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Abstract CoGalois groups appear in a natural way in the study of covers. They generalize the well-
known group of covering automorphisms associated with universal covering spaces. Recently, it has been
proved that each quasi-coherent sheaf over the projective line P 1(R) (R is a commutative ring) admits a
flat cover and so we have the associated coGalois group of the cover. In general the problem of computing
coGalois groups is difficult. We study a wide class of quasi-coherent sheaves whose associated coGalois
groups admit a very accurate description in terms of topological properties. This class includes finitely
generated and cogenerated sheaves and therefore, in particular, vector bundles.
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1. Introduction

CoGalois groups were first defined in [7] for torsion-free covers of abelian groups. It
was observed that these coGalois groups have a natural topology that is compatible
with their group structure. Then, noting that coGalois groups are the categorical notion
dual to that of an absolute Galois group of a field and that these groups with their
natural topology are always compact, it was natural to ask about the compactness of
these coGalois groups. In [7] it was shown that these groups are not always compact and
necessary and sufficient conditions for their compactness were given.

In this paper we want to consider analogous questions in a different setting. We will
consider torsion-free covers in the category of quasi-coherent sheaves on a scheme. We
note that such a sheaf is ‘locally a module’ and so, if the scheme is the projective line
P 1(k) (with k a field), we will be considering modules over k[x], k[x−1] and k[x, x−1]
(see [1] or § 2, below, for an explanation of this point of view). We now give a brief outline
of the contents of the paper.
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In § 2 we explain how we view the category of quasi-coherent sheaves on a projective
line. Then we recall the definition of covers and give some of the main tools used to prove
their existence.

In § 3 we give the main reduction result about computing coGalois groups of torsion-
free covers over a Dedekind domain. Therefore, we show that every such coGalois group
is isomorphic to one associated with a cotorsion module.

In § 4 we study the topology on our coGalois groups and in particular consider when
they have a certain local compactness.

Our main results are in § 5. There we fully exploit the reduction result of § 3 and give
our locally compact version of the main result of [7, Theorem 5.2].

2. Preliminaries

Throughout the paper, all rings considered will be commutative with identity.
In the following we let Qco(P 1(R)) or Qco(P 1

R) denote the category of quasi-coherent
sheaves over P 1(R) (where R is any ring).

It is known (see, for example, [1,5,8,9]) that the structure sheaf of the projective line
may be identified with the representation

O ≡ R[x] ↪→ R[x, x−1] ←↩ R[x−1]

of the quiver Q ≡ • → • ← • . And in this case a quasi-coherent sheaf L ∈ Qco(P 1
R) is

identified with a representation

L ≡ M
f−→ P

g←− N

of the quiver Q, where M ∈ R[x]-Mod, N ∈ R[x−1]-Mod and P ∈ R[x, x−1]-Mod and are
such that S−1f and T−1g are isomorphisms of R[x, x−1]-Mod (where S = {1, x, x2, . . . }
and T = {1, x−1, x−2, . . . }). With this notation, a quasi-coherent sheaf F1 → F ← F2

is flat if and only if it is locally flat (that is, F1, F2 and F are flat R[x], R[x−1] and
R[x, x−1] modules, respectively). Analogously, if R is Noetherian, a quasi-coherent sheaf
E1 → E ← E2 is injective if and only if E1, E2 and E are injective R[x], R[x−1]
and R[x, x−1] modules, respectively (see [9]). When R = k (a field), since the class of
flat (respectively, injective) k[x], k[x−1] and k[x, x−1] modules coincides with the class
of torsion-free (respectively, divisible) modules, we find that the class of flat (respec-
tively, injective) quasi-coherent sheaves on Qco(P 1

k ) coincides with the class of torsion-
free (respectively, divisible) quasi-coherent sheaves.

We recall from [3] that, given a class F of objects in an abelian category, an F-precover
of an object M is a morphism ϕ : F → M with F ∈ F , such that for any other morphism
ϕ′ : F ′ → M with F ′ ∈ F there exists f : F ′ → F such that ϕ ◦ f = ϕ′. The F-precover
is said to be an F-cover if every endomorphism g : F → F satisfying that ϕ ◦ g = ϕ

is in fact an automorphism. Following [7], we will let coGal(ϕ) denote the group of
automorphisms associated with the cover. In a dual manner we may define the notions
of F-(pre)envelopes and the corresponding Galois group of an envelope.
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Suppose that the category C has flat objects (so we are assuming that C is a category
with a tensor product and the flat objects are those F ∈ Ob(C) such that F ⊗· is exact).
If F is the class of all flat objects, we shall call an F-(pre)cover a flat (pre)cover. The
right orthogonal class of the class of flat objects, that is, the class

F⊥ = {C ∈ Ob(C) : Ext1(F, C) = 0, ∀F ∈ F}

is called the class of cotorsion objects. For an arbitrary class F , the pair (F ,F⊥) is said
to be cogenerated by a set if there exists a subset X ⊆ F such that X⊥ = F⊥. A pair
(F ,F⊥) is a cotorsion theory if

⊥(F⊥) = {F ∈ F : Ext1(F, C) = 0, ∀C ∈ F⊥} = F .

Cotorsion theories were first introduced in [14] for abelian groups. In [11, Corollary
4.1.10] it is shown that for a Grothendieck category C, if the pair (F ,F⊥) is cogenerated
by a set, then it is a cotorsion pair whenever the class F is closed under direct sums,
extensions and well-ordered direct limits, and a generator of C is in F .

A cotorsion theory (F ,F⊥) is said to be hereditary if for each exact sequence

0 → F → F ′ → F ′′ → 0

with F ′, F ′′ ∈ F , F is also in F .
Now, in [5, Corollary 4.2], it is proved that each object of Qco(P 1

R) (with R any ring)
has a flat cover and a cotorsion envelope. This is done by showing that the pair (F ,F⊥)
composed by flat quasi-coherent sheaves and cotorsion quasi-coherent sheaves of Qco(P 1

R)
is cogenerated by a set. Moreover, by the comments above, since the family

O(n) ≡ R[x] ↪→ R[x, x−1] xn

←−− R[x−1], n ∈ Z,

is a family of (flat) generators for Qco(P 1
R), the pair (F ,F⊥) is a cotorsion theory. When

we consider quasi-coherent sheaves over the projective line on a field k, the cotorsion
theory is hereditary [9].

3. General results

The next two general results (Proposition 3.1 and Theorem 3.2) deal with a reduction of
the problem of computing the coGalois group of a quasi-coherent sheaf.

Proposition 3.1. Let (F , C) be a cotorsion theory in a Grothendieck category A such
that the generator of A is in F . If

F
ϕ ��

β

��

X

α

��
G

ψ �� C

is a pull-back diagram where α is a C-envelope and where ψ is an F-cover, then β is a
C-envelope. If (F , C) is hereditary, then ϕ is also an F-cover.
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Proof. Since the diagram is a pull-back and α is a monomorphism, β is also a
monomorphism. By one of the Wakamatsu lemmas [16, Lemma 2.1.2] coker(α) ∈ F ,
so coker(β) ∼= coker(α) ∈ F . Another Wakamatsu lemma [16, Lemma 2.1.1] shows that
ker(ψ) ∈ C. So G ∈ C and then β is a C-pre-envelope (in fact a special C-pre-envelope,
following [16, p. 29], that is, a monomorphism whose cokernel is in F). Suppose that
tβ = β for an endomorphism t : G → G. We show that t is an automorphism. We
take the morphism ψt : G → C. Since the diagram is also a push-out, there will exist a
morphism k : C → C such that kα = α and kψ = ψt. Since α is an envelope, k must
be an automorphism, so we have two covers kψ, ψ : G → C, and therefore t must be an
automorphism.

Now we show that ϕ is an F-cover. If (F , C) is hereditary, then since coker(β), G ∈ F ,
F ∈ F . We also have ker(ϕ) ∼= ker(ψ) ∈ C, so ϕ is an F-precover (in fact a special
F-precover). Suppose d : F → F is such that ϕd = ϕ. We show that d is an automor-
phism. Since β : F → G is an envelope, there will exist t : G → G such that tβ = βd. If
we consider the morphism ψt : G → C, we have

ψtβ = ψβd = αϕd = αϕ,

and, since the diagram is a push-out, we find r : C → C with rα = α and rψ = ψt. But
α is an envelope, so r is an automorphism. So the previous reasoning shows that t is also
an automorphism. But r : C → C, t : G → G (and id : X → X) being automorphisms
and using the pull-back property we conclude that d is also an automorphism. �

There exists a canonical morphism of groups between the coGalois groups involved in
the square of Proposition 3.1. For if we take f ∈ coGal(ψ) we can consider the morphism
fβ : F → G and, since the diagram is a pull-back, there will exist a unique h ∈ coGal(ϕ)
with fβ = βh. It is straightforward to see that this is a morphism of groups. Moreover,
one of the main results of [10] points out that the previous morphism is an epimorphism.
We summarize the previous comments in the next theorem.

Theorem 3.2. Let (F , C) be a hereditary cotorsion theory in a Grothendieck category
and let

F
ϕ ��

β

��

X

α

��
G

ψ �� C

be a pull-back diagram where α is a C-envelope and ψ is an F-cover. There is then a
naturally defined surjective group homomorphism

coGal(ψ) → coGal(ϕ), (3.1)

where the kernel is in a bijective correspondence with Hom(coker(β), ker(ϕ)).

Proof. The proof appears in [10, Theorem 1.6]. �
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From now on, k will denote an algebraically closed field.
Let M be an element of Qco(P 1

k ), and let α : M → C and ψ : G → C be a cotorsion
envelope of M and a flat cover of C, respectively. We consider the pull-back square of α

and ψ

F
ϕ ��

β

��

M

α

��
G

ψ �� C

By Proposition 3.1 ϕ is a flat cover and β is a cotorsion envelope, and thus Theorem 3.2
gives an epimorphism

coGal(ψ) → coGal(ϕ) → 1

(notice that the hereditary condition holds by the comments at the end of § 2). It follows
that, in order to study the coGalois group of a flat cover of an object, we should first
consider cotorsion objects. Moreover, since the class of cotorsion objects is closed under
extensions, the flat cover of a cotorsion module will also be a cotorsion, so we can use
the results given in [9] concerning the structure of the flat and cotorsion quasi-coherent
sheaves of Qco(P 1

k ) to compute the coGalois groups. After that we shall study the struc-
ture of the kernel of the previous epimorphism of groups. This will allow us to clarify the
relation between the two coGalois groups.

In § 4 we will relate the category Qco(P 1
R) and the category of R[x]-modules (respec-

tively, R[x−1]-modules) for any ring R. When A is a Dedekind domain, the epimor-
phism (3.1) is in fact an isomorphism [10, Theorem 2.3]. So, putting together these two
facts, we describe the coGalois group of a quasi-coherent sheaf and give a structure result
(Theorem 5.3) for those quasi-coherent sheaves of P 1(k) having certain topological prop-
erties. The next theorem summarizes the relevant information from [10] that we shall
use later.

Theorem 3.3. Consider the category of R-modules, with R a Dedekind domain, X

an R-module and the pull-back

F
ϕ ��

β

��

X

α

��
G

ψ �� C

where α is a cotorsion envelope and ψ a flat cover. Then the two coGalois groups coGal(ϕ)
and coGal(ψ) are isomorphic.

We also notice that if C is a cotorsion R-module (with R still a Dedekind domain)
and C = V ⊕ C ′, where V is the maximal torsion-free and divisible submodule of C,
the coGalois groups of the torsion-free covers of C ′ and C are isomorphic. For if ϕ :
V ⊕F ′ → V ⊕C ′ is the torsion-free cover of C, we conclude that ker(ϕ) = ker(ϕ′), where
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ϕ′ : F ′ → C ′ is the torsion-free cover of C ′, so

coGal(F → C) ∼= Hom(F, ker(ϕ))
∼= Hom(F ⊕ V, ker(ϕ) ⊕ 0) Hom(F ′, ker(ϕ′))
∼= coGal(F ′ → C ′).

Therefore, we have proved that, to compute coGalois groups over a Dedekind domain,
we can reduce them to cotorsion modules having no non-zero torsion-free and divisible
submodules.

4. Locally decomposable coGalois groups on P 1(k)

Henceforth, k will denote an algebraically closed and complete field, for example, the
field of complex numbers or the p-adic completion of an algebraic closure of the field of
p-adic numbers (see [13, § III.4 70]).

In order to study the coGalois group of a flat cover of a quasi-coherent sheaf M → P ←
N in Qco(P 1

R) (with R any ring), it is worthwhile to note that the problem can be reduced
in a local way by considering the modules on the extremes. This is possible because there
exists an adjoint pair of functors (H, D) in this situation. The existence of such functors
is proved in [9]. We now recall their definitions. The functor H : Qco(P 1

R) → R[x]-Mod
is defined by mapping a representation F ≡ A → C ← B, to the R[x]-module A,
and for a morphism (α, β, γ) between two representations, H(α, β, γ) = α. The right
adjoint functor of H is the functor D : R[x]-Mod → Qco(P 1

R) defined as follows: for any
L ∈ R[x]-Mod, D(L) is the representation L

i−→ S−1L
id←− S−1L (where S = {1, x, x2, . . . }

and i : L → S−1L is the natural morphism, induced by R[x] → S−1R[x]), and for an
R[x]-morphism α : L → M , D(α) = (α, S−1α, S−1α). Analogously, we may define the
corresponding pair of adjoint functors (H ′, D′) between the categories R[x−1]-Mod and
Qco(P 1

R). So we have the isomorphism

HomQco(P 1
R)(D(A), D(M)) ∼= HomR[x](A, M),

for any A, M ∈ R[x]-Mod. We also have the following easy result.

Lemma 4.1. Let M → P ← N be a quasi-coherent sheaf in Qco(P 1
R). If ϕ : F → M

is the flat cover of M (respectively, ϕ′ : F ′ → N is the flat cover of N), then D(ϕ)
(respectively, D′(ϕ′)) is the flat cover of D(M) (respectively, a flat cover of D′(N)).

Proof. This is a particular case of [9, Corollary 3.2] by taking as F the class of all
flat quasi-coherent sheaves and F1,F3 the class of flat R[x]-modules and R[x−1]-modules
respectively. �

So in some sense the previous result allows us to reduce the problem of computing
coGalois groups on Qco(P 1

R) to computing them in R[x]-Mod. In the case when the ring
R is a Dedekind domain, it is known (see [6, § 3]) that, for a flat cover ϕ : F → D of a
cotorsion R-module D, the corresponding coGalois group, coGal(ϕ), can be expressed as
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the product, indexed by all the non-zero primes of R, of coGalois groups of flat covers of
localizations on each prime, that is,

coGal(ϕ) ∼=
∏
0 �=p

coGal(ϕp),

where ϕp is a flat cover of a cotorsion module over Rp, for all 0 �= p ∈ Spec(R). Therefore,
to study the coGalois group of a flat cover (or equivalently in this situation a torsion-
free cover) of a k[x]-module, we need only consider the flat cover of a cotorsion module
M ∈ k[x]p-Mod, with 0 �= p ∈ Spec(k[x]).

Let us now define a topology on the coGalois group of the torsion-free cover of each
cotorsion k[x]p-module M . Let F be a class in an abelian category. If ϕ : F → M is an F-
cover with kernel L, there exists a canonical bijection between coGal(ϕ) and Hom(F, L),
that is, morphisms F → F ∈ Hom(F, F ) with image lying in L (see [7, § 4]), that maps
an element f ∈ coGal(ϕ) (so ϕ ◦ f = ϕ) to f − idF : F → L. We shall denote by ‘�’ the
group operation induced in Hom(F, L) by the usual composition of maps in coGal(ϕ), so,
given f∗, g∗ ∈ Hom(F, L) (that is, f = idF +f∗, g = idF +g∗), f∗ � g∗ = f∗+g∗+f∗ ◦ g∗.
Now we take the category of k[x]p-modules and the class F as the class of torsion-free
modules. With the previous notation, if we define a topology on Tp (the completion
of a free k[x]p-module with respect to the pp-adic topology) for every p ∈ Spec(k[x])),
this will give a topology on Hom(F, L) and hence on the coGalois group (since F, L are
torsion-free and cotorsion k[x]p-modules, by [4, Theorem], L ∼= Up and F ∼= Tp, with Up,
Tp the completions of free k[x]p-modules with respect to the pp-adic topology). So we
say O ⊆ Tp to be open if pnTp ⊆ O for some n � 1 and (O/pnTp) ∩ S is an open subset
of S, for every finite-dimensional vector subspace S (with the separated topology) of the
k-vector space Tp/pnTp.

Finally, we notice that, since each open subset O of Tp under this topology is open in
the p-adic topology, we may easily conclude from the argument of [7, p. 239] that the
topology is compatible with the group operation � and hence with the operation of the
coGalois group.

Remark. The previous topology allows us to make more precise the statement of
Theorem 3.2. So with the notation of that theorem we have a short exact sequence of
topological groups

1 → Hom(coker(β), ker(ϕ)) → coGal(ψ) → coGal(ϕ) → 1.

Example 4.2. Consider the k[x]-module k = k[x]/(x). The torsion-free cover is

ϕ : k[[x]] → k, s(x) → s(0).

The elements of the coGalois group G are the series 1 + a1x+ a2x
2 + · · · ∈ k[[x]], because

Hom(k[[x]], xk[[x]]) ∼= xHom(k[[x]], k[[x]]) ∼= xk[[x]].

A subset O ⊆ k[[x]] will be open if xnk[[x]] ⊆ O for some n � 1 and O = U + xnk[[x]],
where U is an open subset of kn with the separated topology, so in this case the topology
we define on k[[x]] is just the product topology (k[[x]] ∼= kN).
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It is also worth noting that in the previous example the dimension as a k ∼= k[x]/(x)-
vector space of the quotient k[[x]]/xk[[x]] is finite (equal to 1), so G/Gx (where Gx denotes
the open subgroup of G corresponding to xHom(k[[x]], xk[[x]])) is a locally compact topo-
logical vector space (see, for example, [15, Chapter 1, § 3.6]). This justifies Definition 4.4.

Lemma 4.3. The subset p Hom(F, L) ⊆ Hom(F, L), 0 �= p ∈ Spec(k[x]), is an open
normal subgroup of Hom(F, L) with the group operation induced by coGal(ϕ). Moreover,
the quotient group

Hom(F, L)/p Hom(F, L)

is a vector space over the field k[x]/p.

Proof. Let us consider f∗, g∗ ∈ Hom(F, L). Then f∗ � g∗ = f∗ + g∗ + f∗ ◦ g∗. Since
L ⊆ pF (see [2, Theorem 2.1]), it follows that the group operation induced in the quotient
Hom(F, L)/p Hom(F, L) is merely the usual addition of maps, so it is a k[x]/p-vector
space. �

Definition 4.4. Let G be the coGalois group of a torsion-free cover of a k[x]p-module
(0 �= p ∈ Spec(k[x])), and let Gp be the open subgroup of G corresponding to the open
subgroup p Hom(F, L). Then G is said to be locally compact modulo Gp if G/Gp is a
locally compact topological vector space over k ∼= k[x]/p.

Remark. The previous definition is motivated by the situation in Zp. In this case it is
shown in [11, Corollary 5.6.4] that the coGalois group G is locally compact (equivalently
compact) if, and only if, G/Gp is finite. The finiteness is replaced in our case by finite
dimensionality. But we cannot expect even local compactness for G in our case (note that
in Example 4.2 k[[x]] is neither compact nor locally compact with the product topology).

We now give a complete classification of the cotorsion k[x]-modules having coGalois
groups that are locally compact modulo Gp. By Theorem 3.3 and the comment after it,
we need only to consider cotorsion k[x]p-modules having no non-zero torsion-free and
divisible submodules, with p ∈ Spec(k[x]). We recall that an R-module (R is a Dedekind
domain) is said to be reduced if it has no non-zero divisible submodules.

Theorem 4.5. Let C be a cotorsion k[x]p-module (0 �= p ∈ Spec(k[x])) with no non-
zero torsion-free and divisible submodules, let ϕ : F → C be a flat cover of C with kernel
L, and let G be its associated coGalois group. Then G is locally compact modulo Gp if,
and only if,

C ∼= E(k[x]/p)m ⊕ k[x]
pk1

⊕ · · · ⊕ k[x]
pks

⊕ k̂[x]
n

p ,

where E(·) denotes the injective envelope.

Proof.

Case 1 (⇒). A cotorsion k[x]p-module as before has the form C ∼= E(k[x]/p)(X) ⊕D,
where D is a reduced and cotorsion k[x]p-module (see [12, § 54(I)]). The flat cover will
be F = S−1T ⊕ U (with S = k[x] − {0}), where T and U are torsion-free and cotorsion
k[x]p-modules (so then are completions of free k[x]p modules with respect to the pp-adic
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topology; see [4, Theorem]) and the kernel L = T ⊕V (with V a torsion-free and cotorsion
k[x]p-module as before), where

0 → V → U → D → 0

and
0 → T → S−1T → E(k[x]/p)(X) → 0

are the torsion-free covers of D and E(k[x]/p)(X), respectively (the latter is proved in [6,
Theorem 2.1]). By hypothesis, Hom(F, L)/p Hom(F, L) is finite dimensional. But we have
the isomorphisms

Hom(F, L)
Hom(F, pL)

(∗)∼= Hom
(

F,
L

pL

)
∼= Hom

(
F

pF
,

L

pL

)
,

where the isomorphism (∗) follows because 0 → pL → L → L/pL → 0 is a flat cover by
[16, Proposition 4.1.6] and pL is a cotorsion module by a Wakamatsu lemma [16, Lemma
2.1.1]. We deduce that F/pF and L/pL are finite-dimensional k[x]/p-vector spaces, and
hence T/pT, U/pU and V/pV are also finite-dimensional k[x]/p-vector spaces. In the case
T/pT this says that X must be finite (namely |X| = m). Suppose that U = k̂[x]

n

p . By the
structure theorem for modules over a principal ideal domain (in this case k̂[x]p) we have

D ∼=
k[x]
pk1

⊕ · · · ⊕ k[x]
pks

⊕ k̂[x]
n−s

p ,

so L = k̂[x]
m

p ⊕ k̂[x]
s

p, F = S−1k̂[x]
m

p ⊕ k̂[x]
n

p and we conclude that C is as stated.

Case 2 (⇐). We must show that dimk Hom(F, L)/p Hom(F, L) < ∞, k ∼= k[x]/p.
But Hom(F, L) ∼= k̂[x]

r

p for certain r ∈ N so

Hom(F, L)
p Hom(F, L)

∼=
k̂[x]

r

p

pk̂[x]
r

p

∼=
(

k[x]
p

)r

,

which is obviously finite dimensional.

�

Remark. The previous theorem, together with Theorem 3.3, allows us to give an
explicit description of the elements of the coGalois group locally compact modulo Gp,
0 �= p ∈ Spec(k[x]), similar to that obtained in [6, § 4].

We apply Theorem 4.5 in order to find a family of quasi-coherent sheaves of Qco(P 1
k )

having coGalois groups that are locally compact modulo Gp.

Proposition 4.6. The coGalois group G of the torsion-free cover of a quasi-coherent
sheaf of the form

D(E(k[x]/p)m) ⊕ D(k[x]/pk1) ⊕ · · · ⊕ D(k[x]/pks) ⊕ D(k̂[x]
l

p)
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with p ∈ Spec(k[x]), or

D′(E(k[x−1]/q)b) ⊕ D′(k[x−1]/qt1) ⊕ · · · ⊕ D′(k[x−1]/qtr ) ⊕ D′(k̂[x−1]
m

q )

with q ∈ Spec(k[x−1]), is locally compact modulo Gp or modulo Gq, respectively.

Proof. By Lemma 4.1 (and comments preceding it), Theorem 4.5 and observing that

D(E(k[x]/p)m) ≡ E(k[x]/p)m → E(k[x]/p)m ← E(k[x]/p)m,

D(k[x]/pk) ≡ k[x]/pk → k[x]/pk ← k[x]/pk

and

D(k̂[x]
l

p) ≡ k̂[x]
l

p → k̂[x]
l

p ← k̂[x]
l

p

whenever p �= (x) and if p = (x), we obtain

D(E(k[x]/(x))m) ≡ E(k[x]/(x))m → 0 ← 0,

D(k[x]/(x)k) ≡ k[x]/(x)k → 0 ← 0

and

D(k̂[x]
l

(x)) ≡ k[[x]]l → k[x−1, x]]l ← k[x−1, x]]l,

where k[x−1, x]] denotes the ring of formal power series in x with a finite number of
powers in x−1). An analogous result holds for the functor D′ with the corresponding
k[x−1]-modules. �

5. The main theorem and its consequences

We shall now find families of quasi-coherent sheaves over P 1(k) whose coGalois groups
decompose as the product of locally compact coGalois groups (modulo the respective
subgroups). We do this by studying cotorsion envelopes. First we note the following
remarkable fact.

Lemma 5.1. There are no non-zero torsion-free and cotorsion quasi-coherent sheaves
over P 1(k), C ≡ C1 → C ← C2 with C1 a reduced, torsion-free and cotorsion k[x](x)-
module, and C2 a reduced, torsion-free and cotorsion k[x−1](x−1)-module.

Proof. Suppose there exists such a non-zero representation. Then, by [16, Theo-
rem 4.1.15], C1 (respectively, C2) will be the completion of a free k[x](x)-module (respec-
tively, the completion of a free k[x−1](x−1)-module), so, following the usual notation for
such a completion, we denote C1 by U(x) and C2 by V(x−1). Now, by [9, Theorem 4.7],
C = D(A)⊕D′(B), where A and B are direct summands of U(x) and V(x−1), respectively.
Such direct summands are again of the form M(x) and N(x−1) [16, Lemma 4.1.11], so
we say that C1 = M(x) ⊕ T−1N(x−1). But T−1N(x−1) is a divisible k[x, x−1]-module and
hence a divisible k[x]-module, and, since C1 is reduced, it must be equal to 0. Now, N(x−1)

is torsion free, so it must be 0. Analogously, we may deduce that A is also 0, which is a
contradiction. �
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Theorem 5.2. Let M be a quasi-coherent sheaf over P 1(k) and let ϕ : G → C(M) be
the torsion-free cover of the cotorsion envelope of M. Then

coGal(ϕ) ∼=
∏

(x) �=p∈Spec(k[x])

coGal(ϕp).

Proof. Let C(M) ≡ C1 → C ← C2. By an easy modification of the argument pre-
ceding § 4, we may suppose that C(M) does not contain a torsion-free and divisible
quasi-coherent subsheaf. By [9, Lemma 5.1], C1 and C2 are cotorsion k[x] and k[x−1]
modules, respectively, so

C1 =
⊕

p∈Spec(k[x])

E(k[x]/p)(Xp) ⊕
∏

(x) �=p∈Spec(k[x])

Lp ⊕ L(x),

and

C2 =
⊕

q∈Spec(k[x−1])

E(k[x−1]/q)(Yq) ⊕
∏

(x−1) �=q∈Spec(k[x−1])

Uq ⊕ U(x−1),

with Lp (respectively, Uq) cotorsion and reduced k[x]-modules (respectively, k[x−1]-
modules), 0 �= p ∈ Spec(k[x]) (respectively, 0 �= q ∈ Spec(k[x−1])) [12, § 54(I)]. From the
arguments of the proof of Proposition 4.6 and since S−1C1 ∼= C ∼= T−1C2, it follows that
we may restrict to primes of Spec(k[x]) whenever p �= (x), so

C(M) ≡
⊕

(x) �=p∈Spec(k[x])

D(E(k[x]/p)(Xp)) ⊕ D(E(k[x]/(x))(S))

⊕ D′(E(k[x−1]/(x−1))(Z)) ⊕ D

( ∏
(x) �=p∈Spec(k[x])

Lp

)
⊕ (L(x) → W ← U(x−1)),

with L(x), U(x−1) reduced and cotorsion k[x](x) and k[x](x−1) modules, respectively, but
this representation must be 0 because its flat cover (torsion-free cover) is equal to 0 by
Lemma 5.1. Therefore, we get an expression for C(M) in terms of the functors D and
D′ (observe that both functors D and D′ preserve direct sums), which, by Lemma 4.1,
allows us to compute the torsion-free cover ϕ : G → C(M) in terms of modules (by
using [6, § 3]). So

G ≡ D

(
J−1

∏
(x) �=p∈Spec(k[x])

Vp

)
⊕ D(J−1V(x)) ⊕ D′(H−1U(x−1)) ⊕

∏
(x) �=p∈Spec(k[x])

D(Up)

(where J = k[x] − {0}, H = k[x−1] − {0}) and its kernel K = ker(ϕ) is

K ≡ D

( ∏
(x) �=p∈Spec(k[x])

Vp

)
⊕ D(V(x)) ⊕ D′(U(x−1)) ⊕

∏
(x) �=p∈Spec(k[x])

D(Bp),

where Vp, Up and Bp are torsion-free and cotorsion k[x]p-modules, 0 �= p ∈ Spec(k[x])
and U(x−1) is a torsion-free and cotorsion k[x](x−1)-module.
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To compute the coGalois group of ϕ : G → C(M) we use the group isomorphism

coGal(ϕ) ∼= HomQco(P 1(k))(G,K).

Let us compute it for the first direct summand of G with each summand of K:

(i) HomQco(P 1(k))

(
D

(
J−1

∏
(x) �=p∈Spec(k[x])

Vp

)
, D

( ∏
(x) �=p∈Spec(k[x])

Vp

)
⊕ D(V(x))

)

∼= Homk[x]

(
J−1

∏
(x) �=p∈Spec(k[x])

Vp,
∏

(x) �=p∈Spec(k[x])

Vp ⊕ V(x)

)
= 0,

because
J−1

∏
(x) �=p∈Spec(k[x])

Vp

is a divisible k[x]-module and ∏
(x) �=p∈Spec(k[x])

Vp ⊕ V(x)

is a reduced k[x]-module;

(ii) HomQco(P 1(k))

(
D

(
J−1

∏
(x) �=p∈Spec(k[x])

Vp

)
, D′(U(x−1))

)

∼= Homk[x−1]

(
J−1

∏
(x) �=p∈Spec(k[x])

Vp, U(x−1)

)
= 0,

because
J−1

∏
(x) �=p∈Spec(k[x])

Vp

is a divisible k[x−1]-module and U(x−1) is a reduced k[x−1]-module;

(iii) HomQco(P 1(k))

(
D

(
J−1

∏
(x) �=p∈Spec(k[x])

Vp

)
,

∏
(x) �=p∈Spec(k[x])

D(Bp)
)

∼= Homk[x]

(
J−1

∏
(x) �=p∈Spec(k[x])

Vp,
∏

(x) �=p∈Spec(k[x])

Bp

)
= 0,

because
J−1

∏
(x)

�= p ∈ Spec(k[x])Vp

is a divisible k[x]-module and ∏
(x) �=p∈Spec(k[x])

Bp

is a reduced k[x]-module.
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Similar arguments show that the only non-zero summands in the previous decomposition
are

HomQco(P 1(k))(G,K) ∼= Homk[x]

( ∏
(x) �=p∈Spec(k[x])

Up,
∏

(x) �=p∈Spec(k[x])

Vp

)

⊕ Homk[x]

( ∏
(x) �=p∈Spec(k[x])

Up,
∏

(x) �=p∈Spec(k[x])

Bp

)
.

Now, applying [16, Lemma 4.1.8], it follows that

HomQco(P 1(k))(G,K) ∼=
∏

(x) �=p∈Spec(k[x])

Homk[x](Up, Vp) ⊕ Homk[x](Up, Bp).

Since Homk[x](J−1Vp, Vp) = 0 and Homk[x](J−1Vp, Bp) = 0, we can write this as∏
(x) �=p∈Spec(k[x])

Homk[x](J−1Vp ⊕ Up, Vp ⊕ Bp),

which, in turn, is isomorphic to∏
(x) �=p∈Spec(k[x])

HomQco(P 1(k))(D(J−1Vp) ⊕ D(Up), D(Vp) ⊕ D(Bp)), (5.1)

that is, the corresponding group to the torsion-free cover of the quasi-coherent sheaf
D(E(k[x]/p)(Xp)) ⊕ D(Lp), with (x) �= p ∈ Spec(k[x]). �

Now we prove the main result of the paper.

Theorem 5.3. If M is a quasi-coherent sheaf over P 1(k) and C(M) is its cotorsion
envelope, then the following assertions are equivalent:

(i) if ψ : G → C(M) is a torsion-free cover, then

coGal(ψ) ∼=
∏

(x) �=p∈Spec(k[x])

Gp,

where Gp is a locally compact modulo Gp
p coGalois group, p ∈ Spec(k[x]);

(ii) the cotorsion envelope C(M) is a finite product of quasi-coherent sheaves of the
form described in Proposition 4.6.

Moreover, if (i) (or equivalently, (ii)) holds, the coGalois group of a torsion-free cover of
M is a product indexed by Spec(k[x]) of groups Hp that are locally compact modulo Hp

p ,
p ∈ Spec(k[x]).

Proof. (i) ⇒ (ii). This is a consequence of the decomposition (5.1) in the preceding
proof, applying the argument of the proof of the necessary condition of Theorem 4.5 to
the different homomorphism groups indexed on each p ∈ Spec(k[x]), p �= (x).
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(ii) ⇒ (i). This is given by Proposition 4.6 and Theorem 5.2, noting that the functor D

(respectively, D′) preserves products.

Finally, we prove the last claim. We have the push-out–pull-back square

F
ϕ ��

β

��

M

α

��
G

ψ �� C

and we consider the sequence of topological groups,

1 → Hom(coker(β), ker(ϕ)) → coGal(ψ) → coGal(ϕ) → 1.

We shall show that Hom(coker(β), ker(ϕ)) ∼=
∏

p Hom(Mp, Np), for certain completions
Mp and Np of free k[x]p-modules with respect to the pp-adic topology, p ∈ Spec(k[x]). If
so, we will have

coGal(ϕ) ∼=
∏
p

Gp

Hom(Mp, Np)
,

so the previous sequence is the product of sequences

1 → Hom(Mp, Np) → Gp → Bp → 1.

It is then straightforward to check that, if Gp is locally compact modulo Gp
p, then the

quotient Bp will likewise be locally compact. So let us consider Hom(coker(β), ker(ϕ)).
By [16, Lemma 2.1.2], coker(β) ≡ G1/F1 → G/F ← G2/F2 is torsion free, and, by [9,
Lemma 5.1] and [16, Proposition 1.2.2], we conclude that G1 ∼= C(F1) ⊕ K (and an
analogous argument for G2), so G1/F1 ∼= C(F1)/F1 ⊕ K. But C(F1)/F1 is divisible and
K is torsion free and cotorsion, so is then a product of Mp, p ∈ Spec(k[x]), and the
same applies for G2/F2 = C(F2)/F2 ⊕ K ′, with K ′ a product of Vq, q ∈ Spec(k[x−1])
(see [4, Theorem]). Since S−1Mp

∼= Mp
∼= T−1Mp whenever p �= (x), by Lemma 5.1

we see that the representation M(x) → W ← V(x−1) cannot appear in the decomposition.
This means that coker(β) is a direct sum of a quasi-coherent sheaf that is locally divisible
with the cotorsion and torsion-free quasi-coherent sheaf D(

∏
(x) �=p∈Spec(k[x]) Mp). Finally,

since ker(ϕ) is cotorsion, torsion-free and reduced, we see that [9, Theorem 4.7]

ker(ϕ) = D

( ∏
p∈Spec(k[x])

Np

)
⊕ D′

( ∏
q∈Spec(k[x−1])

Nq

)

with Np, Nq completions of free k[x]p and k[x−1]q modules with respect to the pp and
qq-adic topologies, respectively:

HomQco(P 1(k))(coker(β), ker(ϕ))

∼= HomQco(P 1(k))

(
D

( ∏
(x) �=p∈Spec(k[x])

Mp

)
, D

( ∏
p∈Spec(k[x])

Np

)

⊕ D′
( ∏

q∈Spec(k[x−1])

Nq

))
.
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An argument analogous to the proof of Theorem 5.2 allows us to write

HomQco(P 1(k))(coker(β), ker(ϕ)) ∼=
∏

(x) �=p∈Spec(k[x])

Homk[x](Mp, Np).

�

Definition 5.4. Let M be a quasi-coherent sheaf such that the associated coGalois
group is the product of locally compact groups Gp modulo Gp

p, p ∈ Spec(k[x]). We call
such a sheaf locally coGalois decomposable. If, moreover, these groups are in fact coGalois
groups, we add ‘by coGalois groups’.

Now we shall deduce some homological implications for quasi-coherent sheaves having
the property of local compactness. To introduce these results we recall that a torsion-
free and cotorsion k[x]-module Tp, p ∈ Spec(k[x]) is defined to be of finite rank if the
dimension of the k[x]/p-vector space Tp/pTp is finite. More generally, by a cotorsion
k[x]-module of finite rank we mean a k[x]-module as in Theorem 4.5 (and the analogous
definition for quasi-coherent sheaves made from the functor D). From Theorem 5.3 we
immediately get the following corollary.

Corollary 5.5. Let M be a quasi-coherent sheaf over P 1(k). Then the coGalois group
of C(M) is locally coGalois decomposable by coGalois groups if, and only if, C(M) has a
minimal flat resolution 0 → F1 → F0 → C(M) → 0 such that the rank of each component
in F0,F1 is finite.

Corollary 5.6. The coGalois group of a quasi-coherent sheaf M of P 1(k) is locally
coGalois decomposable by coGalois groups if, and only if, M has a minimal cotorsion
resolution 0 → M → C0 → C1 → 0 such that the rank of each component in C0 and C1

is finite.

Proof.

Case 1 (⇒). Suppose that the rank of C0 is not finite. Following the argument of the
proof of Theorem 5.2, and by [9, Corollary 3.4],

C0 ≡
⊕

(x) �=p∈Spec(k[x])

D(E(k[x]/p)(Xp)) ⊕ D(E(k[x]/(x))(S))

⊕ D′(E(k[x−1]/(x−1))(Z)) ⊕
∏

(x) �=p∈Spec(k[x])

D(Lp),

with some Xp (or S or Z) infinite, p ∈ Spec(k[x]). But then the coGalois group associated
with M cannot have the property of Theorem 5.3. So the rank of C0 is finite. This
automatically implies that the rank of C1 is also finite.

Case 2 (⇐). If C0 is of finite rank, it follows that it is of the form of Proposition 4.6,
so this result, together with Theorem 5.3, means that the coGalois group is as desired.

�
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Now we will see that locally coGalois decomposable quasi-coherent sheaves are gener-
alizations of finitely generated and finitely cogenerated quasi-coherent sheaves.

Corollary 5.7. Every finitely generated quasi-coherent sheaf on P 1(k) is locally coGa-
lois decomposable.

Proof. Let M ≡ M1 → P ← M2 be a finitely generated quasi-coherent sheaf on
P 1(k). Then there exists an epimorphism

⊕t
i=1 O(ni) → M → 0 (where

⊕t
i=1 O(ni)

is a finite direct sum of twists of the structure sheaf). So M1 (and P, M2) is a finitely
generated module of the form

M1 = k[x]/pr1
1 ⊕ k[x]/pr2

2 ⊕ · · · ⊕ k[x]/prs
s ⊕ k[x]n,

and a similar kind of decomposition occurs for M2. But, since

k[x]/(x − ui)ri ∼= k[x−1]/(x−1 − u−1
i )ri

whenever ui �= 0, it follows that

M ≡ D(k[x]/pr1
1 ) ⊕ D(k[x]/pr2

2 ) ⊕ · · · ⊕ D(k[x]/prs
s ) ⊕ k[x]n → k[x−1, x]n ← k[x−1]n.

Now the cotorsion envelope of k[x]n → k[x−1, x]n ← k[x−1]n is

D

( ∏
u

k̂[x]
n

(x−u)

)
⊕ D′(k̂[x−1]

n

(x−1))

(this is a consequence of [9, Corollary 3.4] and [16, Corollary 4.2.4]), so it is of the form
of Proposition 4.6. �

As a consequence of Corollary 5.7 we supply a wide family of quasi-coherent sheaves
with the property of Theorem 5.3.

Corollary 5.8. Every vector bundle of P 1(k) is locally coGalois decomposable.

Locally coGalois decomposable quasi-coherent sheaves also generalize finitely cogener-
ated sheaves of Qco(P 1(k)).

Corollary 5.9. Let M be a finitely cogenerated quasi-coherent sheaf of P 1(k). Then
the coGalois group associated with M has the property of Theorem 5.3 (i).

Proof. First of all, if M is finitely cogenerated it is locally finitely cogenerated, because
injective envelopes are computed componentwise. But a finitely cogenerated k[x]-module
M1 is a finite direct sum of cocyclic k[x]-submodules, that is, of the form k[x]/pr and
E(k[x]/p) [12, Theorem 25.1]. So then M ≡ M1 → P ← M2 is a cotorsion module of the
form of Proposition 4.6, and therefore the corresponding coGalois group decomposes as
the product of locally compact groups modulo Gp

p, p ∈ Spec(k[x]). �
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