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THE SYMPLECTICITY OF THE MAGNUS REPRESENTATION
FOR HOMOLOGY COBORDISMS OF SURFACES

TAKUYA SAKASAI

The Magnus matrix is an algebraic invariant assigned to each homology cobordism
of a surface. We show that this matrix satisfies an equality which can be regarded as
a non-commutative symplectic relation.

1. INTRODUCTION

Let E9]i be a compact connected oriented surface of genus g ^ 1 with one boundary
component. We consider a triplet (M, i+,i~) consisting of a homology cobordism M of
E9ii and two markings i+, i_ of dM. More precisely, the compact oriented 3-manifold M
and the two embeddings i+, i_ : E9)1 -¥ dM satisfy

(1) i+ is orientation-preserving and i_ is orientation-reversing,

(2) 8M = i+(E,,i) U *_(E,,i) and <+(£,,») n <_(E,,i) = i+{dZtll) = i - (3E9 i l ) ,

(3) i+l8Ef.l=
i-laE,.l.

(4) i+,i- : if»(E9il) -> H,(M) are isomorphisms.

We call such an object a homology cylinder (over E9 i l) , which has its origin in Habiro
[4], Garoufalidis-Levine [3] and Levine [7]. Two homology cylinders are said to be iso-
morphic if there exists an orientation-preserving diffeomorphism between the underlying
3-manifolds which is compatible with the markings. The set C9)i of all isomorphism
classes of homology cylinders has a monoid structure defined by

M-N = (M Ui_.0+)-» N, i+,j-)

for two homology cylinders M — (M, i + , i_) , N = (N,j+,j-). The unit of C9il is
(ESii x / , id x l , id xO), where collars of i+(ESii) and i_(E9ii) are stretched halfway along
(9E9il) x / . Typical examples of homology cylinders come from the mapping class group
Mg,i of E9ii; that is the group of isotopy classes of diffeomorphisms of ESii which re-
strict to the identity on 9E9)1. For each mapping class tp € M9ii, we have a homology
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cylinder (E9ii x /, id x l , (p x 0). In fact, this construction gives an injective monoid ho-
momorphism Mg,\ —• C9l\. We can also construct homology cylinders by using homology
3-spheres and pure string links (see [3, 7]). From these facts, we can expect that C9ii will
play an important role in the classification of 3-manifolds especially by using its monoid
structure.

To study the structure of C9ti, we defined its Magnus representation

rk:Cgtl-¥GL(2gXsk) (* = 2,3,...)

in [13, 14], where Ksk is a certain skew field. This representation extends the Magnus
representation for Mg<x defined by Morita [8], as the Gassner representation for pure
string links due to Le Dimet [6] and Kirk, Livingston and Wang [5] does that for the pure
braid group. See Birman's book [1] for generalities of the ordinary Magnus representation.

In this paper, we shall show that the Magnus representation of C9>i satisfies a certain
equality which can be regarded as a non-commutative symplectic relation (Theorem 2.4).
This generalises not only the result of Morita [8] and Suzuki [16] that the same equality
holds for the Magnus representation of Mg<i, but also Kirk, Livingston and Wang's result
[5] that the (reduced) Gassner representation for pure string links satisfies some unitary
relation. In fact, our proof derives an explicit equality describing the unitarity of the
Gassner representation, while their result is given in an implicit form.

Note that the statement of Theorem 2.4 has been already announced in [14], where
we observe that the condition obtained from our theorem for a matrix to be written as
the Magnus matrix of a homology cylinder is a strong one by considering a relationship
to the theory of higher-order Alexander invariants.

2. THE MAGNUS REPRESENTATION FOR HOMOLOGY CYLINDERS

We take a base point p on 5E9ii, and take 2g loops 71 , . . . ,72S of E9>i as shown
in Figure 1. We consider them to be an embedded bouquet R2g of 2g circles tied at
p € 9Ss,i- Then R2g and the boundary loop £ of E9ii together with one 2-cell make up
a standard cell decomposition of Eff)1. The fundamental group fl^E^i of E9ii is the free

group F2g of rank 2g generated by j u . . . , j 2 g , where C = Flfa. 79+t]-
i=l

For a group G, we denote by Nk{G) := G/(TkG) the k-th nilpotent quotient of
G, where we define TlG := G and TlG := [rl~lG,G] for I ^ 2. For simplicity, we
write Nk(X) for Nk(niX) where X is a connected topological space, and write iV* for
Nk(F2g) = Nk(£9tl).

Let (M, i+,i-) be a homology cylinder. By definition, i+,i- : tfiE9)1 -» TI^M are
both 2-connected, namely they induce isomorphisms on H\ and epimorphisms on H2.
Then, by Stallings' theorem [15], i+, i_ : Nk •=* Nk(M) are isomorphisms for each k ^ 2.

https://doi.org/10.1017/S0004972700039770 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039770


[3] The symplecticity of the Magnus representation 423

7i

Figure 1: A standard cell decomposition of Sffii

Using them, we obtain a monoid homomorphism

ok -Cg,! -¥ AutNk ( (M, i + , i _ ) •->• (i+)~x oz_).

2 .1 . DEFINITION O F T H E MAGNUS REPRESENTATION FOR HOMOLOGY CYLINDERS.

We first summarise our notation. For a matrix A with entries in a ring R, and a ring
homomorphism tp : R —• R!, we denote by <M the matrix obtained from A by applying tp

to each entry. AT denotes the transpose of A. When R = ZG for a group G or its right
field of fractions (if it exists), we denote by A the matrix obtained from A by applying
the involution induced from ( i •-+ x~l, x 6 G) to each entry. For a module M, we write
Mn for the module of column vectors with n entries.

For a finite cell complex X, we denote by X its universal covering. We take a base
point p of X and a lift p of p as a base point of X. ir := ni(X,p) acts on X from the
right through its deck transformation group. Namely, the lift of 7 e w starting from p
reaches jry~l. We regard the Z7r-cellular chain complex C, (X) of X as a collection of free
right Z7r-modules consisting of column vectors together with differentials given by left
multiplications of matrices. For each Z7r-bimodule A, the twisted chain complex C. (X; A)

is given by the tensor product of the right Z7r-module C,(X) and the left Z7r-module A,

so that C,(X; A) and Hm(X; A) are right Z7r-modules.

Hereafter, we fix an integer k ^ 2. The following construction is based on Kirk-
Livingston-Wang's work of the Gassner representation for string links in [5].

Let (M, i+,i~) be a homology cylinder, p 6 9E9)i is a common base point of E9ii
and M. By Stallings' theorem, N^ and Nk(M) are isomorphic. Since Nk is a finitely
generated torsion-free nilpotent group for each k ^ 2, we can embed ZNk into the right
field of fractions

JCNk:=2,Nk(ZNk-{0})-1

(see [2, 11] for details). Similarly, we have

ZNk(M) -> KNh(M) := ZNk(M)(ZNk(M) - {Q})'\

By a standard argument (see for instance [5, Proposition 2.1], [13, Lemma 5.11]),
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we can show that

are isomorphisms as right /C^k(M)-vector spaces. Since JZ29 C Eff>1 is a deformation
retract, we have

with a basis

as a right /C^4(M)-vector space. Here we fix a lift p of p as a base point of R^g, and denote
by 7i the lift of the oriented edge j t starting from p and ending at P7,"1.

DEFINITION 2 .1 : For each M = {M,i+,iJ) e CgtU we write r'k(M) G GL(2g,K.Nk(M))
for the representation matrix of the right ^Ar4(M)-isomorphism

(2) The Magnus representation for C9t\ is the map rk : C9>i -> GL(2g,K,Nk) which
assigns to A/ = (M, i+,i_) € C9ii the matrix *+ r'k(M).

E X A M P L E 2.2. For <p G M9ti "^ AutF2 s , we can easily check that

where p t : ZF2 9 -> Z7Vfc C /C^ is the natural homomorphism and d/dj, are free dif-
ferentials. From this, we see that r* extends the Magnus representation for Mg \ (see
[8, 16]).

While we call r* the Magnus "representation", it is actually a crossed homomor-
phism. Namely, we have that following.

THEOREM 2 . 3 . ([14]) For Mu M2 e CgiU we have

rk(M1 • M2) = rk(Mx) • ff'(Ml>rt(M2).

2.2. M A I N THEOREM. The following is the main theorem of this paper, which implies
the symplecticity (in a twisted sense) of the Magnus reprentation for CSii.
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THEOREM 2 . 4 . For any homology cylinder M, we have the equality

where J =

rk{M)

£ GL(2g, ZNk) is defined by

1 - 7 2 0
1 - 7 3

l - 7 9 /

7i7s+i
7279+2 0

- l

79729V

(l-7ff+3)(l-72~1) l - 7 3 " 1 -

0

1-7^-72,,/
,,-i/ l - 7 9 + i

I - 79+3)(l - 77+1) (1 - 79+3)(l - 7j"+:

V (1 - 729)(1 - 79"+i) (1 ~ 729)(1 - 7J+2)

0

I-72V/

Note that the matrix J appeared in Papakyriakopoulos' paper [10], and that it is
mapped to the ordinary symplectic matrix by the augmentation map ZNk -» Z.

Theorem 2.4 is a generalisation of the result of Morita [8] and Suzuki [16] that the
Magnus representation for M3ii has the same symplecticity as above. Morita used a
finite generating system of A19>i and showed that the equality holds for each element of
the system. On the other hand, Suzuki used twisted homology groups of £9,i to show
that, without using any generating system, every element of M9i\ preserves a related
intersection pairing (called higher intersection number), which implies the equality. In
our case, we shall give a proof which is closer to the latter, since no generating system is
known for C9ii at present. Also, it is not known whether C9ii is finitely generated or not.
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3. P R O O F OF THEOREM 2.4

Let (M, i+, i_) 6 C9ii. The proof of Theorem 2.4 is divided into the following three
steps.

S T E P 1. Triangulate E9)i by taking a refinement of the cell decomposition in Figure 1.
We decompose dE9i i into two segments A and B such that AU B = 5E9ii, dA = dB
= A n B = {p, q) as in Figure 2.

7l 72

P ,4 IB

Figure 2: Decomposing 9E9ii into .A and B

Then we have isomorphisms

Using them, we obtain a pairing

where the second map is the intersection pairing given, for instance, in [12, Definition
4.66]. More precisely, we need to generalise the pairing in the book to the case of pairs
of manifolds and enlarge its coefficients from ZNk to K.sk • In our notation, the formula
for the corresponding chain-level intersection

< . >s,.i : (Ci (£^ ,3) (g) fCNk) <g> (Dxif^uB) 0 KNh)-+KNh

ZwiE»,i

of the simplicial 1-chains

and the dual cellular 1-chains
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(see [9, Chapter 8]), where A and B denote the inverse images of A and B in E9 i i , is

given as follows: For u G Ci(£9 >i,!A), V e Di[Hg<i,B) and r,s e K.Nk,

(u®r,v® s)zgl = ] P (u7, v)rys,

where (uj, v) € Z is the usual intersection number of 747 and v on £9>1.

By definition, (uf,v)xsl = 7 ( " . « ) E 9 , , and (U,U/ )E S I 1 = (u ,u ) E s r l / hold for any
/ € JCwfc and u, v € ifi(Eflji,p;/C/tft). Note that this pairing generalises Suzuki's higher
intersection number in [16].

S T E P 2. We glue two copies of E9)i along A to construct a surface 5 with the natural
inclusions i'+,i'_ : E9)i «-> 5. We orient 5 so that i'+ is orientation-preserving. 5 is a
surface of genus 2g with the boundary i'+(B) \Ji'_(B). Capping S by a disk D, we obtain
a closed surface of genus 2g, which is naturally identified with dM so that i+ and i_ are
homotopic to i'+ and i'_ respectively. We can extend the triangulation of ES)i to those of
dM and M.

Similarly to the above, we define a pairing

( 1 )s • Hi(S,

by using

Hi(S, i'+{B)\K.Nk(M)),

—

Then we can check that

i + M s , . i = <*'+(«),«+(«)>s. ' - ^ . ^ E . . , = -<f_(«),i'_(i;)>s e K,Nk{M)

by an argument similar to that in Step 3. We also have a pairing

( , )M • Hi{M, D; K.Nk(M)) ® H2(M, S; >CNk(M)) -)• K.N^M).

To see the relationship between { , )s and ( , )M, we recall that the diagram

Hl(M,D;KNk{M)) - £ -> Hl(S,i'+(B);

\n[M,dM] n[s,dS]

H2{M,S;K.Nk(M)) > Hi(S,i'_(B);

commutes up to sign, where i : S <-+ M is the inclusion, the lower horizontal arrow is
obtained from the homology exact sequence of the triplet (M, 5, i'_(B)), and we write
[M, dM] 6 H3(M, dM) and [S, dS] € H2(S, dS) for the fundamental classes of M and 5
respectively. From this, we have

'M
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for any x G Hi{S,p;KNk(M)) and y G H2(M,S;K.N^M)). Consequently,

= <<-(»).*)„
M

= (i'+(rk(M)u),i'+{rk(M)v))s

= '+(r t(M),r t(M))E j i ,

where 5.X = i'_(v) - i'+(rfc(M)u). By applying »+', we obtain the equality

S T E P 3 . We shall describe the pairing (, )Ej_, explicitly by calculating the chain-level in-
tersection of cycles representing the basis elements { T I ® 1 , . . . , 7 2 J ® 1 } of Hi(Eg>i,p; /CwJ.
For that , we use Papakyriakopoulos' argument in [10]. In our notation, cycles intersect
each other as in Figures 3 and 4, where 7,' is a path which represents the class corre-
sponding to 7J ® 1 by the isomorphism # i (E S i i ,p ; /C^) — # i (E p , i , B; ICttk) mentioned in
Step 1.

79+i79+i771VM771

Figure 3: Intersections of lifts of edges (I)

From the figures, for example, we see that

{li ® 1,7} ® 1)E,., = 1 - 7i - 771 + lilj1 = (1 - 7<)(1 - 771)

for 1 < j < i < g. By computing all cases, we obtain the matrix J. D
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'g+i

7t7i 7i

7j+«79+i

Figure 4: Intersections of lifts of edges (II)

REMARK 3.1. Our equality in Theorem 2.4 does depend on the choices involved in the
proof. For example, by changing the generating system of n ^ E ^ and the rules for denning
intersection pairings, we obtain other matrices than J representing the symplecticity of
the Magnus representation.

4. T H E GASSNER REPRESENTATION FOR STRING LINKS

Let D2 be a 2-dimensional disk. Given n ^ 1, we fix n points pu... ,pn in the
interior of D2. A string link of n strands is a smooth embedding of the disjoint union
of ordered n unit intervals into D2 x I sending 0 and 1 of i-th interval to p< x {0} and
Pr(i) x {1}, where r is an element of the symmetric group of degree n. The set SCn of
isotopy classes of string links of n strands has a natural monoid structure. A string link
is said to be pure if r = id, and we denote by VSCn the submonoid of SCn consisting of
all pure string links.

Let Dn := D2 - {pi,... ,pn}. wiDnis the free group generated by n loops Si,...,6n

as in Figure 5. In this section, we put Nk '•= Nk(iriDn). We write i0 and i\ for the
natural embeddings of Dn into D2 x {0} and D2 x {1} respectively. It is easily checked
that io,i\ : niDn -> it\(p2 x I — N(L)) are 2-connected for each string link L, where
N(L) denotes a tubular neighbourhood of (the image of) L. Hence a construction similar
to that in Section 2 gives a monoid homomorphism

oG,k •• SCn -> Aut Nk {L t-4 (ii)"1 o i0)

for each k ^ 2. Note that Ker<7G,2 = VSCn. By using H\(Dn,p;KNk)% we also have a
crossed homomorphism

rG,k • SCn -¥ GL{n,KNk)
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Figure 5: A generating system of

called the Gassner representation for string links. We refer to [6, 5] for details. (In these
papers, only rc,i for VSCn is treated. Note that our notation is slightly different from
theirs.)

THEOREM 4 . 1 . For any string link Lofn strands, we have the equality

where

i -

I-So1 0

P R O O F : Since the proof goes parallel to that of Theorem 2.4, we omit the details.
Instead, we here explain that this result is obtained as a corollary of Theorem 2.4 when
we restrict ra,k to VS£n. By using a monoid homomorphism $ : VSCn —t Cn,i defined
by Levine [7], we showed in [14] that

holds for each pure string link L, where we identify 7 n + j e 7riEnil with <$,- 6 ^\Dn for
i = 1 , . . . , n. Then our claim follows from Theorem 2.4 by seeing the lower right part. D
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