratic algebra over
F, which, if F is algebraically closed, is essentially unique by Theorem 4.14.
Theorem 4.11 completes the picture and permits one to obtain results such
as Theorem 4.17 and others concerning c-varieties.

5. Concluding remarks

Many of the results of this paper were obtained with applications in mind.
The author is currently using them to develop methods for the automation of
plane Euclidean geometry theorem proving. The bulk of standard methods
for doing this rely for their theoretical basis on elementary algebraic geometry
results concerning algebraically closed fields. In particular, such methods are
based on the conversion of geometrical relations to algebraic equations in the
coordinates of the points of the theorem relative to a pair of Cartesian axes,
and, often, subsequent use of the Hilbert Nullstellensatz; for example see
Chou and Schelter [3]. There are good grounds for believing that algorithms
based on the formalism considered here, with a = -1, fi — 0, will, for
a wide variety of theorems, be more efficient than the existing algorithms.
This is largely a result of the greater simplicity and naturalness with which
geometrical relations may be stated using the formalism discussed here in
comparison to the usual one based on coordinatisation of the plane.

However, apart from the results after Theorem 4.13 which generalise the
Hilbert Nullstellensatz, there is no requirement of algebraic closure on the
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field F in the results of Section 4. Furthermore, the results of Section 3 apply
to all commutative rings with identity K, and so have wide applicability.
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