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Geometric Euler systems for locally isotropic motives

Tom Weston

Abstract

In this paper, we construct a theory of geometric Euler systems, complementary to the
arithmetic theory of Rubin, Kato and Perrin-Riou. We show that geometric Euler systems
can be used to prove the finiteness of certain Galois representations of weight zero and we
discuss a conjectural framework for the existence of geometric Euler systems for motivic
Galois representations. We give applications to adjoint Selmer groups of certain classical
and Drinfeld modular forms.

Introduction

Let T be a Galois stable lattice in an irreducible �-adic Galois representation of a number field F .
When T is motivic of non-negative weight, the conjectures of Bloch and Kato [BK90] on
L-functions predict that the Selmer group S(F, T ⊗ Q�/Z�) is finite. In this paper we give a
geometric interpretation of this conjectural finiteness in the case that T is locally isotropic of
weight zero. (We say that T is locally isotropic if the set of elements of Gal(F̄ /F ) which fix some
non-zero vector of T contains an open set.) This link with geometry is provided by a theory of
geometric Euler systems: we formulate a conjecture on the existence of geometric Euler systems in
motivic cohomology and show that the existence of a geometric Euler system (for the Cartier dual
of T ) implies the finiteness of S(F, T ⊗ Q�/Z�) precisely when T is locally isotropic.

As an application we prove the following result.

Theorem 1. Let f be a classical newform of weight k � 2, level N and arbitrary character. Let K
be a finite extension of Q containing the Fourier coefficients of f and fix a prime λ of K dividing the
rational prime �. Let Tf,λ be a Galois stable lattice in the λ-adic representation ρf,λ associated to f
by Deligne. Assume that f is not of CM-type, that f is special or supercuspidal at all p dividing N
and that � does not divide N . Then S(Q, End0 Tf,λ ⊗ Q�/Z�) is finite, where End0 Tf,λ is the space
of trace-zero endomorphisms of Tf,λ.

We remark that a much more precise version of Theorem 1 (giving the order of the Selmer group
rather than merely its finiteness) has been obtained in [DFG] by Diamond et al. They use different
methods which do not require our assumptions at p dividing N ; instead they require that � > k and
that the residual representation ρ̄f,λ is absolutely irreducible when restricted to Gal(Q̄/E), with
E the quadratic extension of Q generated by the square root of (−1)(�−1)/2�. Recently, in [Kis02],
Kisin has also obtained results similar to ours in some cases with � dividing N .

We note the following immediate corollary of our theorem.

Corollary 1. Let f be a cuspidal Hecke eigenform of weight k � 2 and level 1 and let K be a
finite extension of Q containing the Fourier coefficients of f . Then S(Q, End0 Tf,λ ⊗Q�/Z�) is finite
for all primes λ of K.
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Our methods also work over function fields of characteristic different from �. In particular, we
have the following result; see § 5.3 for precise definitions.

Theorem 2. Let F be a finite field of characteristic different from �. Let π be a non-CM automorphic
representation of GL(2) of the adeles of F(t) of weight 2, squarefree level and trivial character. Let
K be a finite extension of Q� over which we can define the �-adic representation ρπ associated to π
and let Tπ be a Galois stable lattice in the representation space of ρπ. Then S(F(t), End0 Tπ⊗Q�/Z�)
is finite.

Before we discuss the contents of this paper in more detail, we review some related notions.
Let T be a finite free Z�-module with a continuous action of the absolute Galois group of a number
field F . The Selmer group S(F, T ⊗ Q�/Z�) of T is the subgroup of the Galois cohomology group
H1(F, T ⊗ Q�/Z�) of elements satisfying certain local conditions at every place of F . A standard
approach to bounding such a Selmer group is Kolyvagin’s method of arithmetic Euler systems.
Roughly speaking, an arithmetic Euler system for the Cartier dual T ∗ of T consists of a twisted
norm compatible collection of classes cF ′ ∈ H1(F ′, T ∗) for a family of abelian extensions F ′/F .
These classes descend via Kolyvagin’s derivative construction to classes in H1(F, T ∗/�nT ∗) for
arbitrarily large n. These derived classes have tightly controlled ramification and in some cases
one can use them together with cohomological bounds and duality theorems to bound S(F, T ⊗
Q�/Z�). This mechanism is rather delicate; it has been worked out independently by Kato [Kat99],
Perrin-Riou [PR98] and Rubin [Rub00]. When T corresponds to a motive of strictly positive weight
there is also a conjectural framework connecting the existence of arithmetic Euler systems to p-adic
L-functions; see [Kat93] or [Rub00, ch. 9] for details.

Kolyvagin’s methods were applied in a different setting by Flach [Fla92, Fla95]. He used a
geometric construction to directly exhibit classes in H1(Q, End0 T ∗

f ) for f a newform of weight 2
and trivial character. He showed that these classes behave like the derived classes of an arithmetic
Euler system and thus obtained a bound on the exponent of S(Q, T ⊗ Q�/Z�). These results were
generalized to certain higher weight modular forms in [Wes02a].

In this paper, we fit Flach’s work into a general setting of geometric Euler systems. This geometric
theory is strikingly different from the arithmetic theory. The fundamental difference is that the
existence of useful cohomology classes in H1(F, T ∗) (rather than in H1(F, T ∗/�nT ∗) for large n)
in the geometric case forces T to be locally isotropic. The arithmetic theory is poorly suited to
locally isotropic representations (see the discussion after Proposition 2.3), so that we can regard the
geometric theory as filling in this gap in the arithmetic theory. In addition, the basic mechanism in
the geometric case is vastly simpler than in the arithmetic case and requires no additional hypotheses
beyond the assumption of local isotropy. Finally, we expect that geometric Euler systems on motivic
representations should come from fairly simple collections of geometric data on the corresponding
motive. This allows for a straightforward and approachable set of conjectures. On the other hand,
at this point the geometric theory only allows one to bound the exponent, rather than the order,
of the Selmer group.

We now review the contents of the paper. As we have said, we expect that geometric Euler
systems can be used to prove the finiteness of S(F, T ⊗ Q�/Z�) when T is locally isotropic. We
prove this in § 2. (In fact, our methods yield a bound on the exponent of the Selmer group, but we
have not attempted to make it explicit.) One of the key ingredients is the cohomological bound of
Proposition 2.1, which is a generalization of a result of Rubin. To make the ideas behind this result
more clear we present them in a general setting in § 1.

The remainder of the paper is concerned with the case where T is motivic. We review results
on motivic cohomology and regulator maps in § 3. We state our conjectures and their consequences
for the existence of geometric Euler systems in § 4. In § 5 we reconsider the case of adjoint motives
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and we construct geometric Euler systems for adjoint representations of modular forms as described
above.

Notation
Throughout this paper we fix a prime � and a finite extension K of Q�. We write O for the ring of
integers of K and λ for a fixed uniformizer. By the exponent of an O-module T we mean the least
n � 0 such that λnT = 0. If T is a free O-module, we write TK (respectively Tn, respectively T∞) for
T ⊗O K (respectively T/λnT , respectively T ⊗O K/O). All group actions on such T are assumed to
be continuous and O-linear; in particular, the isomorphism Tn

∼= T∞[λn] respects any such action.
If T has an action of the absolute Galois group of a field (of characteristic different from �) we let
T (i) denote the i-fold Tate twist of T .

By a local field (respectively global field) we mean a finite extension of Qp or Fp((t)) (respectively
Q or Fp(t)) for some prime p. In the function field case we always assume that p �= �. For a place
v of a global field F , we write Fr(v) for a choice of geometric Frobenius element in the absolute
Galois group of F .

1. Cohomological bounds

1.1 Restricted cohomology
Let ρ : G → AutO T be a continuous representation of a topological group G on a free O-module T
of finite rank. We say that g ∈ G is ρ-isotropic if dimK T g=1

K > 0 (or equivalently, if dimK(g−1)TK <
dimK TK). If Γ is any subset of G, we define the Γ-restricted cohomology group

H1
Γ(G,T ) = ker

(
H1(G,T ) →

∏
g∈Γ

H1(〈g〉, T )
)

where 〈g〉 denotes the subgroup of G generated by g. (Here and throughout the paper, all group
cohomology is defined with continuous cocycles.) Note that for a surjection G̃ � G with kernel Γ,
we have H1

Γ(G̃, T ) = H1(G,T ). In the next section we show that we can obtain approximations to
this fact when restricting with respect to certain non-trivial cosets of Γ.

1.2 Cohomology of O-modules
By a projective group G we always mean an inverse system {Gn}n�1 of finite groups. We write G∞
for the inverse limit of Gn; we regard G∞ as a topological group with the inverse limit topology.
As an example, if T is a free O-module of finite rank, we define a projective group GL(T ) by
setting GL(T )n = AutO Tn. A representation ρ : G → GL(T ) of a projective group G on T is
simply an inverse system {ρn : Gn → GL(T )n}n�1 of group homomorphisms. We often simply write
ρ : G∞ → AutO T for the inverse limit of ρn; we say that ρ is irreducible if G∞ acts irreducibly on
TK via ρ.

Proposition 1.1. Let 1 → Γ → G̃ → G → 1 be an exact sequence of projective groups and let
ρ : G → GL(T ) be an irreducible representation. Let γ = {γn} ∈ G∞ be ρ-isotropic and for each
n fix γ̃n ∈ G̃n mapping to γn. Assume that the exponents of the groups H1(Gn, Tn) are bounded
independent of n. Then the exponents of the groups H1

γ̃nΓn
(G̃n, Tn) are bounded independent of n.

Proof. Let c : G̃n → Tn be a cocycle in H1
γ̃nΓn

(G̃n, Tn). By definition,

c(γ̃ng) ∈ (γ̃ng − 1)Tn = (γn − 1)Tn (1.1)

for any g ∈ Γn. Taking g = 1 shows that c(γ̃n) ∈ (γn − 1)Tn. Using this and expanding out (1.1) via
the cocycle relation, we find that γnc(g) ∈ (γn−1)Tn. It follows that c(g) ∈ (γn−1)Tn for any g ∈ Γn.
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The restriction of c to Γn is a Gn-equivariant homomorphism, so that c(Γn) generates a Gn-stable
submodule of (γn − 1)Tn. Since γ is ρ-isotropic it follows from Lemma 1.2 below with T ′ = (γ− 1)T
that there is an m, independent of n and c, such that λmc(Γn) = 0. Therefore, λmH1

γ̃nΓn
(G̃n, Tn)

lies in H1(Gn, Tn) via inflation and the proposition now follows from the boundedness of the latter
groups.

Lemma 1.2. Let ρ : G → GL(T ) be irreducible and let T ′ be an O-submodule of T with T ′
K �= TK .

For any n, let Mn denote the maximal Gn-stable submodule of Tn contained in the image of T ′.
Then the exponent of Mn is bounded independent of n.

Proof. For t ∈ T , we let v(t) be the least integer n such that t ∈ λnT . We claim that to prove the
lemma it suffices to prove that there exists an m � 0 such that

O[G∞]t ⊇ λv(t)+mT (1.2)

for all t ∈ T . Indeed, assuming this, let t ∈ T map to Mn. Since Mn is Gn-stable, O[G∞]t must
also map to Mn; by (1.2) and the definition of Mn, we conclude that λv(t)+mT lies in T ′ + λnT .
On the other hand, by hypothesis T ′ does not contain λaT for any a. It follows that we must have
v(t) + m � n; thus v(t) � n − m, so that λm kills Mn for any n.

By scaling, to prove (1.2) we may assume that v(t) = 0, so that t ∈ T − λT . Define

Bn = {t ∈ T − λT ;O[G∞]t ⊇ λnT}.
We have T − λT =

⋃
n�0 Bn since G∞ acts irreducibly on TK . We show that each Bn is open; the

claim then follows from the compactness of T − λT . To show that Bn is open, we show that given
t ∈ Bn, any t′ ∈ t + λn+1T lies in Bn as well. Indeed, since t ∈ Bn and t′ − t ∈ λn+1T , there is
σ ∈ O[G∞] such that λσt = t′− t. Thus (1+λσ)t = t′. As λ is topologically nilpotent we can choose
τ ∈ O[G∞] with τ(1 + λσ) arbitrarily close to one. Since O[G∞]t′ contains a neighborhood of the
origin in T , we can in fact choose τ so that (τ(1 + λσ)− 1)t ∈ O[G∞]t′. Thus τt′ − t ∈ O[G∞]t′, so
that t ∈ O[G∞]t′. It follows that t′ ∈ Bn, as claimed.

1.3 Locally isotropic representations
Let ρ : G → GL(T ) be an irreducible representation of a projective group G on a free O-module T .
We say that g, g′ ∈ G∞ are congruent at level n if g and g′ map to the same element of Gn.
A ρ-isotropic g ∈ G∞ is said to be minimal if there is an m such that dimK T g=1

K = dimK T g′=1
K for

all g′ congruent to g at level m. We say that ρ is locally isotropic if G has a minimal ρ-isotropic
element.

The key property of minimal elements is contained in the next lemma. Note that T g=1 is an
O-module direct summand of T for any g ∈ G∞ since the action of g on T is O-linear.

Lemma 1.3. Let g ∈ G∞ be ρ-isotropic. Then the cokernel of the map

T g′=1 → T g′=1
n = T g=1

n

is bounded independent of n and g′ congruent to g at level n if and only if g is minimal.

Proof. Set r = dimK T g=1
K . We assume first that g is minimal. Fix an m such that λm kills the

torsion submodule of T/(g − 1)T . It then follows from the isomorphism

T g=1
n / im(T g=1 → T g=1

n ) ∼= (T/(g − 1)T )[λn]

that
λmT g=1

n ⊆ im(T g=1 → T g=1
n ) (1.3)

for all n.
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Let g′ ∈ G∞ be congruent to g at some level n > m and assume that dimK T g′=1
K = r; by the

definition of minimality it clearly suffices to prove the lemma for such g′. Choose an O-basis t′1, . . . , t′r
of T g′=1. Note that t′1, . . . , t′r are linearly independent modulo λ since T g′=1 is an O-module direct
summand of T .

Each t′i maps to T g=1
n since g′ is congruent to g at level n. Thus by (1.3) we can choose ti,0 ∈ T g=1

with
λmt′i ≡ ti,0 (mod λn)

for each i. In particular, ti,0 ∈ λmT ; cancelling a factor of λm, we obtain t1, . . . , tr ∈ T g=1 with

t′i ≡ ti (mod λn−m). (1.4)

t′i are linearly independent modulo λ, so ti are as well; since T g=1 has rank r, by Nakayama’s lemma
(see [Mat86, Theorem 2.2]) it follows that t1, . . . , tr is a basis of T g=1. As λmti lies in the image of
T g′=1 in T g=1

n , we have thus shown that

λm im(T g=1 → T g=1
n ) ⊆ im(T g′=1 → T g=1

n ).

Combined with (1.3), we conclude that

λ2mT g=1
n ⊆ im(T g′=1 → T g=1

n )

for all sufficiently large n. This proves the first direction of the lemma.
For the converse, let g be ρ-isotropic but not minimal. By definition, for any n we may choose

g′ congruent to g at level n but with dim T g′=1
K = s < r. Then T g=1

n contains a copy of (O/λn)r,
while the image of T g′=1 contains only a copy of (O/λn)s. The lemma follows.

2. Geometric Euler systems

2.1 Local conditions
Let F be a local field with residue field k and let T be a free O-module of finite rank endowed with
an action of the absolute Galois group of F . We always assume that F does not have characteristic �.
We say that T is unramified if the inertia group I of F acts trivially on T ; if T is unramified, we
say that it is pure of weight w if all the eigenvalues for the action of a geometric Frobenius Fr(k)
on T are algebraic with absolute value (#k)w/2 under any embedding Q̄ ↪→ C.

We define the finite/singular exact sequence

0 → H1
f (F, T ) → H1(F, T ) → H1

s (F, T ) → 0

as in [Rub00, § 1.3]; we use the crystalline definition of [BK90, § 3] in the case char F = 0 and
char k = �. If T is unramified and char k �= �, then we recall that

H1
f (F, T ) = H1(k, T ), (2.1)

H1
s (F, T ) = H1(I, T )Fr(k)=1 ∼= T (−1)Fr(k)=1, (2.2)

and the finite/singular exact sequence identifies with the inflation–restriction sequence. (The last
isomorphism in (2.2) follows from the fact that the maximal pro-� quotient of I is isomorphic to
Z�(1) as a Gal(k̄/k)-module.) Thus if T is pure of weight w, then H1

s (Fv , T ) is finite unless w = −2.
There are of course analogous definitions for Tn, n � ∞ and the analogues of (2.1) and (2.2) still
hold for Tn.

2.2 Selmer groups
We now fix a global field F and a free O-module T of finite rank endowed with an action of the
absolute Galois group of F . (As always we assume that F does not have characteristic �.) We assume
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that T is unramified at almost all places of F . Although it is not essential to the method, we also
assume that T is crystalline at all v dividing �. For any n let F (Tn) denote the smallest Galois
extension of F such that the Galois action on Tn factors through Gal(F (Tn)/F ). We define the
Galois group of T to be the projective group GT with GT,n = Gal(F (Tn)/F ); it is equipped with
a natural representation ρT : GT → GL(T ). More generally, if E/F is a finite Galois extension we
set GT/E,n = Gal(E(Tn)/F ) and let ρT/E : GT/E → GL(T ) denote the natural representation. For
γ ∈ GT/E,∞, we let Pγ(GT/E , n) denote the set of places of F , unramified in E(Tn)/F and prime
to �, with Frobenius conjugate to γ on E(Tn).

For a finite set of places P we define the P -Selmer group

SP (F, T ) = ker
(

H1(F, T ) →
∏
v/∈P

H1
s (Fv , T )

)
.

Set S(F, T ) = S∅(F, T ) and define the restricted P -Selmer group

SP (F, T ) = ker
(
S(F, T ) →

∏
v∈P

H1
f (Fv, T )

)
. (2.3)

As before there are analogous definitions for the Tn, n � ∞.

Proposition 2.1. Let T be as above and assume that ρT is irreducible. Fix a finite Galois extension
E/F and a ρT/E-isotropic γ ∈ GT/E,∞. Then we can choose finite subsets Pn of Pγ(GT/E , n) such
that the exponent of SPn(F, Tn) is bounded independent of n.

Proof. The Selmer group S(F, Tn) is finite for each n by [Rub00, Proposition B.2.7]. We may
therefore choose finite Galois extensions En/E(Tn) such that En ⊆ En+1 and

S(F, Tn) ⊆ H1(En/F, Tn).

Let G̃ be the projective group with G̃n = Gal(En/F ). If v is a place of F , unramified on T and in
E/F , then by (2.1) and (2.3) we have

S{v}(F, Tn) ⊆ H1
{Fr(v)}(G̃n, Tn), (2.4)

in the notation of § 1.1; here Fr(v) ∈ G̃n is any choice of Frobenius at v.
The exponent of H1(GT/E,n, Tn) is bounded independent of n by [Rub00, Theorem C.1.1]; thus

Proposition 1.1 shows that the exponent of

H1
γ̃n Gal(En/E(Tn))(G̃n, Tn)

is bounded independent of n, where γ̃n is a fixed lift to G̃n of the image of γ in GT/E,n. Fix n and
for each g ∈ Gal(En/E(Tn)) fix a place vg of F , unramified on T and in E/F , with Fr(vg) conjugate
to γ̃ng in Gal(En/F ). Then the set Pn of these vg lies in Pγ(GT/E , n) and by (2.4) we have

SPn(F, Tn) ⊆ H1
γ̃n Gal(En/E(Tn))

(
G̃n, Tn

)
.

The proposition follows.

2.3 Locally isotropic Galois representations

We say that an irreducible Galois representation T is locally isotropic if there is some finite Galois
extension E/F such that ρT/E : GT/E → GL(T ) is locally isotropic. We call any such E an isotropy
field for T . Note that if T is locally isotropic, then so is any twist of T by a character of finite order. If
T∨ = HomO(T,O) is the contragredient of T , then GT = GT∨ (so that Pγ(GT/E , n) = Pγ(GT∨/E , n)
for any γ ∈ GT/E,∞ and any n) and T is locally isotropic if and only if T∨ is.
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If T is locally isotropic, then the set of places v with Fr(v) isotropic has positive density. Thus if
T is pure of weight w (in the sense that it is pure of weight w locally at almost all places of F ), then
it must have weight zero. Furthermore, if T ∗ = T∨(1) denotes the Cartier dual of T , then H1

s (Fv , T
∗)

is infinite for any v with Fr(v) isotropic. Nevertheless, we have the following fundamental result.

Lemma 2.2. Assume that ρT is locally isotropic. Let E be an isotropy field for T and let γ be
minimal ρT∨/E-isotropic. Then the exponents of the cokernels of the maps

H1
s (Fv , T

∗) → H1
s (Fv, T

∗
n)

are bounded independent of n and v ∈ Pγ(GT/E , n).

Proof. For v ∈ Pγ(GT/E , n) the above map can be rewritten as

(T∨)Fr(v)=1 → (T∨
n )Fr(v)=1 = (T∨

n )γ=1

by (2.2). The lemma thus follows from Lemma 1.3 and the fact that Pγ(GT/E , n) = Pγ(GT∨/E , n).

The simplest examples of locally isotropic Galois representations are adjoint representations:
for H, an arbitrary Galois representation, the trace-zero adjoint T = End0

O H of H is locally isotropic
with isotropy field F (at least when it is irreducible). We investigate this example in more detail
in § 5. In this case, bounds on the Selmer group of T have applications to the deformation theory of
H/λH; see [Wes02a] for details. More generally, locally isotropic representations of algebraic groups
can be used to generate many locally isotropic Galois representations; see [Wes02b] for examples of
this construction.

An especially interesting example related to an orthogonal group occurs in the cohomology of
Hilbert modular surfaces. Let F = Q and fix a real quadratic extension E/Q. Let f be a cuspidal
Hilbert modular eigenform for E of weight (2, 2); assume that f is not the base change of a form
over Q. For sufficiently large O, we can associate to f a free O-module Hf of rank two with
an action of Gal(Ē/E); see [Tay89, Theorem 2]. The determinant of Hf is the product of the
cyclotomic character and a character θf of finite order. Let H̄f be the conjugate of Hf and set
Tf = Hf ⊗O H̄f (−1). Then Tf descends to an irreducible representation of Gal(Q̄/Q); in fact, it
occurs in H2

ét

(
X̄,O(1)

)
for an appropriate Hilbert modular surface X over Q. If P = pOE is inert

in E/Q, then by [HLR86] the action of Fr(p) on Tf has the matrix


αP
0 αP

βP 0
βP


 ,

where αPβP = θf (Fr(P)). Since the eigenvalues of this matrix are αP, βP,±√
αPβP, we conclude

that Fr(p) is isotropic on Tf as long as θf (Fr(P)) = 1. It is now not difficult to see that Tf is locally
isotropic with isotropy field E(θf ).

2.4 Duality
Let T be a Galois representation as in § 2.2; we do not yet assume that T is irreducible or locally
isotropic. Fix a Galois extension E/F and γ ∈ GT/E,∞. We say that the Cartier dual T ∗ admits a
geometric Euler system at γ if there is an m such that the cokernel of the map

S{v}(F, T ∗) → H1
s (Fv , T

∗) (2.5)

is bounded independent of v ∈ Pγ(GT/E ,m).
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Proposition 2.3. Let T be a locally isotropic Galois representation. Let E be an isotropy field for
T and let γ be minimal ρT∨/E-isotropic. If T ∗ admits a geometric Euler system at γ, then S(F, T∞)
is finite.

Proof. For any n and any set of places P we have the local/global duality exact sequence (see
[Rub00, Theorem 1.7.3])

SP (F, T ∗
n) →

⊕
v∈P

H1
s (Fv , T

∗
n) → S(F, Tn)∨ → SP (F, Tn)∨ → 0. (2.6)

We apply this for varying n with P = Pn given by Proposition 2.1 for γ; in particular, the SPn(F, Tn)
are bounded independent of n. Since Pn ⊆ Pγ(GT/E , n), the exponent of the cokernel of the first map
in (2.6) is bounded independent of n by the definition of a geometric Euler system and Lemma 2.2.
Thus the exponent of S(F, Tn) is bounded independent of n by (2.6). Every element of S(F, T∞) lies
in S(F, Tn) for some n, so that this implies that S(F, T∞) has finite exponent. It is also co-finitely
generated by [Rub00, Proposition B.2.7], so that it must now be finite.

Note that it is essential for the above proof that there exist minimal isotropic elements.
Indeed, the bounds on SPn(F, Tn) require γ to be isotropic and Lemma 2.2 (which relies crucially
on Lemma 1.3) then requires γ to be minimal. This is why the notion of a geometric Euler system
is only useful for locally isotropic representations.

The arithmetic theories also require the use of an isotropic element γ; see [Kat99, Section 0.6]
and [Rub00, Section 2.2]. In fact, they require that dimK T γ=1

K = 1. Thus we cannot apply the
arithmetic theory in any case where dimK T γ=1

K > 1 for all γ. (A simple example of such T is
the adjoint of a representation of rank at least three.) In particular, the arithmetic theory is not
applicable to many locally isotropic representations.

3. Algebraic cycles

3.1 Local conditions on motivic cohomology
Let R be a discrete valuation ring with fraction field F and residue field k. Let X be a proper,
smooth variety over F . For an integer d, consider the complex⊕

x∈Xd−1

K2k(x) →
⊕

x∈Xd

k(x)× →
⊕

x∈Xd+1

Z. (3.1)

Here Xi denotes the set of points of codimension i on the scheme X, the first map is the tame
symbol and the second (which is more important to us) is the divisor map. We define the motivic
cohomology group H2d+1

M (X, Z(d + 1)) to be the cohomology of (3.1). Elements are represented by
formal sums

∑
(Zi, fi) of pairs of codimension d cycles Zi on X and non-zero rational functions fi

on Zi such that
∑

divZi fi = 0 as a Weil divisor on X. (We note that this definition agrees after
tensoring with Q with the usual definitions of motivic cohomology via K-theory or higher Chow
groups; see [Jan90, § 6], for example.)

Scholl [Sch00, Theorem 1.1.6] defined a canonical Q-subspace

H2d+1
M/R

(h(X), d + 1) ↪→ H2d+1
M (X, Z(d + 1))

⊗
Z

Q (3.2)

via de Jong’s theory of alterations. We use this to define local conditions in motivic cohomology as
follows. Let H2d+1

M,s (X, Z(d + 1)) be the image of H2d+1
M (X, Z(d + 1)) in the cokernel of (3.2). There

is then a natural surjection

divk : H2d+1
M (X, Z(d + 1)) → H2d+1

M,s (X, Z(d + 1)).

We define H2d+1
M,f (X, Z(d + 1)) to be the kernel of divk.
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Alternately, if X → Spec R is a proper smooth model of X → Spec F with special fiber Xk, the
localization map in K-theory yields a map (see [Wes02a, § 3.1])

div′
k : H2d+1

M (X, Z(d + 1)) → AdXk

sending a pair (Z, f) to the divisor of f on the special fiber of the scheme theoretic closure of Z
in X. Here AdXk is the Chow group of codimension d cycles Xk. Then divk factors through div′

k

and induces an isomorphism

H2d+1
M,s (X, Z(d + 1)) ∼= im div′

k /(im div′
k)tors.

In particular, this gives a geometric method to check local conditions in the case of good reduction.

3.2 Regulators
We now assume that F is a local or global field of characteristic different from �. For a proper,
smooth variety X over F , an integer d and sufficiently large r, we can define a regulator map

�rRX,d : H2d+1
M (X, Z(d + 1)) → H1(F,H2d

ét (X̄, Z�(d + 1))).

(Here X̄ is the base change of X to a separable closure of F .) The case where r can be taken to be
zero is considered in [Wes02a, § 2.2]. There are three additional difficulties in the general case: the
presence of torsion in H2d+1

ét (X̄, Z�(d + 1)); the existence of denominators in the Chern character;
and the failure of purity in étale cohomology. All three difficulties can be resolved by taking r large
enough; see [Tho84, Theorem 3.5] for the required purity results. We omit the details.

Let r(X, d) be the least value of r such that �rRX,d is defined. The next result shows that the
regulator map respects the local conditions on the source and the target.

Proposition 3.1. Let F be a local field with residue field k. Set T = H2d
ét (X̄, Z�(d + 1)) and fix

r � r(X, d). Assume that either X admits a proper, smooth model over SpecOF or char k �= �. Then
�rRX,d maps H2d+1

M,f (X, Z(d + 1)) to H1
f (F, T ). In fact, if char k �= � and X → SpecOF is smooth,

then there is a commutative diagram

H2d+1
M

(
X, Z(d + 1)

)
�rRX,d

��

div′
k �� AdXk

�rcv �� H2d
ét

(
X̄k, Z�(d)

)Fr(k)=1

�
��

H1(F, T ) �� H1
s (F, T ) � �� T (−1)Fr(k)=1

Here cv is the cycle class map and the isomorphism on the right is the smooth base change.

Proof. When char k �= �, the first statement is [Nek, Theorem B]. The case char k = � is [Niz97,
Theorem 3.1]. The existence of the commutative diagram is proved for r(X, d) = 0 in [Wes02a,
Theorem 3.1.1]; the proof there is easily adapted for r(X, d) > 0 as well.

3.3 Motivic Selmer groups
We now assume that F is a global field; as always, we assume that F does not have characteristic �.
Let X be a proper, smooth variety over F . Let P be a set of places of F containing all places of
residue characteristic � at which X has bad reduction. For any d, we define the motivic P -Selmer
group SP

M(H2d+1(X), Z(d + 1)) as the kernel of the map⊕
v/∈P

divv : H2d+1
M (X, Z(d + 1)) →

⊕
v/∈P

H2d+1
M,s (XFv , Z(d + 1)).

Here divv is the composition of restriction from X to XFv with divkv . We record the following
consequence of Proposition 3.1.
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Corollary 3.2. Let P be a finite set of places as above. Then

�rRX,d(SP
M(H2d+1(X), Z(d + 1))) ⊆ SP (F,H2d

ét (X̄, Z�(d + 1)))

for r � r(X, d).

4. Conjectures

4.1 Statements
Let X be a proper, smooth variety over a global field F of characteristic different from �. Let S be an
open subscheme of SpecOF and let X → S be proper and smooth with generic fiber X → SpecF .
Let P0 denote the complement of S in the set of places of F . Our basic conjecture is the following.

Conjecture 4.1. Let Z be an algebraic cycle on a smooth fiber Xv of X → S. Then a non-zero
integer multiple of Z is homologically equivalent (on the geometric fiber X̄v) to an algebraic cycle
which is trivial in the Chow group of X.

For our applications we formulate a uniform combination of Conjecture 4.1 with the conjecture of
Tate on algebraic cycles (as in [Tat65, Conjecture 1]). We first need to introduce some terminology.
Let T be a free O-module with an action of the absolute Galois group of F . We say that T is
pre-motivic for (X, d) if there is an O-linear map with finite cokernel hT : Hd

ét(X̄,O) → T compatible
with Galois actions. Note that T is then pure of weight d.

Let T be pre-motivic for (X, d) and fix a finite Galois extension E/F . Let GT/E be the Galois
group of T over E with representation ρT/E : GT/E → GL(T ). In this context, for γ ∈ GT/E,∞ we
restrict the set Pγ(GT/E , n) to contain only places in S. We immediately check that this restriction
does not affect any of our previous results.

Conjecture 4.2. Let T be pre-motivic for (X, 2d). Fix a finite Galois extension E/F and γ ∈
GT/E,∞. Then there is an m such that the cokernel of the composition

SP0∪{v}
M (H2d+1(X), Z(d + 1))

⊗
Z

O div′
v−→ AdXv

⊗
Z

O cv−→ H2d
ét (X̄v ,O(d))Fr(v)=1 hT−→ T (d)Fr(v)=1

(4.1)
is bounded independent of v ∈ Pγ(GT/E ,m).

The surjectivity of (4.1) after tensoring with K is implied by Conjecture 4.1 and the Tate
conjecture for the fiber Xv. To see this, it suffices to show that (c ◦ div′

v) ⊗ K is surjective for any
v /∈ P0. Fix such v and fix t ∈ H2d

ét (X̄v,K(d))Fr(v)=1. By Tate’s conjecture and Conjecture 4.1 there
is a codimension d K-cycle Z on Xv, trivial in Ad+1X⊗K, with cv(Z) = t. By the definition of the
Chow group there is, therefore, a codimension d K-cycle Y on X and a rational function f on Y
with divisor Z; that is, f has a trivial divisor on the generic fiber of X and

div′
w(Y, f) =

{
0 w /∈ P0 ∪ {v},
Z w = v.

Thus (Y, f) lies in SP0∪{v}
M (H2d+1(X), Z(d + 1)) and c ◦ div′

v(Y, f) = t, so that (c ◦ div′
v) ⊗ K is

surjective.
The basic motivation for these conjectures comes from the conjectures of Beilinson (as extended

to incomplete L-functions by Deligne) and Bloch and Kato. Indeed, assume that char F = 0 and let
T be a motive occurring in H2d+1(X) with Q�-realization T�. Deligne’s generalization of Beilinson’s
conjectures (see [Sch92, Conjecture 4.2]) and the functional equation predict that

ords=d LP (T, s) = rankZ SP
M(T, Z(d + 1))
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for any set of places P ; here LP (T, s) is the L-function of T with Euler factors at P removed and
SP
M

(
T, Z(d + 1)

)
is the P -integral motivic cohomology of T . Comparing this equality with P = ∅

and P = {v}, we expect that

dim T�(d)Fr(v)=1 = rankS{v}
M (T, Z(d + 1)) − rankSM(T, Z(d + 1)). (4.2)

On the other hand, localization and the cycle class map yield a map

S{v}
M (T, Z(d + 1)) ⊗ Q� → AdTv ⊗ Q� → T�(d)Fr(v)=1 (4.3)

which is trivial on SM(T, Z(d+1)). By (4.2), we are then naturally led to hope that (4.3) is surjective;
this is conjectured (in a slightly different form) in [BK90, Conjecture 5.3]. Conjecture 4.2 is simply
a uniform version of this; we have avoided passing to the motivic cohomology of T for simplicity.
For more discussions along these lines see [Fon92, Mil92].

4.2 Evidence

Conjecture 4.2 is known in a few cases. It is virtually trivial in the case d = 0 (so that T = O): for
any v we can choose �v ∈ OF which is a unit away from v but has ordv �v = h with h the class
number of OF . The elements (X,�v) ∈ H1

M(X, Z(1)) prove the conjecture for any γ in this case.

We analyze Conjecture 4.2 more carefully in the case of adjoint motives in § 5. We use the
methods of Mildenhall and Flach as in [Wes02a] to verify the conjecture when X is a self-product
of a Kuga–Sato variety (respectively Drinfeld modular curve) and T is the adjoint representation
attached to certain classical modular forms (respectively Drinfeld modular forms). An interesting
variation of these ideas is provided by [Ots00], where Conjecture 4.2 is proven for the Fermat quartic
surface z4

0 + z4
3 = z4

1 + z4
2 over Q.

4.3 Consequences

Proposition 4.3. Let X be a proper, smooth variety over F and let T be pre-motivic for (X, 2d).
Fix a Galois extension E/F and γ ∈ GT/E,∞. Assume that Conjecture 4.2 holds for some proper,
smooth model X → S, T and γ. Furthermore, assume that H1

s (Fw, T (d + 1)) is finite for w ∈ P0.
Then T (d + 1) admits a geometric Euler system at γ.

Proof. For r � r(X, d) and any v ∈ S the composition of the regulator �rRX,d with hT induces a
map

RT,v : SP0∪{v}
M (H2d+1(X), Z(d + 1)) ⊗Z O → SP0∪{v}(F, T (d + 1)).

If Xv is smooth and v does not divide �, then �r times (4.1) factors through RT,v and the map

SP0∪{v}(F, T (d + 1)) → H1
s (Fv , T (d + 1)) (4.4)

by Proposition 3.1. It thus follows from Conjecture 4.2 that for some m the cokernel of (4.4) is
bounded independent of v ∈ Pγ(GT/E ,m). The proposition follows from this and the finiteness of
H1

s (Fw, T (d + 1)) for w ∈ P0.

Corollary 4.4. Let T be a locally isotropic Galois representation. Fix an isotropy field E and a
minimal ρT∨/E-isotropic γ ∈ GT/E,∞. Assume that there is an integer d such that T ∗(−d − 1) is
pre-motivic for some (X, 2d) and such that Conjecture 4.2 holds for some proper, smooth model
X → S, T ∗(−d − 1) and γ. Assume also that H1

s (Fw, T ∗) is finite for w ∈ P0. Then S(F, T∞) is
finite.

Proof. This is immediate from Propositions 2.3 and 4.3.
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5. Adjoint motives

5.1 Basic properties
Let S be an open subscheme of SpecOF for a global field F of characteristic different from �. Let
X → S be smooth and proper with generic fiber X → Spec F of dimension d. Let H be a pre-
motivic Galois representation for (X, d0); we further assume that HK is actually a direct summand
of Hd0

ét (X̄,K). Let r = rankO H and set T = End0
O H. Note that the existence of the Galois

equivariant trace pairing T ⊗ T → O implies that T ∗ ∼= T (1).

Lemma 5.1. T (−d) is pre-motivic for (X × X, 2d).

Proof. It follows from the Künneth formula and Poincaré duality that TK(−d) is a direct summand
of H2d

ét (X̄ × X̄,K). In particular, there is a projection

h : H2d
ét (X̄ × X̄,K) � TK(−d).

The image of H2d
ét (X̄ × X̄,O) under h must be commensurable with T (−d), so that some multiple

of h will send H2d
ét (X̄ × X̄,O) to a finite index submodule of T (−d). This is the statement of the

lemma.

Let GH and GT be the Galois groups of H and T , respectively; we simply write ρ : GH → GL(H)
and ad0 ρ : GT → GL(T ) for the natural representations. Note that there is a natural surjection
of projective groups ν : GH → GT ; the kernel of ν∞ (which we usually write simply as ν) consists
precisely of those elements of GH,∞ which map to scalars under ρ.

Lemma 5.2. Assume that T is irreducible. Then T is locally isotropic and F is an isotropy field
for T . If γ ∈ GH,∞ is such that ρ(γ) has distinct eigenvalues, then ν(γ) is semisimple and minimal
ad0 ρ-isotropic.

Proof. For g ∈ GH,∞, the eigenvalues of g on EndK HK are the ratios of the eigenvalues of ρ(g).
In particular, every g ∈ GT,∞ has dimK T g=1

K � r − 1, with equality precisely when g has distinct
eigenvalues. The lemma follows.

Note that there may not exist any γ such that ρ(γ) has distinct eigenvalues; in that case, the
minimal ad0 ρ-isotropic elements include those with the smallest number of trivial eigenvalues on H.

For any place v ∈ S we let Γi
v denote the graph of the ith power of the Frobenius morphism on

the fiber Xv; we can regard Γi
v as a codimension d cycle on Xv × Xv or a codimension d + 1 cycle

on X ×S X. We let Ad
F (Xv × Xv) denote the subgroup of Ad(Xv × Xv) generated by Γ1

v, . . . , Γr−1
v .

Proposition 5.3. Let γ ∈ GH,∞ be such that ρ(γ) has distinct eigenvalues. Then there is an m
such that the map

Ad
F (Xv × Xv)

⊗
Z

O cv−→ H2d
ét (X̄v × X̄v,O(d))Fr(v)=1 hT−→ TFr(v)=1 (5.1)

has cokernel bounded independent of v ∈ Pν(γ)(GT ,m). In particular, to prove Conjecture 4.2 for
X×SX → S, T and ν(γ), it suffices to show that there is a non-zero integer e such that eΓ1

v, . . . , eΓr−1
v

are trivial in Ad+1(X ×S X) for all v ∈ Pν(γ)(GT ,m).

Proof. By assumption ρ(γ) has distinct eigenvalues; thus we can choose m large enough so that
ρ(Fr(v)) has distinct eigenvalues for all places v ∈ Pν(γ)(GT ,m). For any such v, it follows from
basic linear algebra that the endomorphisms ρ(Fr(v)), . . . , ρ(Fr(v))r−1 generate (End0

K HK)Fr(v)=1

over K. We then easily see that the order of

TFr(v)=1/(Oρ(Fr(v)) + · · · + Oρ(Fr(v))r−1)
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is bounded independent of v ∈ Pν(γ)(GT ,m). By standard compatibilities in étale cohomology we
have hT ◦ c(Γi

v) = ρ(Fr(v))i, so that this proves the first statement.
For the second statement, fix v and i. Since we are assuming that eΓi

v is trivial in Ad+1(X×S X),
we can write

eΓi
v =

∑
divZj fj (5.2)

where the Zj are irreducible codimension d cycles on X ×S X and fj is a rational function on Zj .
In particular,

∑
divZj fj has no support on the generic fiber X × X, so that we can regard

z =
∑

(Zj , fj) as an element of H2d+1
M

(
X × X, Z(d + 1)

)
. (It may happen that some Zj have no

support on the generic fiber, but this causes no problems in the argument.) By (5.2), we have

divw z =

{
0 w /∈ P0 ∪ {v},
eΓi

v w = v.

Thus z ∈ SP0∪{v}
M (H2d+1(X), Z(d + 1)) satisfies divv z = eΓi

v. The proposition follows from this and
the first statement.

5.2 Classical modular forms
We now specialize to the case F = Q. In [Wes02a, Theorem 4.2.3], optimal annihilators are
obtained for the adjoint Selmer group attached to a sufficiently well-behaved classical modular
form of squarefree level. Using the results above it is straightforward to extend these methods to
prove the finiteness of the adjoint Selmer group for a more general class of classical modular forms
of arbitrary level.

Let f be a newform of weight k + 2 (with k � 0), level N and arbitrary character. For suffi-
ciently large K, we can associate to f a two-dimensional K-representation Hf,K of Gal(Q̄/Q).
This representation can be realized as a direct summand of Hk+1

ét (Ēk,K) where Ek is a certain
canonical resolution of the k-fold product of the universal generalized elliptic curve over the modular
curve X1(N). Ek has a proper, smooth model Ek → Spec Z[1/N ]; see [Wes02a, § 4.2.1] for details
and references.

Fix a Galois stable O-lattice Hf in Hf,K ; it is pre-motivic for (Ek, k+1). Let ρf : GH,f → GL(Hf )
be the associated representation. Set Tf = End0

O Hf with representation ad0 ρf : GT,f → GL(Tf ).
Let ν : GH,f → GT,f be the natural map. Tf is pre-motivic for (Ek × Ek, 2k + 2) by Lemma 5.1.

Proposition 5.4. Let Tf be as above and let γ ∈ GH,f,∞ be such that ρf (γ) has distinct eigenvalues.
Then Conjecture 4.2 is true for Ek × Ek → Spec Z[1/N ], Tf , and ν(γ).

Proof. Fix p not dividing N and let Γp denote the graph of Frobenius in Ek,p ×Ek,p. We show that
12Γp is trivial in Ak+2(Ek × Ek). The proposition then follows from Proposition 5.3.

Let Tp be the pth Hecke correspondence; it is a codimension k + 1 cycle on Ek × Ek. Let ∆ be
the unique normalized cusp form of weight 12 and level 1; we regard ∆ as a pluricanonical form of
degree 6 on X1(N). The two projections Tp,Q → Ek give rise to two maps Tp,Q → X1(N). We let fp

be the rational function on Tp which is the ratio of the pullbacks of ∆ under these two maps.
As observed in the weight 2 case by Flach (see [Fla92]), it is a consequence of the Eichler–

Shimura congruence relation that divTp fp = 6Γ∨
p − 6Γp with Γ∨

p the Verschiebung; see [Wes02a,
Lemmas 4.1.1 and 4.2.1] for the higher weight case. (The essential idea is explained in a different
context in the proof of Proposition 5.6 below. Note that it is assumed in [Wes02a] that N is
squarefree; however, the same proof works in general since we assume here that p does not divide N .)
Since Ek,p × Ek,p = Γp + Γ∨

p , it follows that divTp p−6fp = −12Γp. This proves the proposition.

Theorem 5.5. Assume that f is not of CM-type, that f is special or supercuspidal at all p dividing
N and that � does not divide N . Then S(Q, Tf,∞) is finite.

329

https://doi.org/10.1112/S0010437X03000113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000113


T. Weston

Proof. Since f is not of CM-type, there exist γ ∈ GH,f,∞ such that ρf (γ) has distinct eigenvalues.
Thus by Proposition 5.4 and Corollary 4.4, we need only check that H1

s (Qp, T
∗
f ) is finite for p

dividing N . This follows from our hypotheses and [Sch00, § 2.3.13].

We omit the case where f is a principal series at some p dividing N , as then H1
s (Qp, T

∗
f ) is infinite.

However, one should be able to deal with this case by a more careful analysis of the geometry of
Ek × Ek at places of bad reduction.

5.3 Drinfeld modular forms
Let F be a finite field and let F = F(t). In this section, we adapt the ideas of Flach as in the
previous section to study adjoint representations of certain Drinfeld modular representations over F .
We restrict ourselves to the case in which the geometry of the associated Drinfeld modular curve is
sufficiently well understood.

Let n be a squarefree ideal of F[t] and let S be the complement of n in SpecF[t]. Let M0(n)
be the Drinfeld modular curve of level n studied in [Gek86b]; it admits a proper, smooth model
M0(n) → S. Let A denote the adeles of F and let π be a cuspidal automorphic representation of
GL2(A) of weight 2, level n and trivial character as in [Tam95, § 3]. For an appropriate choice of
O we can associate to π a pre-motivic Galois representation Hπ for (M0(n), 1); Hπ is free of rank 2
over O and there is an equality

L(s − 1
2 , πv) = L(s,Hπ,v)

of local L-factors for almost all places v of F . We also know that Hπ is special for v /∈ S. Set
Tπ = End0

O Hπ; it is pre-motivic for (M0(n) × M0(n), 2) by Lemma 5.1. Let ρπ : GH,π → GL(Hπ),
ad0 ρπ : GT,π → GL(Tπ) be the associated representations and let ν : GH,π → GT,π be the natural
map.

Proposition 5.6. Let Tπ be as above and let γ ∈ GH,π,∞ be such that ρπ(γ) has distinct eigenvalues.
Then Conjecture 4.2 is true for M0(n) ×M0(n) → S, Tπ and ν(γ).

Proof. The proof is nearly identical to the proof of Proposition 5.4 once we assemble the corre-
sponding geometric data: we show that 2(1− q2)Γv is trivial in A2(M0(n)×M0(n)) for any p ∈ S,
where q is the order of F. The proposition then follows from Proposition 5.3.

Fix p ∈ S and let Tp be the Hecke correspondence at p regarded as a codimension 1 cycle
in M0(n) × M0(n). We let ∆ be the Drinfeld cusp form of weight q2 − 1 and level 1 defined in
[Gek86b, § 2]; we regard ∆2 as a pluricanonical form of degree q2 − 1 on M0(n) as in [Gek86a, § 5].
We then define fp as the ratio of the pullbacks of ∆2 under the two projections Tp,F → M0(n).

Set S′ = S − {p}; Tp ×S S′ is birationally isomorphic to M0(np). By [Gek86b, Corollary 3.4
and § 4], the divisor of fp on M0(np) is a linear combination of differences (0i) − (∞i) of cuspidal
divisors. Here 0i and ∞i are a pair of cusps lying over a single cusp of M0(n). They thus coincide
on Tp ⊆ M0(n) ×M0(n) as well and it follows that the divisor of fp on Tp ×S S′ is trivial.

We compute the divisor of fp on the fiber of Tp over p via the Eichler–Shimura relation of
[Gek86b, § 5]. As a cycle on M0(n)p×M0(n)p, the fiber of Tp is the sum of Γp and its transpose Γ∨

p .
We compute the divisor of fp separately on each component. For Γp, the first projection to M0(n)p is
an isomorphism while the second is totally inseparable. Since ∆2 is a pluricanonical form of degree
q2 − 1, it follows that fp has a pole of order q2 − 1 on Γp. By a similar computation, we see that fp
has a zero of order q2 − 1 on Γ∨

p .
We conclude that the divisor of fp on Tp is (1 − q2)(Γp − Γ∨

p ). If �p is a uniformizer at p, the

divisor of �1−q2

p fp on Tp is thus 2(1 − q2)Γp. This completes the proof.

As in the classical case, we immediately obtain the following result.
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Theorem 5.7. Assume that π is not of CM-type. Then S(F(t), Tπ,∞) is finite.

We make the bound we have obtained on S(F(t), Tπ,∞) explicit in the case that ρπ is surjective
and l � 7. Since l � 7 and M0(n) is a curve, we can define the regulator map with r = 0. Using
both assumptions, we can show that SPn(F, Tn) in Proposition 2.1 is trivial for all n; see [Wes00,
Proposition III.5.1]. If γ is chosen so that its eigenvalues have distinct residues in O/λ, the cokernels
of Lemma 2.2 and (5.1) are trivial as well. Finally, the groups H1

s (Fw, T ∗
π ) vanish for w /∈ S by

[Wes00, Lemma I.5.2]. We conclude that 2(q2 − 1)η annihilates S(F, Tπ,∞) where η is a constant
depending on the cokernel of the map H1

ét(M̄0(n),O) → Hπ. We expect that η should be related to
congruences between π and other automorphic representations.

It would certainly be preferable to construct a cohesive Flach system for Tπ as in [Wes02a].
Unfortunately, it appears that not enough is yet known about the structure of the Hecke algebra to
complete this construction; see [Tam95, pp. 241–242].
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