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Functorial Decompositions of Looped
Coassociative Co-H Spaces

P. Selick, S. Theriault, and J. Wu

Abstract. Selick and Wu gave a functorial decomposition of ΩΣX for path-connected, p-local

CW -complexes X which obtained the smallest nontrivial functorial retract Amin(X) of ΩΣX. This

paper uses methods developed by the second author in order to extend such functorial decomposi-

tions to the loops on coassociative co-H spaces.

1 Introduction

Let X be a path-connected, p-local CW -complex. Selick and Wu [SW1, SW2] gave a

functorial decomposition ΩΣX ≃ Amin(X) × ΩQmax(X), where Amin(X) is the mini-

mal functorial retract whose homology contains the homology of X. This homotopy

decomposition is the geometric realization of a more general algebraic result, which

obtains the minimal functorial coalgebra retract of a tensor algebra. The transition

from algebra to geometry is suggested by the Bott–Samelson theorem, which gives an

algebra isomorphism H∗(ΩΣX) ∼= T(H̃∗(X)) (homology with mod-p coefficients).

The Bott–Samelson theorem can be generalized to co-H spaces. If Y is a simply

connected co-H space, then there is an algebra isomorphism

H∗(ΩY ) ∼= T(Σ−1H̃∗(Y )).

The question arises whether Selick and Wu’s functorial decomposition of ΩΣX can

be generalized to the case of ΩY . A question in the same spirit was addressed in [T].

There, the functorial decomposition ΣΩΣX ≃
∨∞

n=1 ΣX(n) was generalized to the

case of a coassociative co-H space Y . It was shown that ΣΩY ≃
∨∞

n=1 Mn(Y ) for

spaces Mn(Y ) satisfying Σ
n−1Mn(Y ) ≃ Y (n). The purpose of this paper is to show

that the homotopy decomposition of Selick and Wu generalizes to the case of a coas-

sociative co-H space.

Theorem 1.1 Let Y be a simply connected, homotopy coassociative co-H space. Then

there is a space MQmax(Y ), a homotopy fibration

Amin(Y )
∗

−→ MQmax(Y ) −→ Y,
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and a homotopy decomposition

ΩY ≃ Amin(Y ) × ΩMQmax(Y ),

where H∗(Amin(Y )) is the minimal functorial coalgebra retract of

H∗(ΩY ) ∼= T(Σ−1H̃∗(Y )).

This homotopy decomposition is natural for co-H maps Y −→ Z between homotopy

coassociative co-H spaces.

The most common example of a coassociative co-H space is a suspension. How-

ever, Berstein and Harper [BH] constructed explicit examples of coassociative co-H

spaces which are not suspensions. Theorem 1.1 can then be applied so that their

homotopy theory can be analyzed in exactly the same manner as suspensions. In

particular, letting V = Σ
−1H̃∗(Y ), the minimal functorial retract Amin(Y ) of ΩY is

the geometric realization of the minimal functorial coalgebra retract Amin(V ) of the

tensor algebra T(V ). That is, H∗(Amin(Y )) ∼= Amin(V ). One key property of Amin(V )

proved in [SW1] is that its primitives are concentrated in the submodules of mono-

mials of length a power of p.

This paper is organized as follows. In Section 2 we review the work of Selick and

Wu which gives functorial coalgebra decompositions of tensor algebras and loop sus-

pensions. In Section 3 we review the constructions in [T]. Selick and Wu’s result

depends on particular wedge decompositions of ΣX(n). The wedge summands are

obtained as telescopes of self-maps of ΣX(n) which arise from the action of the sym-

metric group on n letters. In Section 4 we show that such wedge decompositions can

be generalized to a decomposition of Mn(Y ) when Y is a coassociative co-H space.

Finally, in Section 5 we prove Theorem 1.1.

2 Functorial Coalgebra Decompositions of Tensor Algebras and Loop
Suspensions

The material in this section comes from [SW1, SW2]. Let V be a vector space over

a field k of characteristic p. Let T(V ) be the tensor algebra generated by V ; this

becomes a Hopf algebra by letting the elements of V be primitive. Let Ln(V ) be the

set of homogeneous Lie elements of tensor length n in T(V ).

Theorem 2.1 There are functorial submodules Qmax
n (V ) of Ln(V ) such that, if we

define Bmax(V ) = T(
⊕∞

n=2 Qmax
n (V )), then:

(a) Bmax(V ) is a sub-Hopf algebra of T(V ),

(b) Ln(V ) ⊆ Bmax(V ) if n is not a power of p,

(c) there is a natural coalgebra decomposition T(V ) ∼= Amin(V ) ⊗ Bmax(V ), where

Amin(V ) is the smallest natural coalgebra retract of T(V ).

Let Bmax
n (V ) = Bmax ∩ Tn(V ). The modules Qmax

n and Bmax
n are realized via idem-

potents on V⊗n. Let

βn : V⊗n −→ V⊗n
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be defined by the iterated commutator

βn(a1 ⊗ · · · ⊗ an) = [a1, [a2, · · · [an−1, an] · · · ].

Let Σn be the symmetric group on n letters. Let Z(p) be the p-local integers. Let

Z(p)[Σn] be the group ring. We can identify βn with the corresponding element in

Z(p)[Σn]. Then there are elements αmax
n , δmax

n ∈ Z(p)[Σn] such that λmax
n = βn ◦ α

max
n

and δmax
n are idempotents in Z(p)[Σn], and

Qmax
n (V ) = Im(λmax

n : V⊗n −→ V⊗n)

Bmax
n (V ) = Im(δmax

n : V⊗n −→ V⊗n).

The coalgebra decomposition in Theorem 2.1 can be realized geometrically. We

use homology with mod-p coefficients throughout. Recall that if X is a path con-

nected space then H∗(ΩΣX) ∼= T(H̃∗(X)).

Theorem 2.2 Let X be a path-connected p-local CW -complex. Then there are ho-

motopy functors Qmax
n and Amin from path-connected p-local CW complexes to spaces

such that the following properties hold:

(a) Qmax
n (X) is a functorial retract of ΣX(n);

(b) there is a functorial fiber sequence

Amin(X)
∗

−→

∞∨

n=2

Qmax
n (X)

πX

−→ ΣX;

(c) there is a functorial homotopy decomposition

ΩΣX ≃ Amin(X) × Ω

( ∞∨

n=2

Qmax
n (X)

)
;

(d) there is a functorial coalgebra filtration on H∗(Amin(X)) such that there is a functo-

rial isomorphism of coalgebras

Gr H∗(Amin(X)) ∼= Amin(H̃∗(X)).

To describe how the algebraic decomposition in Theorem 2.1 translates into the

geometric decomposition in Theorem 2.2, observe that an element σ ∈ Σn corre-

sponds to a map σn : X(n) −→ X(n) by permuting the factors in the smash product.

Suspending, such maps can be added, so the idempotents λmax
n , δmax

n ∈ Z(p)[Σn] cor-

respond to maps

λmax
n , δmax

n : ΣX(n) −→ ΣX(n).

In general, any self-map f : Z −→ Z has a mapping telescope defined by

T =

( ∞∐

i=0

Z × [i, i + 1]
)
/ ∼
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where (z, j) ∼ ( f (z), j) for all z ∈ Z and j ∈ N. This is a special case of a homotopy

colimit, so we write T = hocolim f Z. An introductory discussion of mapping tele-

scopes can be found in [M] and a thorough treatment of homotopy colimits is given

in [BK]. A key property of homotopy colimits is that they commute with the ho-

mology functor. In the case of a mapping telescope the directed system in homology

induced by f∗ has Im f∗ as its direct limit. Thus H∗(hocolim f Z) ∼= Im f∗. Applying

this to the idempotents λmax
n and δmax

n , let

Qmax
n (X) = hocolimλmax

n
ΣX(n)

Bmax
n (X) = hocolimδmax

n
ΣX(n).

Then

H∗(Qmax
n (X)) ∼= Qmax

n (H̃∗(X))

H∗(Bmax
n (X)) ∼= Bmax

n (H̃∗(X)).

Similarly, 1 − λmax
n , 1 − δmax

n ∈ Z(p)[Σn] are idempotents. Let

Q
max

n (X) = hocolim1−λmax
n

ΣX(n)

B
max

n (X) = hocolim1−δmax
n

ΣX(n).

Since λmax
n + (1 − λmax

n ) = 1 while λmax
n ◦ (1 − λmax

n ) = 0, we get a sum

ΣX(n) −→ Qmax
n (X) ∨ Q

max

n (X),

which is a homology isomorphism and therefore a homotopy equivalence. Similarly,

there is a homotopy equivalence

ΣX(n) −→ Bmax
n (X) ∨ B

max

n (X).

Let wn : ΣX(n) −→ ΣX be the n-fold iterated Whitehead product of the identity map

with itself. Let Qmax
n (X) −→ ΣX(n) be a right homotopy inverse for the hocolim map

ΣX(n) −→ Qmax
n (X). Let πn,X be the composite

πn,X : Qmax
n (X) −→ ΣX(n) αmax

n

−→ ΣX(n) wn

−→ ΣX.

Let

Qmax(X) =

∞∨

n=2

Qmax
n (X).

Let πX be the wedge sum of the πn,X ’s:

πX : Qmax(X) −→ ΣX.
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Note that

H∗(ΩQmax(X)) = H∗(Ω(

∞∨

n=2

Qmax
n (X))) ∼= T

( ∞⊕

n=2

Qmax
n (H̃∗(X)

)

∼= Bmax(H̃∗(X)) ∼= H∗(Bmax(X)).

Thus, if Amin(X) is defined as the homotopy fiber of πX , then the homotopy decom-

position in Theorem 2.2 and the coalgebra decomposition in Theorem 2.1 combine

to show there is a coalgebra isomorphism H∗(Amin(X)) ∼= Amin(H̃∗(X)).

3 The Construction and Properties of the Spaces Mn(Y )

Let Y be a homotopy coassociative co-H space. This section reviews the construction

of the space Mn(Y ) in [T] and describes some of the properties proven there. We also

take the opportunity here to prove two additional properties of Mn(Y ) which should

have been included in [T]. These will subsequently be needed in Section 4. They are

Lemmas 3.5 and 3.8.

We first record three general facts about co-H spaces (see [G]).

Lemma 3.1 The following hold:

(a) A space Y is a co-H space if and only if there is a map s : Y −→ ΣΩY which is a

right homotopy inverse of the evaluation map ΣΩY −→ Y .

(b) A co-H space Y is homotopy coassociative if and only if the map s in part (a) can be

chosen to be a co-H map.

(c) If f : Y −→ Z is a co-H map between homotopy coassociative co-H spaces then

there is a homotopy commutative diagram

Y
sY

//

f

��

ΣΩY

ΣΩ f

��

Z
sZ

// ΣΩZ

where sY and sZ are both co-H maps.

Suppose X is a connected space. One consequence of the James construction is a

homotopy equivalence

ΣΩΣX ≃

∞∨

n=1

ΣX(n),

which is natural for maps X −→ X. The following theorem generalizes this decom-

position from suspensions to coassociative co-H spaces.
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Theorem 3.2 Let Y be a simply connected, homotopy coassociative co-H space. Then

for each n ≥ 1 there are spaces Mn(Y ) and a homotopy equivalence

ΣΩY ≃

∞∨

n=1

Mn(Y )

where:

(a) Σ
n−1Mn(Y ) ≃ Y (n);

(b) if Y = ΣY , then Mn(Y ) ≃ ΣY
(n)

;

(c) each Mn(Y ) is a homotopy coassociative co-H space;

(d) if Y is also homotopy cocommutative, then so is each Mn(Y );

(e) this homotopy decomposition is natural for co-H maps Y −→ Z between homotopy

coassociative co-H spaces.

Each Mn(Y ) is constructed as a telescope of an idempotent γn on Σ(ΩY )(n). The

basic composite to work with is θ : ΣΩY
ev
−→ Y

s
−→ ΣΩY , where ev is the evaluation

map and s is the co-H map in Lemma 3.1(b). Shifting the suspension coordinate on

Σ(ΩY )(n) to the i-th smash factor, we can do θ on the i-th smash factor and the

identity map on the remaining factors. Do this once for each 1 ≤ i ≤ n. The

composite of all n iterations defines γn : Σ(ΩY )(n) −→ Σ(ΩY )(n). Let X = ΩY . Let

Mn(Y ) = hocolimγn
ΣX(n). Let rn : ΣX(n) −→ Mn(Y ) be the telescope map. Since γn

is an idempotent, rn has a right homotopy inverse sn : Mn(Y ) −→ ΣX(n). Note that

when n = 1, the map sn is just the co-H structure map Y
s

−→ ΣΩY = ΣX. When

n > 1, the map sn has two properties analogous to those of s = s1.

Proposition 3.3 The map Mn
sn

−→ ΣX(n) has the following properties:

(a) sn can be chosen to be a co-H map,

(b) there is an isomorphism H̃∗(Mn(Y )) ∼= Σ(Σ−1H̃∗(Y ))⊗n and (sn)∗ includes

H̃∗(Mn(Y )) into H̃∗(ΣX(n)) ∼= ΣH̃∗(X)⊗n by the n-fold tensor inclusion.

We next describe naturality. Suppose f : Y −→ Z is a co-H map between ho-

motopy coassociative co-H spaces. We continue to use X = ΩY . Let X = ΩZ. Let

g : X −→ X be Ω f . Let Mn( f ) be the composite

Mn( f ) : Mn(Y )
sn

−→ ΣX(n) Σg(n)

−→ ΣX
(n) rn

−→ Mn(Z).

Lemma 3.4 The construction of Mn( ) is natural for co-H maps Y −→ Z between

homotopy coassociative co-H spaces. That is, there are homotopy commutative diagrams

Mn(Y )
sn

//

Mn( f )

��

ΣX(n)

Σg(n)

��

Mn(Z)
sn

//
ΣX

(n)

ΣX(n)

rn

//

Σg(n)

��

Mn(Y )

Mn( f )

��

ΣX
(n)

rn

// Mn(Z)
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We now prove an additional feature of the Mn( )’s. In Lemma 3.5 we will show

that Mn( f ) is a co-H map. Note that this is not immediate from the definition of

Mn( f ) as the composite rn ◦Σg(n) ◦ sn. By Proposition 3.3(a), sn is a co-H map, while

Σg(n) is a co-H map because it is a suspension. But rn is defined in part by evaluation

maps and is not co-H. So it is not true that Mn( f ) is co-H because it is the composite

of co-H maps. Nevertheless, we have:

Lemma 3.5 The map Mn(Y )
Mn( f )
−−−−→ Mn(Z) is a co-H map.

Proof Argue exactly as in [T, 7.2] (which shows a certain other map is co-H, in fact,

the map Mn(σ) appearing below in Proposition 3.7(c)).

Corollary 3.6 Mn defines a functor from the category of homotopy coassociative co-H

spaces and co-H maps to itself.

We next see how the symmetric group Σn acts on Mn(Y ). Let σ ∈ Σn. There is a

self-map σ : X(n) −→ X(n) given by permuting the factors in the smash product. Let

Mn(σ) be the composite

Mn(σ) : Mn(Y )
sn

−→ ΣX(n) Σσ
−→ ΣX(n) rn

−→ Mn(Y ).

From [T] we have:

Proposition 3.7 The following hold:

(a) there is a homotopy commutative diagram

Mn(Y )
Mn(σ)

//

sn

��

Mn(Y )

sn

��

ΣX(n)
Σσ

// ΣX(n),

(b) if σ1, σ2 ∈ Σn, then Mn(σ1 ◦ σ2) ≃ Mn(σ1) ◦ Mn(σ2),

(c) Mn(σ) is a co-H map,

(d) (Mn(σ))∗ acts on H̃∗(Mn(Y )) ∼= Σ(Σ−1H̃∗(Y ))⊗n by permuting the tensor factors.

We now show that Mn(σ) is natural. Again, suppose f : Y −→ Z is a co-H

map between homotopy coassociative co-H spaces. Again, let X = ΩY , X = ΩZ,

g = Ω f , and recall the definition of the map Mn(Y )
Mn( f )
−−−→ Mn(Z) (which precedes

Lemma 3.4).
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Lemma 3.8 There is a homotopy commutative diagram

Mn(Y )
Mn(σ)

//

Mn( f )

��

Mn(Y )

Mn( f )

��

Mn(Z)
Mn(σ)

// Mn(Z).

Proof To keep track of the space involved, denote the maps Mn(Y )
sn

−→ ΣX(n) rn

−→

Mn(Y ) by sY and rY , respectively. Recall that rY ◦ sY is homotopic to the identity on

Mn(Y ). As well, denote the map Mn(Y )
Mn(σ)
−−−−→ Mn(Y ) by MY

n (σ).

Consider the following diagram

Mn(Y )

sY

##HH
HH

HH
HH

H

Mn(Y )
sY

//

Mn( f )

��

MY

n
(σ)

::vvvvvvvvv

ΣX(n)
Σσ

//

Σg(n)

��

ΣX(n)

Σg(n)

��

Mn(Z)
sZ

//

MZ

n
(σ) ##HHHHHHHHH

ΣX
(n)

Σσ
//
ΣX

(n)
rZ

// Mn(Z).

Mn(Z)

sZ

;;wwwwwwwww

The top and bottom triangles homotopy commute by Proposition 3.7(a). The left

inner square homotopy commutes by the naturality in Lemma 3.4 while the right

inner square homotopy commutes by the naturality of Σσ. Thus the entire diagram

homotopy commutes. By definition, Mn( f ) = rZ ◦ Σg(n) ◦ sY so the upper direction

around the diagram is homotopic to Mn( f ) ◦ MY
n (σ). Since rZ ◦ sZ is homotopic

to the identity on Mn(Z), the lower direction around the diagram is homotopic to

MZ
n (σ) ◦ Mn( f ). Thus Mn( f ) ◦ MY

n (σ) ≃ MZ
n (σ) ◦ Mn( f ), proving the lemma.

Finally, we end this section with more review material from [T]. One application

of the spaces Mn(Y ) is to construct generalizations of Whitehead products. For a

space X, recall that

wn : ΣX(n) −→ ΣX

is the n-fold iterated Whitehead product of the identity map with itself. Consider

the special case when X = ΩY . Let ev : ΣX = ΣΩY −→ Y be the evaluation map.

Let s : Y −→ ΣΩY = ΣX be the co-H map in Lemma 3.1(b). Define a generalized

Whitehead product on Y by the composite

wn : Mn(Y )
sn

−→ ΣX(n) wn

−→ ΣX
ev

−→ Y.
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This generalized Whitehead product wn is compatible with wn:

Lemma 3.9 There is a homotopy commutative diagram

Mn(Y )
wn

//

sn

��

Y

s

��

ΣX(n)

wn

// ΣX.

Further, the map wn is natural for co-H maps Y −→ Z between homotopy coassociative

co-H spaces.

4 Idempotent Decompositions of ΣX
(n) and Mn(Y )

In this section we consider wedge decompositions of ΣX(n) which arise from the ac-

tion of the symmetric group Σn, and show that analogous wedge decompositions

exist for Mn(Y ). Such decompositions were considered in [SW3] for the case of X(n)

when X is a suspension and n ≥ 2. We begin with a definition.

Definition 4.1 Maps f1, . . . , fk ∈ Z(p)[Σn] give an orthogonal decomposition of the

identity if:

(1)
∑k

i=1 fi = 1,

(2) fi ◦ fi = fi for 1 ≤ i ≤ k,

(3) fi ◦ f j = 0 whenever i 6= j.

To each σ ∈ Σn there corresponds a map

σ : X(n) −→ X(n)

given by permuting the factors in the smash product. In order to add such maps

we need to suspend. However, while [ΣX(n),ΣX(n)] is a group, it is not necessarily

commutative (it will be, for example, if X is a suspension). So in general, there is no

representation Z(p)[Σn] −→ [ΣX(n),ΣX(n)]. Nevertheless, given α = a1σ1 + · · · +

an!σn! ∈ Z(p)[Σn], we can still define a map α : ΣX(n) −→ ΣX(n). It only has to be

remembered that the homotopy class of α depends on the order of σ1, . . . , σn!. Once

we take homology, however, the non-commutativity problem goes away. There is a

representation Z(p)[Σn] −→ Hom(H∗(ΣX(n)),H∗(ΣX(n))). In particular, suppose

f1, . . . , fk ∈ Z(p)[Σn] is an orthogonal decomposition of the identity. Then the maps

fi : ΣX(n) −→ ΣX(n)

have the property that ( f1)∗, . . . , ( fk)∗ give an orthogonal decomposition of the iden-

tity in Hom(H∗(ΣX(n)),H∗(ΣX(n))). Let

Qn,i(X) = hocolim fi
ΣX(n).
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Then H∗(Qn,i(X)) is isomorphic to the image of ( fi)∗. Thus the sum ΣX(n) −→∨k
i=1 Qn,i(X) is a homology isomorphism and therefore a homotopy equivalence.

We now wish to reproduce such wedge decompositions in the case of Mn(Y ),

where Y is a homotopy coassociative co-H space. Let σ ∈ Σn. As in Section 3,

let Mn(σ) be the composite

Mn(σ) : Mn(Y )
sn

−→ ΣX(n) Σσ
−→ ΣX(n) rn

−→ Mn(Y ).

Suppose f1, . . . , fk ∈ Z(p)[Σn] is an orthogonal decomposition of the identity. Sup-

pose fi = Σ
n!
j=1 a jσ j , where the σ j ’s are distinct elements of Σn and each a j ∈ Z(p).

Let

Mn( fi) : Mn(Y ) −→ Mn(Y )

be the sum Mn( fi) = Σ
n!
j=1 a jMn(σ j). Since the inclusion Mn(Y )

sn

−→ ΣX(n) is a co-H

map, Lemma 3.7(a) implies:

Lemma 4.2 There is a homotopy commutative diagram

Mn(Y )
Mn( fi )

//

sn

��

Mn(Y )

sn

��

ΣX(n)

fi

//
ΣX(n).

Let

Ni(Y ) = hocolimMn( fi ) Mn(Y ).

By Lemma 4.2 there is a homotopy commutative diagram of telescopes

Mn(Y ) //

sn

��

Nn,i(Y )

��

ΣX(n) // Qn,i(Y ).

As Mn(Y )
sn

−→ ΣX(n) is a co-H map, we can add over i to get the homotopy commu-

tativity of the diagram in the following proposition.

Proposition 4.3 There is a homotopy commutative diagram of equivalences

Mn(Y )
≃

//

sn

��

∨k
i=1 Nn,i(Y )

��

ΣX(n)
≃

// ∨k
i=1 Qn,i(X).
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Proof It remains to show that the map e : Mn(Y ) −→
∨k

i=1 Nn,i(Y ) along the top

row is a homotopy equivalence. By definition, Mn( fi) = Σ
n!
j=1 a jMn(σ j). By Lemma

3.7(d), (Mn(σ))∗ acts on H̃∗(Mn(Y )) ∼= Σ(Σ−1H̃∗(Y ))⊗n by permuting tensor fac-

tors. That is, (Mn(σ))∗ = Σσ. Thus (Mn( fi))∗ = Σ fi . The telescope Nn,i(Y ) of

the map Mn( fi) therefore has its homology isomorphic to Im(Σ fi). Adding over i,

we see that e∗ has image isomorphic to that of Im
(
Σ

n!
j=1(Σ fi)

)
. But f1, . . . , fk is an

orthogonal decomposition of the identity so the latter image is isomorphic to that of

the identity map. Thus e∗ is an isomorphism and hence e is a homotopy equivalence.

Next consider the naturality of the homotopy decomposition

Mn(Y )
≃
−→

k∨

i=1

Nn,i(Y ).

As in Section 3, let f : Y −→ Z be a co-H map between homotopy coassociative

co-H spaces. Let X = ΩY , X = ΩZ, g = Ω f , and recall the definition of the map

Mn(Y )
Mn( f )
−−−→ Mn(Z) (preceeding Lemma 3.4).

Lemma 4.4 There is a homotopy commutative diagram

Mn(Y )
Mn( fi )

//

Mn( f )

��

Mn(Y )

Mn( f )

��

Mn(Z)
Mn( fi )

// Mn(Z).

Proof To keep track of the space involved, denote the telescope maps Mn(Y )
sn

−→

ΣX(n) rn

−→ Mn(Y ) by sY and rY , respectively. Recall that rY ◦ sY is homotopic to the

identity map on Mn(Y ). Denote the map Mn(Y )
Mn(σ)
−−−−→ Mn(Y ) by MY

n (σ). Also

write MY
n ( fi) for Mn(Y )

Mn( fi )
−−−−→ Mn(Y ).

Consider the sequence:

MZ
n ( fi) ◦ Mn( f ) =

(
Σ

n!
j=1 a jM

Z
n (σ j)

)
◦ Mn( f )(1)

≃ Σ
n!
j=1

(
a jM

Z
n (σ j) ◦ Mn( f )

)
(2)

≃ Σ
n!
j=1

(
a jMn( f ) ◦ MY

n (σ j)
)

(3)

≃ Σ
n!
j=1

(
Mn( f ) ◦ a jM

Y
n (σ j)

)
(4)

≃ Mn( f ) ◦
(
Σ

n!
j=1 a jM

Y
n (σ j)

)
(5)

= Mn( f ) ◦ MY
n ( fi).(6)
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The definition of MZ
n ( fi) gives the equality in line (1). By Lemma 3.5, Mn( f ) is a co-H

map, so it will distribute on the right, giving the homotopy in line (2). The homotopy

in line (3) follows from Lemma 3.8. The commutation of a j and Mn( f ) in line (4)

follows from the fact that Mn( f ) is co-H. Any map distributes on the left when a sum

is taken via a co-H structure, giving line (5). Finally, the equality in line (6) comes

from the definition of MY
n ( fi). This sequence of equalities and homotopies proves

the lemma.

Taking horizontal telescopes in Lemma 4.4 gives a homotopy commutative dia-

gram

Mn(Y ) //

Mn( f )

��

Nn,i(Y )

��

Mn(Z) // Nn,i(Z).

Adding over i gives:

Proposition 4.5 There is a homotopy commutative diagram of equivalences

Mn(Y )
≃

//

Mn( f )

��

∨k
i=1 Nn,i(Y )

��

MN (Z)
≃

//
∨

Nn,i(Z).

The following theorem summarizes Propositions 4.3 and 4.5.

Theorem 4.6 Let Σ
k
i=1 fi = 1 be an orthogonal decomposition of the identity in

Z(p)[Σn]. To this there corresponds a homotopy equivalence

Mn(Y )
≃
−→

k∨

i=1

Nn,i(Y )

which is natural for co-H maps Y −→ Z between coassociative co-H spaces.

Next, we examine the telescope maps Nn,i(Y ) −→ Qn,i(X) in Proposition 4.3 and

show they have natural left homotopy inverses. First, taking homotopy inverses in

Proposition 4.3 and restricting to the i-th wedge summand gives:
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Corollary 4.7 For each 1 ≤ i ≤ k, there is a homotopy commutative diagram

Nn,i(Y ) //

��

∨k
i=1 Nn,i

≃
//

��

Mn(Y )

sn

��

Qn,i(X) // ∨k
i=1 Qn,i(X)

≃
//
ΣX(n).

where the left square is the inclusion of the i-th summand into the wedge.

Corollary 4.8 For each 1 ≤ i ≤ k, the telescope map Nn,i(Y ) −→ Qn,i(X) has a left

homotopy inverse.

Proof Since Mn(Y )
sn

−→ ΣX(n) and Nn,i(Y ) −→ Mn(Y ) each have left homotopy

inverses, using Corollary 4.7 we obtain a homotopy commutative diagram

Nn,i(Y ) //

��

Mn(Y )

sn

�� HHHHHHHHH

HHHHHHHHH

Qn,i(X) //
ΣX(n)

rn

// Mn(Y ) // Nn,i(Y )

in which the upper direction is homotopic to the identity map on Nn,i(Y ).

Define ψn,i : Qn,i(X) −→ Nn,i(Y ) by the composite

ψn,i : Qn,i(X) →֒

k∨

i=1

Qn,i(X)
≃
−→ ΣX(n) rn

−→ Mn(Y ) −→ Nn,i(Y ).

Each of the four maps in this composite is natural. The wedge inclusion and the

homotopy equivalence are natural with respect to maps X −→ X. By Lemma 3.4

and Proposition 4.5, respectively, the maps rn and Mn(Y ) −→ Nn,i(Y ) are natural for

co-H maps Y −→ Z between coassociative co-H spaces. Thus:

Lemma 4.9 The telescope map Nn,i(Y ) −→ Qn,i(X) has a left homotopy inverse

Qn,i(X)
ψn,i
−→ Nn,i(Y )

which is natural with respect to co-H maps Y −→ Z between homotopy coassociative

co-H spaces. That is, there is a homotopy commutative diagram

Qn,i(X)
ψn,i

//

��

Nn,i(Y )

��

Qn,i(X)
ψn,i

// Nn,i(Z).
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5 The Construction of A
min for Coassociative Co-H Spaces

Recall from Section 2 the idempotents λmax
n , δmax

n ∈ Z(p)[Σn]. These give orthogonal

decompositions of the identity, 1 = λmax
n + (1 − λmax

n ) and 1 = δmax
n + (1 − δmax

n ).

Recall that Qmax
n (X) = hocolimλmax

n
ΣX(n), Q

max

n (X) = hocolim1−λmax
n

ΣX(n), and

Bmax
n (X),B

max

n (X) were defined similarly with respect to δmax
n . Let Y be a homotopy

coassociative co-H space. As in Section 4, the element λmax
n ∈ Z(p)[Σn] corresponds

to a map Mn(λmax
n ) : Mn(Y ) −→ Mn(Y ), and similarly for 1−λmax

n , δmax
n , and 1−δmax

n .

Let

MQmax
n (Y ) = hocolimMn(λmax

n
) Mn(Y ),

MQ
max

n (Y ) = hocolimMn(1−λmax
n

) Mn(Y ),

MBmax
n (Y ) = hocolimMn(δmax

n
) Mn(Y ),

MB
max

n (Y ) = hocolimMn(1−δmax
n

) Mn(Y ).

Suppose Y −→ Z is a co-H map between homotopy coassociative co-H spaces.

As before, let X = ΩY and X = ΩZ. By Theorem 4.6 and Lemma 4.9 we have:

Lemma 5.1 The following hold:

(a) There is a homotopy equivalence MQmax
n (Y ) ∨ MQ

max

n (Y ) −→ Mn(Y ) which is

natural for co-H maps Y −→ Z between coassociative co-H spaces.

(b) There is a homotopy commutative diagram of equivalences

MQmax
n (Y ) ∨ MQ

max

n (Y )
≃

//

��

Mn(Y )

sn

��

Qmax
n (X) ∨ Q

max

n (X)
≃

//
ΣX(n).

(c) The map MQmax
n (Y ) −→ Qmax

n (X) in part (b) has a left homotopy inverse which is

natural for co-H maps Y −→ Z between homotopy coassociative co-H spaces. That

is, there is a homotopy commutative diagram

MQmax
n (Y ) //

��

MQmax
n (Z)

��

Qmax
n (X) // Qmax

n (X).

The same statements hold when Qmax
n is replaced by Bmax

n .

Now consider what happens in homology. Recall from Section 2 that

H∗(Qmax
n (X)) ∼= Qmax

n (H̃∗(X)),
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where Qmax
n (H̃∗(X)) is the image of the idempotent λmax

n : H̃∗(X)⊗n −→ H̃∗(X)⊗n.

By Proposition 3.7(d), the inclusion Mn(Y )
sn

−→ ΣX(n) becomes an n-fold tensor

inclusion

H̃∗(Mn(Y )) ∼= Σ(Σ−1H̃∗(Y ))⊗n (sn)∗
−−−−→ H̃∗(ΣX(n)) ∼= ΣH̃∗(X)⊗n.

In general, if W ⊆ V are vector spaces, then the idempotent λmax
n (V ) : V⊗n −→ V⊗n

restricts to the corresponding idempotent on W⊗n, that is, λmax
n (V )|W = λmax

n (W ).

So the image Qmax
n (V ) of λmax

n (V ) restricts to the image Qmax
n (W ) of λmax

n (W ). A

similar argument holds for the idempotent δmax
n (V ) and its image Bmax

n (V ). Applied

to the case W = Σ
−1H̃∗(Y ) and V = H̃∗(X) we have:

Lemma 5.2 There are isomorphisms

H∗(MQmax
n (Y )) ∼= Qmax

n (Σ−1H̃∗(Y ))

H∗(MBmax
n (Y )) ∼= Bmax

n (Σ−1H̃∗(Y )).

We now begin the construction of Amin(Y ) for ΩY . This is done with the help of

the known construction of Amin(X) for ΩΣX in the case when X = ΩY . The two are

linked by the co-H structure map Y
s

−→ ΣΩY = ΣX in Lemma 3.1(b). Recall from

Section 2 there is a homotopy fibration

Amin(X)
∗

−→ Qmax(X)
πX

−→ ΣX,

where Qmax(X) =
∨∞

n=2 Qmax
n (X), and πX is the wedge sum of the composites

πn,X : Qmax
n (X) −→ ΣX(n) wn

−→ ΣX.

Similarly, let

MQmax(Y ) =

∞∨

n=2

MQmax
n (Y )

and define

MπY : MQmax(Y ) −→ Y

by adding each of the composites Mπn,Y : MQmax
n (Y ) −→ Mn(Y )

wn

−→ Y . Define

Amin(Y ) by the homotopy fibration

Amin(Y ) −→ MQmax(Y )
MπY

−→ Y.

Now we put together the two fibrations defining Amin(Y ) and Amin(X). Consider

the diagram

MQmax
n (Y ) //

��

Mn(Y )
wn

//

sn

��

Y

s

��
Qmax

n (X) //
ΣX(n)

wn

// ΣX.
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The left square homotopy commutes by restricting the diagram in Lemma 5.1(b)

to the left wedge summand. The right square homotopy commutes by Lemma 3.9.

Adding over n then gives a homotopy commutative diagram

MQmax(Y )
MπY

//

��

Y

s

��

Qmax(X)
πX

// ΣX.

From this we obtain a homotopy fibration diagram

ΩMQmax(Y )
ΩMπY

//

��

ΩY //

Ωs

��

Amin(Y ) //

��

MQmax(Y )
MπY

//

��

Y

s

��

ΩQmax(X)
ΩπX

// ΩΣX // Amin(X)
∗

// Qmax(X)
πX

// ΣX.

Note that along the bottom row we have ΩΣX ≃ Amin(X) × ΩQmax(X). By Theo-

rem 2.2, ΩπX has a left homotopy inverse

θX : ΩΣX −→ ΩQmax(X)

which is natural for maps X −→ X. By Lemma 5.1(c) the map MQmax
n (Y ) −→

Qmax
n (X) has a left homotopy inverse ψn,Y : Qmax

n (X) −→ MQmax
n (Y ) which is natural

for co-H maps Y −→ Z between coassociative co-H spaces. Adding over n we obtain

a left homotopy inverse

ψY : Qmax(X) −→ MQmax(Y )

of MQmax(Y ) −→ Qmax(X). Let MθY be the composite

MθY : ΩY
Ωs
−→ ΩΣX

θX

−→ ΩQmax(X)
ΩψY

−→ ΩMQmax(Y ).

Proposition 5.3 MθY is a left homotopy inverse of ΩMπY . Thus

ΩY ≃ Amin(Y ) × ΩMQmax(Y ).

Proof We have a homotopy commutative diagram

ΩMQmax(Y ) //

ΩMπY

��

ΩQmax(X)

ΩπX

�� LLLLLLLLLL

LLLLLLLLLL

ΩY
Ωs

// ΩΣX
θX

// ΩQmax(X)
ΩψY

// ΩMQmax(Y )

in which the lower row is the definition of MθY and the upper direction is the identity

map on ΩMQmax(Y ).
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Remark 5.4 The left homotopy inverse for ΩπX is constructed explicitly in [SW1,

SW2] by using combinatorial James–Hopf invariants. It may be possible to reproduce

combinatorial James–Hopf maps for ΩY using the methods in Section 3, but it is

certainly more efficient to proceed as above by the timely use of existing retractions.

The next proposition shows that Amin(Y ) is the minimal functorial coalgebra re-

tract of ΩY .

Proposition 5.5 H∗(Amin(Y )) ∼= Amin(Σ−1H̃∗(Y )).

Proof By Theorem 2.1 there is a coalgebra decomposition

H∗(ΩY ) ∼= T(Σ−1H̃∗(Y )) ∼= Amin(Σ−1H̃∗(Y )) ⊗ Bmax(Σ−1H̃∗(Y )).

The homotopy decomposition in Proposition 5.3 implies that the statement we are

trying to prove is equivalent to showing that H∗(ΩMQmax(Y )) ∼= Bmax(Σ−1H̃∗(Y )).

But by definition, MQmax(Y ) =
∨∞

n=2 MQmax
n (Y ), so by Lemma 5.2 we have

H∗(ΩMQmax(Y )) = H∗(Ω(

∞∨

n=2

MQmax
n (Y ))) ∼= T

( ∞⊕

n=2

Qmax
n (Σ−1H̃∗(Y ))

)

∼= Bmax(Σ−1H̃∗(Y )).

It remains to show that the decomposition in Proposition 5.3 is natural. Suppose

Y −→ Z is a co-H map between coassociative co-H spaces. The naturality in Lem-

mas 5.1(a) and 3.9 give, for each n ≥ 2, a homotopy commutative diagram

MQmax
n (Y ) //

��

Mn(Y )
wn

//

��

Y

��
MQmax

n (Z) // Mn(Z)
wn

// Z.

Adding over n gives a homotopy commutative diagram

MQmax(Y )
MπY

//

��

Y

��

MQmax(Z)
MπZ

// Z.
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From this we obtain a homotopy fibration diagram

ΩMQmax(Y )
ΩMπY

//

��

ΩY //

��

Amin(Y )
∗

//

��

MQmax(Y )
MπY

//

��

Y

��

ΩMQmax(Z)
ΩMπY

// ΩZ // Amin(Z)
∗

// MQmax(Z)
MπZ

// Z.

First observe:

Lemma 5.6 The left homotopy inverse MθY of ΩMπY in Proposition 5.3 is natural

with respect to co-H maps Y −→ Z between homotopy coassociative co-H spaces. That

is, there is a homotopy commutative diagram

ΩY
MθY

//

��

ΩMQmax(Y )

��

ΩZ
MθZ

// ΩMQmax(Z).

Proof As usual, we have X = ΩY , X = ΩZ, and g : X −→ X is Ω f . By Lemma

3.1(c) there is a homotopy commutative diagram

Y //

f

��

ΣX

Σg

��

Z //
ΣX

in which all maps are co-H maps. Consider the diagram

ΩY //

Ω f

��

ΩΣX
θX

//

ΩΣg

��

ΩQmax(X)
ΩψY

//

��

ΩMQmax(Y )

��

ΩZ //
ΩΣX

θZ

// ΩQmax(X)
ΩψZ

// ΩMQmax(Z).

The left square homotopy commutes by the previous diagram. The middle square

homotopy commutes by the naturality of Theorem 2.2. For the right square, by def-

inition (preceeding Proposition 5.3), ψY =
∨∞

n=1 ψn,Y , where each ψn,Y is natural

for co-H maps Y −→ Z between coassociative co-H spaces. Thus the right square
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homotopy commutes as well and hence the entire rectangle homotopy commutes.

But the top row of the diagram is the definition of MθY while the bottom row is the

definition of MθZ .

Proposition 5.7 The homotopy decomposition ΩY ≃ Amin(Y ) × ΩMQmax(Y ) of

Proposition 5.3 is natural with respect to co-H maps Y −→ Z between homotopy coas-

sociative co-H spaces.

Proof The homotopy fibration diagram preceeding Lemma 5.6 gives a homotopy

commutative square

ΩY //

��

Amin(Y )

��

ΩZ // Amin(Z).

Combining this with the diagram in Lemma 5.6 gives a homotopy commutative dia-

gram of equivalences

ΩY
≃

//

��

Amin(Y ) × ΩMQmax(Y )

��

ΩZ
≃

// Amin(Z) × ΩMQmax(Z),

which proves the Proposition.

Finally, observe that Theorem 1.1 is the combination of Propositions 5.3, 5.5,

and 5.7.
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