NONCOMPLETE MACKEY TOPOLOGIES ON BANACH SPACES

JOSÉ BONET[™] and BERNARDO CASCALES

(Received 28 March 2009)

Abstract

Answering a question of W. Arendt and M. Kunze in the negative, we construct a Banach space X and a norm closed weak* dense subspace Y of the dual X' of X such that X, endowed with the Mackey topology $\mu(X,Y)$ of the dual pair $\langle X,Y\rangle$, is not complete.

2000 *Mathematics subject classification*: primary 46B10; secondary 46B50, 46A03. *Keywords and phrases*: Banach spaces, Mackey topologies, norming subspaces, Krein–Smulyan theorem.

The following problem appeared in a natural way in connection with the study of Pettis integrability with respect to norming subspaces developed by Kunze in his PhD thesis [5]. This question was put to the authors by Kunze himself and his thesis advisor W. Arendt.

PROBLEM. Suppose that $(X, \|\cdot\|)$ is a Banach space and Y is a subspace of its topological dual X' which is norm closed and weak* dense. Is there a complete topology of the dual pair (X, Y) in X?

We use the locally convex space (lcs) notation as in [4, 6, 7]. In particular, $\sigma(X, Y)$ and $\mu(X, Y)$ denote the weak topology and the Mackey topology in X associated with the dual pair $\langle X, Y \rangle$. For a Banach space X with topological dual X', the weak* topology is $\sigma(X', X)$. By the Bourbaki–Robertson lemma [4, Section 18.4.4] there is a complete topology in X of the dual pair $\langle X, Y \rangle$ if and only if the space $(X, \mu(X, Y))$ is complete. Therefore, the original question and the following are equivalent.

PROBLEM A. Let $(X, \|\cdot\|)$ be a Banach space. Is $(X, \mu(X, Y))$ complete for every norm closed weak* dense subspace Y of the dual space X'?

Let $(X, \|\cdot\|)$ be a normed space. A subspace Y of X' is said to be *norming* if the function p of X given by $p(x) = \sup\{|x'(x)| : x' \in Y \cap B_{X'}\}$ is a norm equivalent

The research of Bonet was partially supported by FEDER and MEC Project MTM2007-62643 and by GV Prometeo/2008/101. The research of Cascales was supported by FEDER and MEC Project MTM2008-05396 and by Fundación Séneca de la CARM, project 08848/PI/08.

^{© 2010} Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

to $\|\cdot\|$. We notice that Problem A is not affected by changing the given norm of X to any equivalent one. Thus, to study Problem A for some norming subspace $Y \subset X'$ we can and will assume that Y is indeed 1-norming, that is, $\|x\| = \sup\{|x'(x)| : x' \in Y \cap B_{X'}\}$.

Let us observe that under the conditions of Problem A, if $(X, \mu(X, Y))$ is quasi-complete (in particular, complete), then the Krein–Smulyan theorem (see [4, Section 24.5(4)]) implies that for every $\sigma(X, Y)$ -compact subset H of X, the $\sigma(X, Y)$ -closed absolutely convex hull $M := \overline{\operatorname{aco} H}^{\sigma(X,Y)}$ of H is also $\sigma(X, Y)$ -compact. There are several papers dealing with the validity of the Krein–Smulyan theorem for topologies weaker than the weak topology; see, for instance, [1, 2] where it is proved that for every Banach space X not containing $\ell^1([0, 1])$ and for every 1-norming subspace $Y \subset X'$, if H is a norm bounded $\sigma(X, Y)$ -compact subset of X then $\overline{\operatorname{aco} H}^{\sigma(X,Y)}$ is $\sigma(X, Y)$ -compact. It was proved in [3] that the hypothesis $\ell^1([0, 1]) \not\subset X$ is also necessary for the latter.

The following useful observation will be used several times later.

PROPOSITION 1. Let $(X, \|\cdot\|)$ be a Banach space and let Y be a 1-norming subspace of X'. If $(X, \mu(X, Y))$ is quasi-complete, then every $\sigma(X, Y)$ -compact subset of X is norm bounded.

PROOF. Let $H \subset X$ be $\sigma(X,Y)$ -compact. As already noted, the Krein–Smulyan theorem [4, Section 24.5(4)] implies that the $\sigma(X,Y)$ -closed absolutely convex hull $M := \overline{\operatorname{aco} H}^{\sigma(X,Y)}$ is $\sigma(X,Y)$ -compact. Therefore, M is an absolutely convex, bounded and complete subset of the lcs $(X,\sigma(X,Y))$. Now we can apply [4, Section 20.11(2)] to obtain that M is a Banach disc, that is, $X_M := \bigcup_{n \in \mathbb{N}} nM$ is a Banach space with the norm

$$||x||_M := \inf\{\lambda > 0 : x \in \lambda M\}, \quad x \in X_M.$$

Since M is bounded in $(X, \sigma(X, Y))$, the inclusion $J: X_M \to (X, \sigma(X, Y))$ is continuous, therefore $J: X_M \to (X, \|\cdot\|)$ has a closed graph, hence it is continuous by the closed graph theorem. In particular, the image of the closed unit ball M of X_M is bounded in $(X, \|\cdot\|)$, and the proof is complete.

The following example is an immediate consequence of the foregoing.

EXAMPLE 2. Let X = C([0, 1]) be endowed with its supremum norm and take

$$Y := \operatorname{span}\{\delta_x : x \in [0, 1]\} \subset X'.$$

Then $(X, \mu(X, Y))$ is not quasi-complete.

PROOF. Notice that $\sigma(X, Y)$ coincides with the topology τ_p of pointwise convergence on C([0, 1]). Since there are sequences τ_p -convergent to zero which are not norm bounded, $(X, \mu(X, Y))$ cannot be quasi-complete by Proposition 1.

The subspace Y of X' in Example 2 is weak* dense in X' but not norm closed. Another example of the same nature is the following: take $X = c_0$, $Y = \varphi$, the space of sequences with finitely many nonzero coordinates, which is norm dense in $X' = \ell_1$. In this case $\mu(X, Y) = \sigma(X, Y)$, since every absolutely convex $\sigma(Y, X)$ -compact subset of Y is finite-dimensional by the Baire category theorem. In this case $(X, \sigma(X, Y))$ is not even sequentially complete.

The following example, taken from [3, Lemma 11], provides the negative solution to Problem A.

EXAMPLE 3. Take $X = (\ell^1([0, 1]), \|\cdot\|_1)$ and consider the space Y = C([0, 1]) of continuous functions on [0, 1] as a norming subspace of the dual $X' = \ell^{\infty}([0, 1])$. Then $(X, \mu(X, Y))$ is not quasi-complete.

PROOF. Let $H:=\{e_x:x\in[0,1]\}$ be the canonical basis of $\ell^1([0,1])$. The set H is clearly $\sigma(X,Y)$ -compact but we will prove that $\overline{\operatorname{aco} H}^{\sigma(X,Y)}$ is not $\sigma(X,Y)$ -compact, and therefore $(X,\mu(X,Y))$ cannot be quasi-complete. Indeed, proceeding by contradiction, let us assume that $W:=\overline{\operatorname{aco} H}^{\sigma(X,Y)}$ is $\sigma(X,Y)$ -compact. We write $M([0,1])=(C([0,1]),\|\cdot\|_{\infty})'$ to denote the space of Radon measures in [0,1] endowed with its variation norm. The map

$$\phi: X \to M([0, 1])$$

given by $\phi((\xi_x)_{x \in [0,1]}) = \sum_{x \in [0,1]} \xi_x \delta_x$ is $\sigma(X, Y) - w^*$ -continuous. We notice that:

- (1) $\phi(W) \subset \phi(\ell^1([0, 1]));$
- (2) $\phi(W)$ is an absolutely convex w^* -compact subset of M([0, 1]);
- $(3) \quad \{\delta_x: x \in [0,\,1]\} \subset \phi(W).$

From the above we obtain that

$$B_{M([0,1])} = \overline{\operatorname{aco}\{\delta_x : x \in [0,1]\}}^{w^*} \subset \phi(W) \subset \phi(\ell^1([0,1])),$$

which is a contradiction because there are Radon measures on [0, 1] which are not of the form $\sum_{x \in [0,1]} \xi_x \delta_x$. The proof is complete.

PROPOSITION 4. If X is a Banach space containing an isomorphic copy of $\ell^1([0, 1])$, then there is a subspace $Y \subset X'$ norm closed and norming such that $(X, \mu(X, Y))$ is not quasi-complete.

PROOF. In the proof of [3, Proposition 3] the authors construct a norming subspace $E \subset X'$ and $H \subset X$ norm bounded $\sigma(X, E)$ -compact such that $\overline{\text{aco } H}^{\sigma(X, E)}$ is not $\sigma(X, E)$ -compact. If we take $Y = \overline{E} \subset X'$, norm closure, then norm bounded $\sigma(X, E)$ -convergent nets in X are $\sigma(X, Y)$ -convergent; hence we obtain that:

- (i) $H \subset X$ is $\sigma(X, Y)$ -compact; and
- (ii) $\overline{\operatorname{aco} H}^{\sigma(X,E)} = \overline{\operatorname{aco} H}^{\sigma(X,Y)}$

Consequently H is $\sigma(X, Y)$ -compact and $\overline{aco H}^{\sigma(X,Y)}$ is not. Thus $(X, \mu(X, Y))$ cannot be quasi-complete and this completes the proof.

We conclude this note with a few comments about the relation of the questions considered here with Mazur property. We say that an $lcs(E,\mathfrak{T})$ is Mazur if every sequentially \mathfrak{T} -continuous form defined on E is \mathfrak{T} -continuous. We quote the following result.

THEOREM 5 [7, Theorem 9.9.14]. Let (X, Y) be a dual pair. If $(X, \sigma(X, Y))$ is Mazur and $(X, \mu(X, Y))$ is complete, then $(Y, \mu(Y, X))$ is complete.

PROPOSITION 6. Let X be a Banach space. Let Y be a proper subspace of X' which is w^* -dense. Assume that:

- (1) the norm bounded $\sigma(X, Y)$ -compact subsets of X are weakly compact;
- (2) $(X, \sigma(X, Y) \text{ is Mazur.})$

Then $(X, \mu(X, Y))$ is not complete.

PROOF. Assume that $(X, \mu(X, Y))$ is complete. Then Proposition 1 implies that every $\sigma(X, Y)$ -compact subset of X is norm bounded. Therefore the family of $\sigma(X, Y)$ -compact subsets coincides with the family of weakly compact sets. So the Mackey topology $\mu(Y, X)$ in Y associated with the pair $\langle X, Y \rangle$ is the topology induced in Y by the Mackey topology $\mu(X', X)$ in X' associated with the dual pair $\langle X, X' \rangle$. If we now use Theorem 5 we obtain that Y is $\mu(Y, X)$ complete, this implies that $Y \subset X'$ is $\mu(X', X)$ closed. Thus

$$Y = \overline{Y}^{\mu(X',X)} = \overline{Y}^{w^*} = X',$$

which contradicts the fact that Y is a proper subspace of X'.

We observe that hypothesis (1) in the above proposition is satisfied for Banach spaces without copies of $\ell^1([0, 1])$ whenever Y contains a boundary for the norm (see [1, 2]).

References

- [1] B. Cascales, G. Manjabacas and G. Vera, 'A Krein–Smulian type result in Banach spaces', *Quart. J. Math. Oxford Ser.* (2) **48**(190) (1997), 161–167.
- [2] B. Cascales and R. Shvydkoy, 'On the Krein–Smulian theorem for weaker topologies', *Illinois J. Math.* **47**(4) (2003), 957–976.
- [3] A. S. Granero and M. Sánchez, 'The class of universally Krein-Smulian spaces', Bull. London Math. Soc. 39(4) (2007), 529–540.
- [4] G. Köthe, *Topological Vector Spaces*, Vol. I (Springer, Berlin, 1969).
- [5] M. C. Kunze, 'Semigroups on norming dual pairs and transition operators for Markov processes', PhD Thesis, Universität Ulm, 2008.
- [6] R. Meise and D. Vogt, *Introduction to Functional Analysis* (Clarendon, Oxford, 1997).
- [7] A. Wilanski, Modern Methods in Topological Vector Spaces (McGraw-Hill, New York, 1978).

JOSÉ BONET, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universidad Politécnica de Valencia, E-46071 Valencia, Spain e-mail: jbonet@mat.upv.es

BERNARDO CASCALES, Departamento de Matemáticas, Universidad de Murcia, E-30100 Espinardo (Murcia), Spain

e-mail: beca@um.es