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Abstract
This paper is an extended version of Bílková et al. ((2023b). Logic, Language, Information, and
Computation. WoLLIC 2023, Lecture Notes in Computer Science, vol. 13923, Cham, Springer Nature
Switzerland, 101–117.). We discuss two-layered logics formalising reasoning with probabilities and belief
functions that combine the Łukasiewicz [0, 1]-valued logic with Baaz � operator and the Belnap–Dunn
logic. We consider two probabilistic logics – PrŁ2� (introduced by Bílková et al. 2023d. Annals of Pure
and Applied Logic, 103338.) and 4PrŁ� (from Bílková et al. 2023b. Logic, Language, Information, and
Computation. WoLLIC 2023, Lecture Notes in Computer Science, vol. 13923, Cham, Springer Nature
Switzerland, 101–117.) – that present two perspectives on the probabilities in the Belnap–Dunn logic.
In PrŁ2� , every event φ has independent positive and negative measures that denote the likelihoods of φ
and ¬φ, respectively. In 4PrŁ� , the measures of the events are treated as partitions of the sample into four
exhaustive and mutually exclusive parts corresponding to pure belief, pure disbelief, conflict and uncer-
tainty of an agent in φ. In addition to that, we discuss two logics for the paraconsistent reasoning with belief
and plausibility functions from Bílková et al. ((2023d). Annals of Pure and Applied Logic, 103338.) – BelŁ

2

�
and BelNŁ. Both these logics equip events with two measures (positive and negative) with their main differ-
ence being that in BelŁ

2

� , the negative measure of φ is defined as the belief in ¬φ while in BelNŁ, it is treated
independently as the plausibility of ¬φ. We provide a sound and complete Hilbert-style axiomatisation of
4PrŁ� and establish faithful translations between it and PrŁ2� . We also show that the validity problem in all
the logics is coNP-complete.

Keywords: Two-layered logics; Łukasiewicz logic; non-standard probabilities; non-standard belief functions; paraconsistent
logics

1. Introduction
Classical probability and Dempster–Shafer theories study probability measures and belief func-
tions. These are maps from the set of events of a sample space W (i.e., from 2W) to [0, 1] that
are monotone w.r.t. ⊆ with additional conditions. Probability measures satisfy the (finite or
countable) additivity condition

μ

(⋃
i∈I

Ei

)
=
∑
i∈I
μ(Ei) (I ⊆ 2W , ∀i, j ∈ I : i �= j⇒ Ei ∩ Ej =∅)
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and belief functions its weaker version (total monotonicity in the terminology of Zhou 2013)

bel(W)= 1 bel

⎛
⎝ ⋃

1≤i≤k
Ei

⎞
⎠≥ ∑

J ⊆ {1, . . . , k}
J �=∅

(− 1)|J|+1 · bel

⎛
⎝⋂

j∈J
Ej

⎞
⎠ bel(∅)= 0

Above, the disjointness of Ei and Ej can be understood as their incompatibility. Most impor-
tantly, if a propositional formula φ is associated with an event ‖φ‖ (and interpreted as a statement
about it), then

μ(‖φ ∧¬φ‖)= bel(‖φ ∧¬φ‖)= 0

(since ‖φ‖ and ‖¬φ‖ are incompatible) and ‖φ ∨¬φ‖ exhausts the entire sample space, whence

μ(‖φ ∨¬φ‖)= bel(‖φ ∨¬φ‖)= 1

Paraconsistent uncertainty theory, on the other hand, assumes that the measure of an event
represents not the likelihood of it happening but an agent’s certainty therein which they infer from
the information given by the sources. In this respect, it is close to the classical Dempster–Shafer
theory that can also be considered as a generalisation of the subjective probability theory.

The main difference between the classical and paraconsistent approaches is the treatment of
negation. Dempster–Shafer theory usually deals with contradictions between different sources.
However, it is reasonable to assume that even a single source can give contradictory informa-
tion (or give no information at all): for instance, a witness in court can provide a contradictory
testimony; likewise, a newspaper article can fail to mention some event at all, without explicitly
denying or confirming it. Thus, a ‘contradictory’ event ‖φ ∧¬φ‖ can have a positive probability
or belief assignment and ‖φ ∨¬φ‖ does not necessarily exhaust the sample space. Thus, a logic
describing events should allow them to be both true and false (if the source gives contradictory
information) or neither true nor false (when the source does not give information). Formally, this
means that ¬ does not correspond to the complement in the sample space.

1.1 Belnap–Dunn logic
As one can see from the previous paragraph, we need a very special kind of negation: the one
that allows for true contradictions (and thus, rejects the principle of explosion), and, additionally,
invalidates the law of excluded middle. Thus, the following principles are no longer valid

EFQ : p∧¬p |= q LEM : p |= q∨¬q
The logics that lack EFQ are called paraconsistent, those that do not have LEM are paracomplete,
and those that fail both principles are paradefinite or paranormal (cf., e.g., Arieli and Avron 2017
for the terminology).

The simplest paradefinite logic to represent reasoning about information provided by sources
is the Belnap–Dunn logic (BD) from Belnap (1977, 2019) and Belnap (1977, 2019). Originally, BD
was presented as a four-valued propositional logic in the {¬,∧,∨} language. The values (which
we will henceforth call Belnapian values) represent different accounts a source can give regarding
a statement φ:

• T stands for ‘the source only says that φ is true’
• F stands for ‘the source only says that φ is false’
• B stands for ‘the source says both that φ is false and that φ is true’
• N stands for ‘the source does not say that φ is false nor that it is true’.
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The interpretation of the truth values allows for reformulating BD semantics in terms of two
classical but independent valuations. Namely,

is true when is false when
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

¬φ φ is false φ is true
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ1 ∧ φ2 φ1 and φ2 are true φ1 is false or φ2 is false
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ1 ∨ φ2 φ1 is true or φ2 is true φ1 and φ2 are false

It is easy to see that there are no universally true nor universally false formulas in BD. Thus, BD
satisfies the desiderata outlined above. Moreover, even if we define φ ⊃ χ as ¬φ ∨ χ , it is clear
that neither Modus Ponens, nor the Deduction theorem will hold for ⊃. That is, BD lacks the
(definable) implication (cf. Omori and Wansing 2017, Section 5.1) for a detailed discussion of
the implication in BD). This, however, is not problematic since we are going to use BD only to
represent events and conditional statements which are usually formalised with an implication do
not correspond to descriptions of events.

1.2 Probabilities and belief functions in BD
The original interpretation of the Belnapian truth values that we gave above is presented in terms
of the information one has. In this approach, however, the information is assumed to be crisp.
Theories of uncertainty over BD were introduced to formalise situations where one has access
to graded information. For instance, the first source could tell that p is true with the likelihood
0.4 and the second that p is false with probability 0.7. If one follows BD and treats positive and
negative evidence independently, one needs a non-classical notion of uncertainty measures to
represent this information.

To the best of our knowledge, the earliest formalisation of probability theory in terms of BDwas
provided by Mares (1997). The formalisation is very similar to the one that we are going to use
in this paper but bears one significant distinction. Namely, normalisedmeasures (i.e., those where
μ(W)= 1 and μ(∅)= 0) are used by Mares (1997). This requirement, however, is superfluous
since BD lacks universally (in)valid formulas.

Another formalisation is given by Dunn (2010). Dunn proposes to divide the sample space
into four exhaustive and mutually exclusive parts depending on the Belnapian value of φ. An
alternative approach was proposed by Klein et al. (2021). There, the authors propose two equiv-
alent interpretations based on the two formulations of semantics. The first option (which we call
here ±-probability) is to give φ two independent probability measures: the one determining the
likelihood of φ to be true and the other the likelihood of φ to be false. The second option (4-
probabilities) follows Dunn and divides the sample space according to whether φ has value T, B,
N, or F in a given state. Note that in both cases, the probabilities are interpreted subjectively.

The main difference between the approaches of Dunn (2010) and Klein et al. (2021) is that in
the former, the probability of φ ∧ φ′ is entirely determined by those of φ and φ′ which makes it
compositional. On the other hand, the paraconsistent probabilities proposed by Klein et al. (2021)
are not compositional w.r.t. conjunction. In this paper, we choose the latter approach since it
can be argued (cf. Dubois 2008 for the details) that belief is not compositional when it comes to
contradictory information.

A similar approach to paraconsistent probabilities was proposed by, for example, Bueno-
Soler and Carnielli (2016) and Rodrigues et al. (2021). There, probabilities are defined over an
extension of BD with classicality and non-classicality operators. It is worth mentioning that the
proposed axioms of probability are very close to those from Klein et al. (2021): for example,
both allow measures π s.t. π(φ)+ π(¬φ)< 1 (if the information regarding φ is incomplete) or
π(φ)+ π(¬φ)> 1 (when the information is contradictory).
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Belief functions over BD were first defined by Zhou (2013). There, they were presented on the
ordered sets of states. Each formula φ in this approach corresponds to two sets of states: |φ|+
(states where φ has value T or B) and |φ|− (states where it is evaluated at B or F). Moreover,
a logic formalising reasoning with belief functions was presented. A similar treatment of (non-
normalised or general in the terminology of the paper) belief functions in BDwas given by Bílková
et al. (2023d). The main difference between the two treatments of belief functions was that Bílková
et al. (2023d) considered two options for interpreting bel(|φ|−): the first one was to treat it as
the belief of ¬φ, and the second one – as the plausibility of ¬φ. Another distinction was in the
formalisation: Zhou (2013) constructs a logic for reasoning about belief functions following Fagin
et al. (1990): That is, incorporating the arithmetical operations and inequalities containing them
into the language. Bílková et al. (2023d) utilised a different approach: instead of using arithmetic
inequalities, the reasoning about belief functions is conducted in a paraconsistent expansion of
the Łukasiewicz logic Ł capable of expressing arithmetic operations on [0, 1].

1.3 Two-layered logics for uncertainty
Reasoning about uncertainty can be formalised via modal logics where the modality is understood
as a measure of an event. The concrete semantics of the modality can be defined in two ways. First,
using a modal language with Kripke semantics where the measure is defined on the set of states as
done by, for example, Gärdenfors (1975),Delgrande and Renne (2015), Delgrande et al. (2019) for
qualitative probabilities, by Dautović et al. (2021) for the quantitative ones, and by Rodriguez et
al. (2022) for the possibility and necessity measures. Second, employing a two-layered formalism
(cf. Baldi et al. 2020; Fagin et al. 1990; Fagin and Halpern 1991; Hájek et al. 1995, and Bílková et al.
2023a,b,d) for examples). There, the logic is split into two levels: the inner layer describes events,
and the outer layer describes the reasoning with the measure defined on events. The measure is
a non-nesting modality M, and the outer-layer formulas are built from ‘modal atoms’ – formulas
of the form Mφ with φ being an inner-layer formula. The outer-layer formulas are then equipped
with the semantics of a fuzzy logic that permits necessary operations (e.g., Łukasiewicz for the
quantitative reasoning and Gödel for the qualitative).

An alternative to the two-layered logics is to use the language of linear inequalities to reason
about measures of events. This is done by Fagin et al. (1990) for the classical reasoning about
probabilities and by Zhou (2013) for the reasoning with the belief functions over BD. In both cases,
it is established that the logics with inequalities and the two-layered logics are equivalent – cf. Baldi
et al. (2020) for the case of classical probabilities and Bílková et al. (2023d) for the reasoning with
belief functions and probabilities over BD.

In this paper, we study reasoning about uncertainty in a paraconsistent framework. For this,
we choose two-layered logics. First, they are more modular than the usual Kripke semantics: as
long as the logic of the event description is chosen, we can define different measures on top of
it using different outer-layer logics. Second, two-layered logics provide a uniform way to prove
completeness. This is done by translating the axioms of a given measure into formulas of the
outer-layer logic (cf. Cintula and Noguera 2014 for more details). Third, the techniques that are
used to establish the decidability of the outer-layer logic can be applied to the decidability proof
of the two-layered logic. Finally, even though the traditional Kripke semantics is more expressive
than two-layered logics, this expressivity is not necessary in many contexts. Indeed, people rarely
say something like ‘it is probable that it is probable that φ’. Moreover, it is considerably more
difficult tomotivate the assignment of truth values in the nesting case, in particular, when the same
measure is applied both to a propositional and modalised formula as in, for example, M(p∧ Mq).

We will also be formalising the quantitative reasoning. That is, we assume that the agents can
assign numerical values to their certainty in a given proposition or say something like ‘I think that
rain is twice more likely than snow’. Thus, we need a logic that can express the paraconsistent
counterparts of the additivity condition as well as basic arithmetic operations. We choose the
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Łukasiewicz logic (Ł) for the outer layer since it can define (truncated) addition and subtraction
on [0, 1].

We will focus on four logics. Two probabilistic ones: PrŁ2� (the logic of ±-probabilities), 4PrŁ�
(the logic of 4-probabilities); and two logics for belief and plausibility functions over BD intro-
duced by Bílková et al. (2023d) – BelŁ

2
� where belief and plausibility are defined via one another,

and BelNŁ where belief and plausibility are assumed to be independent.

1.4 Contributions and plan of the paper
This paper extends an earlier conference submission by Bílková et al. (2023b).We provide omitted
details for the proofs of coNP-completeness of PrŁ2� and 4PrŁ� and of the finite strong complete-
ness proof of H 4PrŁ� – the Hilbert-style axiomatisation of 4PrŁ� . The novel contribution of this
manuscript is the proof of the coNP-completeness of BelŁ

2
� and BelNŁ. We obtain this result by

establishing a correspondence between these logics and Pr(�,→)
S5 and PrNŁS5 – two logics for reason-

ing about probabilities ofmodal BD formulas that we introduce in the present paper. To apply the
technique from Hájek and Tulipani (2001), we establish a version of the small model property for
the canonical models of Pr(�,→)

S5 and PrNŁS5 . Thus, we continue the study of uncertainty via para-
consistent logics proposed by Bílková et al. (2020) and carried on by Bílková et al. (2023a,c,d). The
overarching goal of the project is to study logics that can express the following properties of beliefs.

1. Given two statements φ and χ , one can be more certain in φ than in χ but still, neither believe
in φ completely nor consider χ completely impossible.

2. Given two trusted sources, one can still prefer one source to the other.
3. One can believe in a contradiction but still not believe in something else.
4. Given two statements, it is possible that one cannot always compare their degrees of certainty

in them (if, e.g., these statements have no common content).

The remainder of the text is structured as follows. In Section 2, we recall two approaches to
probabilities over BD from Klein et al. (2021) – ±-probabilities and 4-probabilities. In Section 3,
we provide the semantics and axiomatisations of PrŁ2� and 4PrŁ� – two-layered logics for probabil-
ities and establish theirNP-completeness. In Section 4, we recall two treatments of belief functions
over BD that were presented by Bílková et al. (2023d). In Section 5, we discuss the two-layered
logics for belief functions (BelŁ

2
� and BelNŁ), establish their connections with modal probabilistic

logics Pr(�,→)
S5 and PrNŁS5 , and provide a complexity evaluation of their validity problems. Finally,

we summarise our results and set goals for future research in Section 6.

2. Probabilities over BD
In the previous section, we gave an informal presentation of BD as a four-valued logic. Since we are
going to use it to describe events, we will formulate its semantics in terms of sets of states. The lan-
guage of BD is given by the following grammar (with Prop being a countable set of propositional
variables).

LBD � φ := p ∈ Prop | ¬φ | (φ ∧ φ) | (φ ∨ φ)

Convention 1 (Notation). In what follows, Prop(φ) denotes the set of variables occurring in φ and
Lit(φ) stands for the set of literals (i.e., variables or their negations) occurring in φ.Moreover, Sf(φ)
is the set of all subformulas of φ. The length (i.e., the number of symbols) of φ is denoted with l(φ).
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We are also going to use two kinds of formulas: the single- and the two-layered ones. To make
the differentiation between them simpler, we use Greek letters from the end of the alphabet (φ, χ , ψ ,
etc.) to designate the first kind and the letters from the beginning of the alphabet (α, β , γ , . . .) for
the second kind. We use v (with indices) to stand for the valuations of single-layered formulas and e
(with indices) for the two-layered formulas.

Finally, we will use angular brackets 〈. . .〉 for tuples that designate models of logics and pairs of
valuations and round brackets ( . . . ) for pairs of numbers that are values of formulas.

Definition 2 (Set semantics of BD). Let φ, φ′ ∈LBD, W �=∅, and v+, v− : Prop→ 2W . For a
modelM= 〈W, v+, v−〉, we define notions of w �+ φ and w �− φ for w ∈W as follows.

w �+ p iff w ∈ v+(p) w �− p iff w ∈ v−(p)
w �+ ¬φ iff w �− φ w �− ¬φ iff w �+ φ

w �+ φ ∧ φ′ iff w �+ φ and w �+ φ′ w �− φ ∧ φ′ iff w �− φ or w �− φ′

w �+ φ ∨ φ′ iff w �+ φ or w �+ φ′ w �− φ ∨ φ′ iff w �− φ and w �− φ′

Given a modelM, we denote the positive and negative extensions of a formula as follows:
|φ|+M := {w ∈W |w �+ φ} |φ|−M := {w ∈W |w �− φ}.

A sequent φ � χ is satisfied on M= 〈W, v+, v−〉 (denoted, M |= [φ � χ]) iff |φ|+ ⊆ |χ |+. A
sequent φ � χ is BD-valid (φ |=BD χ) iff it is satisfied on every model. In this case, we will say that
φ entails χ in BD.

Remark 3. One can see that every φ ∈LBD can be turned into its negation normal form NNF(φ)
where ¬ is applied to variables only. This can be done via the following transformations:

¬¬p� p ¬(χ ∧ψ)�¬χ ∨¬ψ ¬(χ ∨ψ)�¬χ ∧¬ψ
Moreover, it is clear that |φ|+M = |NNF(φ)|+M and |φ|−M = |NNF(φ)|−M in every model M and that
l(NNF(φ))=O(l(φ)).

Note that the semantics in Definition 2 is a formalisation of the truth and falsity conditions of
{¬,∧,∨}-formulas we saw in the table in Section 1.1. We can now use it to define probabilities on
the models. We adapt the definitions from Klein et al. (2021).

Definition 4 (BD-models with±-probabilities).A BD-model with a±-probability is a tupleM± =
〈M,μ〉 withM being a BD-model and μ : 2W→ [0, 1] satisfying:

mon: if X⊆ Y , then μ(X)≤μ(Y);
neg: μ(|φ|−M)=μ(|¬φ|+M);
ex: μ(|φ ∨ χ |+M)=μ(|φ|+M)+μ(|χ |+M)−μ(|φ ∧ χ |+M).

To facilitate the presentation of the four-valued probabilities defined over BD-models, we
introduce additional extensions of φ defined via |φ|+ and |φ|−.
Convention 5. Let M= 〈W, v+, v−〉 be a BD-model, φ ∈LBD.We set
|φ|bM =|φ|+M \ |φ|−M |φ|dM =|φ|−M \ |φ|+M |φ|c =|φ|+ ∩ |φ|−M |φ|uM =W \ (|φ|+M ∪ |φ|−M)
We call these extensions, respectively, pure belief, pure disbelief, conflict, and uncertainty in φ,
following Klein et al. (2021).
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One can observe that these extensions correspond to the Belnapian values of φ (recall
Section 1.1):

• pure belief extension of φ is the set of states where φ has value T (i.e., exactly true, in other
words, true and not false);

• pure disbelief extension of φ is the set of states where φ has value F (i.e., exactly false, in other
words, false and not true);

• conflict extension of φ is the set of states where φ has value B (i.e., both true and false);
• uncertainty extension of φ is the set of states where φ has value N (i.e., neither true nor false).

Definition 6 (BD-models with 4-probabilities). A BD-model with a 4-probability is a tuple
M4 = 〈M,μv〉 withM being a BD-model and μ4 : 2W→ [0, 1] satisfying:

part: μ4(|φ|bM)+μ4(|φ|dM)+μ4(|φ|uM)+μ4(|φ|cM)= 1;
neg: μ4(|¬φ|bM)=μ4(|φ|dM), μ4(|¬φ|cM)=μ4(|φ|cM);
contr: μ4(|φ ∧¬φ|bM)= 0, μ4(|φ ∧¬φ|cM)=μ4(|φ|cM);
BCmon: if M |= [φ � χ], then μ4(|φ|bM)+μ4(|φ|cM)≤μ4(|χ |bM)+μ4(|χ |cM);
BCex: μ4(|φ|b)+μ4(|φ|c)+μ4(|ψ |b)+μ4(|ψ |c)=μ4(|φ ∧ψ |b)+μ4(|φ ∧ψ |c)+
μ4(|φ ∨ψ |b)+μ4(|φ ∨ψ |c).

Convention 7. We will further omit lower indices in |φ|+M, |φ|−M, |φ|bM, etc. and write |φ|+, |φ|−,
|φ|b, etc. when the model is clear from the context.

We will utilise the following naming convention:
• we use the term ‘±-probability’ to stand for μ from Definition 4;
• we call μ4 from Definition 6 a ‘4-probability’ or a ‘four-valued probability’.

Recall that ±-probabilities are referred to as ‘non-standard’ by Klein et al. (2021) and Bílková et
al. (2023). As this term is too broad (four-valued probabilities are not ‘standard’ either), we use a
different designation.

Let us quickly discuss the measures defined above. First, observe that μ(|φ|+) and μ(|φ|−) are
independent from one another. Thus, μ gives two measures to each φ, as desired. Second, recall
(Klein et al. 2021, Theorems 2–3) that every 4-probability on a BD-model induces a±-probability
and vice versa. In the following sections, we will define two-layered logics for BD-models with±-
and 4-probabilities and show that they can be faithfully embedded into each other. It is instructive
to note, moreover, that while ±- and 4-probabilities can be simulated by the classical ones, they
do behave in a very different way.

Convention 8 (Notation in models). Throughout the paper, we are going to give examples of var-
ious models. We use the following notation for values of variables in the states of a given model.

notation meaning

w : p+ w�+ p and w�
− p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w : p− w�− p and w�
+ p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w : p± w�+ p and w�− p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w :��p w�
+ p and w�

− p
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Figure 1. A counterexample to (IE): μ({u1})=μ({u2})= 1
3 , μ(W)= 1, and μ(∅)= 0. All variables have the same values

exemplified by p.

Figure 2. The values of all variables coincide with the values of p state-wise. μ(X)= 1
2 for every X ⊆W; π (∅)= π ({w′1})= 0,

π (W′)= 1, π (X′)= 1
2 otherwise.

Example 9 (Paraconsistent vs. classical probabilities). First of all, observe that a±-probability can
be uniform. Indeed, for every c ∈ [0, 1] and every BD-model 〈W, v+, v−〉, it is easy to check that the
assignment ∀X⊆W :μ(X)= c is a±-probability.

Second, the general import-export condition
μ(X ∪ Y)=μ(X)+μ(Y)−μ(X ∩ Y) (IE)

that is true for the classical probabilities does not hold if μ is a ±-probability. For consider Fig. 1.
One can see that μ is monotone and that μ(|φ|+)=μ(|φ|−)= 0 for every φ ∈LBD (whence, μ is a
±-probability). On the other hand, it is clear that μ(W) �=μ({u1})+μ({u2})−μ(∅).

This, however, is not a problem since for every BD-model with a ±-probability 〈W, v+, v−,μ〉,
there exists a BD-model 〈W′, v′+, v′−, π〉 with a classical probability measure π s.t. π(|φ|+)=
μ(|φ|+) (Klein et al. 2021, Theorem 4).

First of all, for the case of the model shown in Fig. 1, one can either define π({u1})= π({u2})= 1
2

or add a new state u3 where all variables are neither true nor false. For a bit more refined example,
consider Fig. 2 and set W = {w1,w2} and W′ = {w′1,w′2,w′3}. It is clear that for every φ ∈LBD,
μ(|φ|+)= π(|φ|+)= 1

2 .
Likewise, μ4 is not necessarily monotone w.r.t.⊆ (which is required of the classical probabilities)

since not every subset of a model is represented by an extension of an LBD formula. Again, it is
not a problem since for every BD-model with 4-probability 〈W, v+, v−,μ4〉, there exist a BD-model
〈W′, v′+, v′−, π〉 with a classical probability measure π s.t. π(|φ|x)=μ4(|φ|x) for x ∈ {b, d, c, u}
(Klein et al. 2021, Theorem 5).

Thus, we will further assume w.l.o.g. that μ and μ4 are classical probability measures on W.

3. Logics for paraconsistent probabilities
In the Introduction, we saw that there could be two views on formalising paraconsistent prob-
abilities (or uncertainty measures in general). The first option is to define probabilities in a
paraconsistent logic. This is done, for example, by Dunn (2010), Bueno-Soler and Carnielli (2016),
andKlein et al. (2021). Another option is to employ a two-layered frameworkwhere the outer layer
is not explosive as Flaminio et al. (2022) do. Our approach can be thought of as a combination of
these two. Not only are our probabilities defined over a paraconsistent logic, but the logic with
which we reason about them is also non-explosive.

In this section, we provide two-layered logics that are (weakly) complete w.r.t. BD-models with
±- and 4-probabilities. Since conditions on measures contain arithmetic operations on [0, 1], we
choose an expansion of Łukasiewicz logic, namely, Łukasiewicz logic with � (Ł�), for the outer
layer. Furthermore,±-probabilities work with both positive and negative extensions of formulas,
whence it is reasonable to use Ł2(�,→) – a paraconsistent expansion of Ł (cf. Bílková et al. 2020 and
2021 for details) with two valuations – v1 (support of truth) and v2 (support of falsity) – on [0, 1].
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3.1 Languages, semantics, and equivalence
Let us first recall the semantics of Ł� and Ł2(�,→). To facilitate the presentation, we begin with the
definition of the standard Ł� algebra on [0, 1] that we will then use to define the semantics of both
Ł� and Ł2(�,→).

Definition 10. The standard Ł� algebra is a tuple 〈[0, 1],∼Ł,�Ł,∧Ł,∨Ł,→Ł,�Ł,⊕Ł,�Ł〉 with
the operations are defined as follows.

∼Ła := 1− a �Ła :=
{
1 if a= 1
0 otherwise

a∧Ł b :=min (a, b) a∨Ł b :=max (a, b) a→Ł b :=min (1, 1− a+ b)
a�Ł b :=max (0, a+ b− 1) a⊕Ł b :=min (1, a+ b) a�Ł b :=max (0, a− b)

Definition 11 (Ł�) The language of Ł� is given via the following grammar
LŁ � φ := p ∈ Prop | ∼φ | �φ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (φ � φ) | (φ ⊕ φ) | (φ � φ)

We will also write φ↔ χ as a shorthand for (φ→ χ)� (χ→ φ).
A valuation is a map v : Prop→ [0, 1] that is extended to the complex formulas as expected:

v(φ ◦ χ)= v(φ) ◦Ł v(χ).
φ is Ł�-valid iff v(φ)= 1 for every v. 	 entails χ (denoted 	 |=Ł� χ) iff for every v s.t. v(φ)= 1

for all φ ∈ 	, it holds that v(χ)= 1 as well.

Definition 12 (Ł2(�,→)). The language is constructed using the following grammar.

LŁ2(�,→)
� φ := p ∈ Prop | ¬φ | ∼φ | �φ | (φ→ φ)

The semantics is given by two valuations v1 (support of truth) and v2 (support of falsity) v1, v2 :
Prop→ [0, 1] that are extended as follows.

v1(¬φ)= v2(φ) v2(¬φ)= v1(φ)
v1(∼φ)=∼Łv1(φ) v2(∼φ)=∼Łv2(φ)
v1(�φ)=�Łv1(φ) v2(�φ)=∼Ł�Ł∼Łv2(φ)

v1(φ→ χ)= v1(φ)→Ł v1(χ) v2(φ→ χ)= v2(χ)�Ł v2(φ)

We say that φ is Ł2(�,→)-valid iff for every v1 and v2, it holds that v1(φ)= 1 and v2(φ)= 0.

Convention 13. When there is no risk of confusion, we will use v(φ)= (x, y) to stand for v1(φ)= x
and v2(φ)= y.

Remark 14. Note that ∼ and→ can define all other binary connectives in Ł� and Ł2(�,→).

φ ∨ χ := (φ→ χ)→ χ φ ∧ χ :=∼(∼φ ∨∼χ) φ ⊕ χ :=∼φ→ χ

φ � χ :=∼(φ→∼χ) φ � χ := φ �∼χ φ↔ χ := (φ→ χ)� (χ→ φ)

We are now ready to present our two-layered logics for paraconsistent probabilities: PrŁ2� – the
logic of±-probabilities and 4PrŁ� – the logic of 4-probabilities.
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Definition 15 (4PrŁ� : language and semantics). The language of 4PrŁ� is constructed via the
following grammar:

L4PrŁ� � α := Blφ | Dbφ | Cfφ | Ucφ | ∼α | �α | (α→ α) (φ ∈LBD)

A 4PrŁ�-model is a tupleM= 〈M,μ4, e〉 s.t.

• 〈M,μ4〉 is a BD-model with 4-probability;
• e is a Ł� valuation induced by μ4, that is:

– e(Blφ)=μ4(|φ|b), e(Dbφ)=μ4(|φ|d), e(Cfφ)=μ4(|φ|c), e(Ucφ)=μ4(|φ|u);
– values of complex L4PrŁ� -formulas are computed via Definition 11.

We say that α is 4PrŁ�-valid iff e(α)= 1 in every 4PrŁ�-model. A set of formulas 	 entails α
(	 |=4PrŁ� α) iff there is noM s.t. e(γ )= 1 for every γ ∈ 	 but e(α) �= 1.

Definition 16 (PrŁ2� : language and semantics). The language of PrŁ2� is given by the following
grammar

LPrŁ2�
� α := Prφ | ∼α | ¬α | �α | (α→ α) (φ ∈LBD)

A PrŁ2� -model is a tupleM= 〈M,μ, e1, e2〉 s.t.

• 〈M,μ〉 is a BD-model with±-probability;
• e1 and e2 are Ł2(�,→) valuations induced by μ, that is:

– e1(Prφ)=μ(|φ|+), e2(Prφ)=μ(|φ|−);
– the values of complex LPrŁ2�

formulas are computed following Definition 12.

We say that α is 4PrŁ�-valid iff e(α)= 1 in every 4PrŁ�-model. A set of formulas 	 entails α
(	 |=4PrŁ� α) iff there is noM s.t. e(γ )= 1 for every γ ∈ 	 but e(α) �= 1.

We note quickly that in Definitions 15 and 16, e (as well as e1 and e2) are valuations of
outer-layer formulas. Thus, they are defined only on modal atoms, not propositional variables.
Propositional variables, in turn, have their values assigned by v+ and v− valuations of the
BD-model over which the 4PrŁ�- or PrŁ2� -model is built.

The following property of PrŁ2� will be useful further in the section.

Lemma 17. Let α ∈LPrŁ2�
. Then, α is PrŁ2� -valid iff e1(α)= 1 in every PrŁ2� -model.

Proof. LetM= 〈W, v+, v−,μ, e1, e2〉 be a PrŁ2� -model s.t. e2(α) �= 0. We construct a modelM∗ =
〈W, (v∗)+, (v∗)−,μ, e∗1, e∗2〉 where e∗1(α) �= 1. To do this, we define new BD valuations (v∗)+ and
(v∗)− onW as follows.

(v∗)+ =W \ v− (v∗)− =W \ v+
It can be easily checked by induction on φ ∈LBD that

|φ|+
M
=W \ |φ|−

M∗ |φ|−
M
=W \ |φ|+

M∗ (1)
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Figure 3. μ({w1})= 1
3 ,μ({w2})= 1

2 ,μ({w3})= 1
6 .

Now, since we can w.l.o.g. assume that μ is a (classical) probability measure on W (recall
Example 9), we have that

e∗(Prφ)= (1−μ(|φ|−), 1−μ(|φ|+))= (1− e2(Prφ), 1− e1(Prφ)) (2)

It remains to show that e∗(α)= (1− e2(α), 1− e1(α)) for every α ∈LPrŁ2�
. We proceed by

induction on formulas. The basis case of α = Prφ holds by (2).
Consider α = β→ β ′.

e∗1(β→ β ′)=min (1, 1− e∗1(β)+ e∗1(β ′))
=min (1, 1− (1− e2(β))+ (1− e2(β ′))) ( by IH)
=min (1, 1− e2(β ′)+ e2(β))
= 1−max (0, e2(β ′)− e2(β))
= 1− e2(β→ β ′)

e∗2(β→ β ′)=max (0, e∗2(β ′)− e∗2(β))
=max (0, 1− e1(β ′)− (1− e1(β))) ( by IH)
=max (0, e1(β)− e1(β ′))
= 1−min (1, 1− e1(β)+ e1(β ′))

The remaining cases of α =¬β , α =∼β , and α =�β can be tackled similarly.
It is now clear that if e(α)= (1, y) for some y> 0, we have e∗(α)= (1− y, 0), that is, e∗1(α)< 1,

as required. The result follows. �

Example 18 (Values of formulas in models). Consider Fig. 3 with a classical probability μ. Let us
compute the values of the following (atomic) formulas: Pr(p∧¬q), Db(p∧¬q), and Bl(q∨¬q).

We have |p∧¬q|+ = {w1} and |p∧¬p|− = {w1,w3}. Thus, μ(|p∧¬q|+)= 1
3 and μ(|p∧

¬q|−)= 1
2 which gives us e(Pr(p∧¬q))= ( 13 , 12). Moreover, |p∧¬q|d = {w3}, whence Db(p∧

¬q)= 1
6 . For q∨¬q, we have |q∨¬q|b = {w2}, and thus, e(Bl(q∨¬q))= 1

2 .

Before establishing faithful translations between PrŁ
2
� and 4PrŁ� , let us recall that in the

Introduction, we mentioned that quantitative statements about uncertainty expressed in the nat-
ural language may sound like ‘I think that rain is twice more likely than snow’. We show how to
formalise this statement.

Example 19 (Formalisation).

twice: I think that rain is twice more likely than snow.

We are going to translate this statement into L4PrŁ� and treat ‘I think that’ as pure belief modality.
We denote ‘it is going to rain’ with r and ‘it is going to snow’ with s. It remains to write down a
formula φtwice that has value 1 iff e(Blr)= 2 · e(Bls). Consider the following formula

φtwice =�((Blr� Bls)↔ Bls)
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Note that a more intuitive formalisation – �(Blr↔ (Bls⊕ Bls)) – would not work: ⊕ is a trun-
cated sum, whence it, e.g., does not exclude the situation with both Blr and Bls having value 1. It
can, however, be altered as follows: �(Blr↔ (Bls⊕ Bls))∧∼(Bls� Bls) which will give the desired
outcome.

It is also clear that desiderata (1), (3), and (4) listed in Section 1.4 are satisfied by both 4PrŁ�
and PrŁ2� . It is less straightforward, however, to see how we can formalise preferring one source to
another (desideratum (2)). We explain this in the following remark.

Remark 20. To represent different sources, one can consider BD-models with several measures, each
representing a source, and, accordingly, expand the language with other modalities corresponding to
these new measures. We can state, for example, that one source (s1) considers φ to be more likely
than the other source (s2) does. In 4PrŁ� we can interpret this as the value of Bls1φ being smaller
than the value of Bls2φ. This is formalised as follows:

∼�(Bls2φ→ Bls1φ)
Unfortunately, there seems to be no direct way of representing the degrees of trust the agent assigns
to s1 and s2 using only modalities treated as measures in the Łukasiewicz setting. A traditional way
(cf., e.g., Shafer 1976, p. 252) of accounting for the degree of trust in a given source is to multiply the
value a mass function gives to X⊆W by some x ∈ [0, 1]. Thus, to model this approach, one would
need a combination of Rational Pavelka and Product logics. Another option would be to redefine
e(Blsφ)= (trs �Ł μ(|φ|b)) and similarly for other modalities (with trs ∈ [0, 1] standing for the trust
in source s). It is unclear, however, how to axiomatise this logic.

It is possible, though, to make different modalities stand for different types of measures (e.g., Bls1
can be generated by a 4-probability while Bls2 by a belief function). This represents the different ways
of aggregating the data the agent can have.

We finish the section by establishing faithful embeddings of 4PrŁ� and PrŁ2� into one another.
First, we introduce some technical notions that will simplify the proof.

Convention 21. We say that α ∈LPrŁ2�
is outer-¬-free when ¬’s appear only inside modal atoms.

Definition 22. Let φ ∈LBD and α ∈LPrŁ2�
. α¬ is produced from α by successively applying the

following transformations.
¬Prφ� Pr¬φ ¬¬α� α ¬∼α�∼¬α

¬(α→ α′)�∼(¬α′ →¬α) ¬�α�∼�∼¬α

It is easy to see that α¬ is outer-¬-free. Using Definitions 12 and 16, one can also check that
e(α)= e(α¬) in every PrŁ2� -model.

Definition 23. Let φ ∈LBD and α ∈LPrŁ2�
be outer-¬-free. We define α4 ∈L4PrŁ� as follows.

(Prφ)4 = Blφ ⊕ Cfφ
(♥α)4 =♥α4 (♥∈ {�,∼})

(α→ α′)4 = α4→ α
′4
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Let β ∈L4PrŁ� .We define β± as follows.

(Blφ)± = Prφ � Pr(φ ∧¬φ)
(Cfφ)± = Pr(φ ∧¬φ)
(Ucφ)± =∼Pr(φ ∨¬φ)
(Dbφ)± = Pr¬φ � Pr(φ ∧¬φ)
(♥β)± =♥β± (♥∈ {�,∼})

(β→ β ′)± = β±→ β
′±

Theorem 24. α ∈LPrŁ2�
is PrŁ2� -valid iff (α¬)4 is 4PrŁ�-valid.

Proof. Let w.l.o.g. M= 〈W, v+, v−,μ, e1, e2〉 be a BD-model with ±-probability where μ

is a classical probability measure and let e(α)= (x, y). We show that in the BD-model
M4 = 〈W, v+, v−,μ, e1〉 with four-probability μ and e4 induced by μ, e4((α¬)4)= x. This is
sufficient to prove the result because if α¬ is not PrŁ2� -valid, PrŁ2� -valid PrŁ2� -valid either.

We proceed by induction on α¬. For the basis case, we have that
e1(Prφ)=μ(|φ|+)

=μ(|φ|b ∪ |φ|c)
=μ(|φ|b)∪μ(|φ|c) (|φ|b and |φ|c are disjoint )
= e4(Blφ)+ e4(Cfφ) (e4 is induced by μ)

= e4(Blφ ⊕ Cfφ) (e4(Blφ)+ e4(Cfφ)≤ 1)

The cases of connectives can be obtained by an application of the induction hypothesis.
Conversely, since the support of truth conditions in Ł2(�,→) coincide with the semantics of

Ł� (cf. Definitions 11 and 12) and since α¬ is outer-¬-free, if e(α¬)< 1 for some 4PrŁ�-model
M4 = 〈W, v+, v−,μ, e〉, then e1(α¬)< 1 forM= 〈W, v+, v−,μ, e1, e2〉 with e= e1.

We proceed by induction on α¬ (recall that e(α)= e(α¬) in all PrŁ2� -models). If α = Prφ,
then e1(Prφ)=μ(|φ|+)=μ(|φ|b ∪ |φ|c). But |φ|b and |φ|c are disjoint, whence μ(|φ|b ∪ |φ|c)=
μ(|φ|b)+μ(|φ|c), and since μ(|φ|b)+μ(|φ|c)≤ 1, we have that e1(Blφ ⊕ Cfφ)=μ(|φ|b)+
μ(|φ|c)= e1(Prφ), as required.

The induction steps are straightforward since the semantic conditions of support of truth in
Ł2� coincide with the semantics of Ł� (cf. Definitions 12 and 11). �

Theorem 25. β ∈L4PrŁ� is 4PrŁ�-valid iff β± is PrŁ2� -valid.

Proof. Assume w.l.o.g. that M= 〈W, v+, v−,μ4, e〉 is a BD-model with a 4-probability where μ4
is a classical probability measure and e(β)= x. It suffices to define a BD-model with±-probability
M
± = 〈W, v+, v−,μ4, e1, e2〉 and show that e1(β±)= x. If e(β)< 1, then e(β±)< 1 (and thus, is

not valid). If β± is not valid, we have that e1(β±)< 1 by Lemma 17, whence e(β)< 1, as well.
We proceed by induction on β . If β = Blφ, then e(Blφ)=μ4(|φ|b). Now observe that

μ4(|φ|+)=μ(|φ|b ∪ |φ|c)=μ4(|φ|b)+μ4(|φ|c) since |φ|b and |φ|c are disjoint. But μ4(|φ|+)=
e1(Prφ) and μ4(|φ|c)=μ4(|φ∧¬φ|+) since |φ∧¬φ|+=|φ|c. Thus, μ4(|φ|b)= e1(Prφ � Pr(φ ∧
¬φ)) as required.

Other basis cases of Cfφ, Ucφ, and Dbφ can be tackled similarly. The induction steps are
straightforward since the support of truth in Ł2� coincides with semantical conditions in Ł�. �
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We finish the section with a straightforward observation.

Lemma 26. Let α ∈LPrŁ2�
and β ∈L4PrŁ� . Then l((α¬)4)=O(l(α)) and l(β)=O(l(β±)).

Proof. To simplify the presentation of the proof, we will further assume that l(Yφ)= l(φ)+ 2
for every Y ∈ {Pr, Bl, Cf, Uc, Db}. We begin with α. From Definition 22, it is clear that l(α¬)=
O(l(α)). It remains to show by induction on α¬ that l((α¬)4)=O(l(α¬)).

The basis case of α¬ = Prφ is simple: l(Prφ)= l(φ)+ 2, whence

l((Prφ)4)= l(Blφ ⊕ Cfφ)= 2 · l(φ)+ 7=O(l(α¬))
Here, 7 is the sum of lengths of modalities,⊕, and outer brackets in (Prφ)4.

Now let α¬ = (α1→ α2). Then l(α¬)= l(α1)+ l(α2)+ 3 (we count outer brackets here).
Since (α1→ α2)4 = α41 → α42 , we have l(α

4
1 → α42)= l(α41)+ l(α42)+ 3. We apply the induction

hypothesis and obtain that l(α41 → α42)=O(l(α1))+O(l(α2))+ 3=O(l(α1→ α2)).
The cases of α =�α′ and α =∼α′ can be dealt with in the same manner.
Consider now β ∈L4PrŁ� . We show by induction on β that l(β±)=O(l(β)). Assume that

β = Blφ. Then (Blφ)± = Prφ � Pr(φ ∧¬φ). Observe that Prφ � Pr(φ ∧¬φ) is a shorthand for
∼(Prφ→ Pr(φ ∧¬φ)). Thus, we have

l(∼(Prφ→ Pr(φ ∧¬φ)))= 3 · l(φ)+ 12=O(l(Blφ))
Note again that 12 is the sum of the lengths of modalities, ∧, ¬,→, ∼, and brackets in ∼(Prφ→
Pr(φ ∧¬φ)). The cases of other modal atoms are similar. The cases of β = β1→ β2, β =�β ′,
and β =∼β ′ can be considered in the same way as we did (α¬)4. The result now follows since
modalities do not nest. �

3.2 Axiomatisations
In this section, we present Hilbert-style calculi H PrŁ

2
� and H 4PrŁ� that axiomatise PrŁ2� and

4PrŁ� . The completeness of H PrŁ
2
� w.r.t. finite theories (Ł is not compact, whence there are no

finite calculi for expansions of Ł complete w.r.t. countable theories) was established by Bílková et
al. (2023d). Here, we prove the completeness of H 4PrŁ� .

To construct the calculi, we translate the conditions on measures from Definitions 4 and 6 into
LPrŁ2�

and L4PrŁ� formulas. We then use these translated conditions as additional axioms that

extend Hilbert-style calculi for Ł� and Ł� and Ł2(�,→).
To facilitate the presentation, we recall these Hilbert calculi for Ł�. The axiomatisation of Ł�

can be obtained by adding �-axioms and rules from Baaz (1996), Hájek (1998, Definition 2.4.5),
or Běhounek et al. (2011, Chapter I, 2.2.1) to the Hilbert-style calculus for Ł from Metcalfe et al.
(2008, Section 6.2).

Definition 27 (H Ł� – the Hilbert-style calculus for Ł�). The calculus contains the following
axioms and rules.

w: φ→ (χ→ φ).
sf: (φ→ χ)→ ((χ→ψ)→ (φ→ψ)).
waj: ((φ→ χ)→ χ)→ ((χ→ φ)→ φ).
co: (∼χ→∼φ)→ (φ→ χ).
MP:

φ φ→ χ

χ
.

�1:�φ ∨∼�φ.
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�2:�φ→ φ.
�3:�φ→��φ.
�4:�(φ ∨ χ)→�φ ∨�χ .
�5:�(φ→ χ)→�φ→�χ .
�nec: φ�φ .

Proposition 28 (Finite strong completeness of H Ł�). Let 	 be finite. Then 	 |=Ł� φ iff 	 �H Ł�
φ.

The calculus for Ł2(�,→) is acquired by adding the axioms for ¬ (cf. Bílková et al. 2023 for details).

Definition 29 (H Ł2(�,→) – Hilbert-style calculus for Ł2(�,→)). The calculus expands H Ł� with
the following axioms and rules.

¬¬: ¬¬φ↔ φ.
¬∼: ¬∼φ↔∼¬φ.
∼¬→: (∼¬φ→∼¬χ)↔∼¬(φ→ χ).
¬�: ¬�φ↔∼�∼¬φ.
conf:

φ

∼¬φ .

The completeness ofH Ł2(�,→) was shown in Bílková et al. (2023, Lemma 4.16) (there, the logic
is called Ł2).

The calculi for PrŁ2� and 4PrŁ� are as follows.

Definition 30 (H PrŁ
2
� – a Hilbert-style calculus for PrŁ2� ). The calculus has the following axioms

and rules.

Ł2(�,→): Ł
2
(�,→)-valid formulas and H Ł2(�,→) rules instantiated in LPrŁ2�

;
±mon: Prφ→ Prχ if φ |=BD χ ;
±neg: Pr¬φ↔¬Prφ;
±ex: Pr(φ ∨ χ)↔ ((Prφ � Pr(φ ∧ χ))⊕ Prχ).

It is important to note that ±neg is not connected to the ±-probability of the complement of
an event. Indeed, it contains only BD negations and is, thus, a translation of the neg property from
Definition 4.

Proposition 31 (Finite strong completeness of H PrŁ
2
� Bílková et al. 2023d, Theorem 4.24). Let


⊆LPrŁ2�
be finite. Then
 |=PrŁ2� α iff 
�

H PrŁ2�
α.

Definition 32 (H 4PrŁ� – Hilbert-style calculus for 4PrŁ�). The calculus H 4PrŁ� consists of the
following axioms and rules.

Ł�: Ł�-valid formulas and sound rules instantiated in L4PrŁ� .
4equiv: Xφ↔ Xχ for every φ, χ ∈LBD s.t. φ �� χ is BD-valid and X ∈ {Bl, Db, Cf, Uc}.
4contr: ∼Bl(φ ∧¬φ); Cfφ↔ Cf(φ ∧¬φ).
4neg: Bl¬φ↔ Dbφ; Cf¬φ↔ Cfφ.
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4mon: (Blφ ⊕ Cfφ)→ (Blχ ⊕ Cfχ) for every φ, χ ∈LBD s.t. φ � χ is BD-valid.
4part1: Blφ ⊕ Dbφ ⊕ Cfφ ⊕ Ucφ.
4part2: ((X1φ ⊕ X2φ ⊕ X3φ ⊕ X4φ)� X4φ)↔ (X1φ ⊕ X2φ ⊕ X3φ) with Xi �= Xj,

Xi ∈ {Bl, Db, Cf, Uc}.
4ex: (Bl(φ ∨ χ)⊕ Cf(φ ∨ χ))↔ ((Blφ ⊕ Cfφ)� (Bl(φ ∧ χ)⊕ Cf(φ ∧ χ))⊕ (Blχ⊕

Cfχ)).

As one can see, the axioms in the calculi above are translations of properties from Definitions
4 and 6. In H 4PrŁ� , we split 4part in two axioms to ensure that the values of Blφ, Dbφ, Cfφ,
and Ucφ sum up exactly to 1. Note, moreover, that 4mon and 4ex are translations of ±mon and
±ex (cf. Definition 23). However, since other H 4PrŁ�-axioms cannot be obtained as transla-
tions of H PrŁ

2
� -axioms (nor, in fact, any PrŁ2� -valid formulas), soundness and completeness of

H 4PrŁ� cannot be established as a consequence of Theorem 24 and completeness of H PrŁ
2
�

(Proposition 31).
In the remainder of this section, we prove the completeness of H 4PrŁ� w.r.t. finite theories.

Theorem 33. Let 
⊆L4PrŁ� be finite. Then
 |=4PrŁ� α iff 
�
H 4PrŁ� α.

Proof. Soundness can be established by the routine check of the validity of the axioms. For exam-
ple for 4equiv, observe that if φ and χ are equivalent in BD, then |φ|+ = |χ |+ and |φ|− = |χ |−,
whence |φ|x = |χ |x for every x ∈ {b, d, c, u}. Thus, e(Xφ)= e(Xχ) for each X ∈ {Bl, Db, Cf, Uc},
from where Xφ↔ Xχ is valid. 4contr, 4neg, and 4mon are straightforward translations of contr,
neg, and BCmon. 4ex is the translation of±ex, whence are valid by Theorem 24.

Last, consider 4part1 and 4part2. We have
∑

x∈{b,d,c,u}
|φ|x = 1. Hence,

∑
X∈{Bl,Db,Cf,Uc}

e(Xφ)= 1. Thus,

we have that 4part1 and 4part2 are valid.
Let us now prove the completeness. We reason by contraposition. Assume that 
 �

H 4PrŁ� α.
Now, observe that H 4PrŁ� proofs are, actually, Ł� proofs with additional probabilistic axioms.
Let
∗ stand for
 extended with probabilistic axioms built over all pairwise non-equivalent LBD
formulas constructed from Prop[
∪ {α}]. Clearly, 
∗ �

H 4PrŁ� α either. Moreover, 
∗ is finite
as well since BD is tabular (and whence, there exist only finitely many pairwise non-equivalent
LBD formulas over a finite set of variables). Now, by the weak completeness of Ł� (Proposition
28), there exists an Ł� valuation e s.t. e[
∗]= 1 and e(α) �= 1.

It remains to construct a 4PrŁ�-model 
∗ |=4PrŁ� α using e. We proceed as follows. First, we
set W = 2Lit[
∗∪{α}], and for every w ∈W define w ∈ v+(p) iff p ∈w and w ∈ v−(p) iff ¬p ∈w.
We extend the valuations to φ ∈LBD in the usual manner. Then, for Xφ ∈ Sf[
∗ ∪ {α}], we set
μ4(|φ|x)= e(Xφ) according to modality X.

It remains to extend μ4 to the whole 2W . Observe, however, that any map from 2W to [0, 1]
that extends μ4 is, in fact, a 4-probability. Indeed, all requirements from Definition 6 concern
only the extensions of formulas. But the model is finite, BD is tabular, and 
∗ contains all the
necessary instances of probabilistic axioms and e[
∗]= 1, whence all constraints on the formulas
are satisfied. �

3.3 Complexity

Let us now establish the complexity of PrŁ2� and 4PrŁ� . Namely, we prove their NP-completeness.
Since the mutual embeddings given in Definition 23 result in an at most linear increase in the size
of the PrŁ2� polynomial algorithm for PrŁ2� since it contains only one modality which will simplify
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the presentation. Note, furthermore, that Ł� (and thus, Ł2(�,→)) areNP-hard, thus, Pr
Ł2� and 4PrŁ�

are NP-hard as well. Thus, we only need to establish the upper bound.
For the proof, we adapt constraint tableaux for Ł2 defined by Bílková et al. (2021) and expand

themwith FP(Ł) of Hájek and Tulipani (2001) to establish our result. of Hájek and Tulipani (2001)
to establish our result.

Definition 34 (Constraint tableaux for Ł2(�,→) – T
(
Ł2(�,→)

)
). Branches contain labelled formulas

of the form φ �1 i, φ �2 i, φ �1 i, or φ �2 i, and numerical constraints of the form i≤ j with i and
j (labels) being linear polynomials over [0, 1]. Each branch can be extended by an application of a
rule below.

¬�1
¬φ �1 i
φ �2 i

¬�2
¬φ �2 i
φ �1 i

¬�1
¬φ �1 i
φ �2 i

¬�2
¬φ �2 i
φ �1 i

∼�1
∼φ �1 i
φ �1 1− i

∼�2
∼φ �2 i
φ �2 1− i

∼�1
∼φ �1 i
φ �1 1− i

∼�2
∼φ �2 i
φ �2 1− i

��1
�φ �1 i

i≤ 0

∣∣∣∣∣∣
φ �1 j

j≥ 1

��1
�φ �1 i

i≥ 1

∣∣∣∣∣∣
φ �1 j

j< 1

��2
�φ �2 i

i≥ 1

∣∣∣∣∣∣
φ � j

j≤ 0

��2
�φ �2 i

i≤ 0

∣∣∣∣∣∣
φ � j

j> 0

→�1
φ1→ φ2 �1 i

i≥1

∣∣∣∣∣∣∣∣
φ1�11−i+j
φ2 �1 j

j≤ i

→�2
φ1→φ2�2i

φ1 �2 j

φ2�2i+j

→�1
φ1→φ2 �1 i

φ1�11−i+j
φ2 �1 j

→�2
φ1→ φ2 �2 i

i≤0

∣∣∣∣∣∣∣∣
φ1�2j

φ2�2i+j
j≤ 1− i

Let i’s be linear polynomials that label the formulas in the branch and x’s be variables ranging over
[0, 1].We define the translation t from labelled formulas to linear inequalities as follows:

t(φ �1 i)= xLφ ≤ i; t(φ �1 i)= xLφ ≥ i; t(φ �2 i)= xRφ ≤ i; t(φ �2 i)= xRφ ≥ i

Let � ∈ {�1,�1,�2,�2}. A tableau branch
B= {φ1�i1, . . . , φm�im, k1 ≤ l1, . . . , kq ≤ lq}

is closed if the system of inequalities

Bt= {t(φ1�i1), . . . , t(φm�im), k1 ≤ l1, . . . , kq ≤ lq}
does not have solutions. Otherwise, B is open. If no rule application adds new entries to B, it is
called complete. A tableau is closed if all its branches are closed. φ has a T

(
Ł2(�,→)

)
proof if the

tableau beginning with {φ �1 c, c< 1} is closed.
Remark 35. Let us briefly remark on how to interpret rules and entries in the tableau. Consider,
for instance, the rule→�2. It’s meaning is: v2(φ1→ φ2)≤ i iff there is j ∈ [0, 1] s.t. v2(φ1)≥ j and
v2(φ2)≤ i+ j. Thus, ψ �1 i means that v1(φ)≤ i, ψ �2 i that v2(ψ)≥ i, etc.

Furthermore, our tableaux rules for � are necessarily branching in contrast to the rules for
standard Ł connectives proposed by Hähnle (1992, 1994). This is because all connectives Ł are
continuous. On the other hand, � is not continuous, hence, there cannot be a non-branching rule
for it.
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Definition 36 (Satisfying valuation of a branch). Let v1 and v2 be Ł2(�,→) valuations. v1 satisfies a
labelled formula φ �1 i (v2 satisfies φ �2 i) iff v1(φ)≤ i (resp., v2(φ)≥ i). v1 satisfies a branch B iff
v1 satisfies every labelled formula in B (and similarly for v2). A branch B is satisfiable iff there is a
pair of valuations 〈v1, v2〉 that satisfies it.
Theorem 37 (Completeness of tableaux).

1. φ is Ł�-valid iff it has a T
(
Ł2(�,→)

)
proof.

2. φ is Ł2(�,→)-valid iff it has a T
(
Ł2(�,→)

)
proof.

Proof. The proof follows Bílková et al. (2021, Theorem 1). For soundness, we show that if 〈v1, v2〉
satisfies the premise of a rule, then it also satisfies one of its conclusions. We consider the case of
��1 (the rules for other connectives are tackled by Bílková et al. (2021); the remaining rules for
� can be dealt with analogously).

Let�φ �1 i be satisfied by 〈v1, v2〉. Then, v1(�φ)� i. We have two cases: (i) i= 0 and (ii) i> 0.
In the first case, the left conclusion is satisfied. In the second case, v1(�φ)= 1. Hence, v1(φ)= 1,
that is, the right conclusion is satisfied.

For completeness, note from Bílková et al. (2021, Proposition 1) that φ is Ł2(�,→)-valid iff
v1(φ)= 1 for every v. Let us now show that every complete open branch can be satisfied. Assume
thatB is a complete open branch.We construct the satisfying valuation as follows. Let�∈{�1,�1,
�2,�2} and p1, . . . , pm be the propositional variables appearing in the atomic labelled formulas
in B.

Let {p1�j1, . . . , pm�jn} and {k1 ≤ l1, . . . , kq ≤ lq} be the sets of all atomic labelled formulas and
all numerical constraints in B. Notice that one variable might appear in many atomic labelled
formulas, hence we might have m �= n. Since B is complete and open, the following system of
linear inequalities over the set of variables {xLp1 , xRp1 , . . . , xLpm , xRpm}must have at least one solution
under the constraints listed:

t(p1�i1), . . . , t(pm�in), k1 ≤ l1, . . . , kq ≤ lq
Let c= (cL1 , c

R
1 , . . . , cLm, cRm) be a solution to the above system of inequalities such that cLj (c

R
j ) is the

value of xLpj (x
R
pj). Define valuations as follows: v1(pj)= cLj and v2(pj)= cRj .

It remains to show by induction on φ that all formulas present at B are satisfied by v1 and v2.
The basis case of variables holds by the construction of v1 and v2. We consider the case of�φ �1 i
(the cases of other variables can be dealt with similarly).

Assume that �φ �1 i ∈B. Since B is complete and open, we have that either (i) i≤ 0 ∈B or
(ii) {φ �1 j, j≥ 1} ⊆B. In the first case, since there is a solution for Bt, we have that i= 0, and
thus �φ �1 i is satisfied by any v1. In the second case, we have that {φ �1 j, j≥ 1} is satisfied by
the induction hypothesis, whence v1(φ)= 1, and thus, v1(�φ)= 1, as required. �

Definition 38 (Mixed-integer problem). Let x= (x1, . . . , xk) ∈R
k and y= (y1, . . . , ym) ∈Z

m be
variables, A and B be integer matrices, h an integer vector, and f (x, y) be a k+m-place linear
function.

1. A general MIP is to find x and y s.t. f (x, y)=min{f (x, y) :Ax+ By≥ h}.
2. A bounded MIP (bMIP) is to find all solutions that belong to [0, 1].

Proposition 39. Bounded MIP is NP-complete.
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Remark 40. The proof of Ł’s NP-completeness by Hähnle (1992, 1994) uses the reduction of a
Łukasiewicz formula φ to one instance of a bMIP of the size O(l(φ)). This is because the rules
are linear. In our case (cf. Remark 35), we cannot avoid branching. This, however, does not affect
the complexity of Ł� and tableau and then solve the system of inequalities corresponding to it. Note
that in our setting all variables can be evaluated over R∩ [0, 1]; in addition, lengths of branches are
polynomial in l(φ). Hence, we can solve the system of inequalities obtained from the branch in the
time polynomial w.r.t. l(φ) (and if there is no solution, then the branch is closed and we need to
guess again). Thus, Ł� and Ł� and Ł2(�,→) are also NP-complete.

Let us now proceed to the proof of NP-completeness of PrŁ2� . First, we show that we can
completely remove ¬’s from LPrŁ2�

formulas while preserving their satisfiability.

Lemma 41. For any outer-¬-free α ∈LPrŁ2�
, PrŁ2� -valid PrŁ2� -valid iff α∗ is PrŁ2� -valid.

Proof. We construct α∗ as follows. First, we take every modal atom Prφ (recall that φ ∈LBD)
and replace φ with its NNF. Second, we replace every literal ¬p occurring in Pr(NNF(φ)) with a
corresponding fresh variable p′. That is, ¬p is replaced with p′, ¬q with q′, etc. Outer-layer con-
nectives remain the same. Observe, that this increases the number of symbols in α at most linearly:
indeed, the transformation of φ into NNF(φ) is linear (recall Remark 3) and then we replace every
occurrence of ¬p with a fresh variable p∗. It remains to check that validity is preserved.

Let α be not PrŁ2� -valid, PrŁ2� -model. PrŁ2� -model. By Lemma 17, this is equivalent to e1(α) �= 1
in someM= 〈W, v+, v−,μ, e1, e2〉. Now, letM∗ = 〈W, v∗+, v∗−,μ, e∗1, e∗2〉 s.t. v∗+(p)= v+(p) and
v∗+(p′)= v−(p). It suffices to show that e1(α)= e∗1(α∗).

We proceed by induction on α. Let α = Prφ for some φ ∈LBD. We have that e1(α)=
μ(|φ|+)=μ(|NNF(φ)|+). We check that |NNF(φ)|+

M
= |NNF(φ)∗|+

M∗ by induction on NNF(φ).
If NNF(φ)= p, then p∗ = p and v+(p)= v∗+(p) by construction. If NNF(φ)=¬p, then

(¬p)∗ = p′ and |¬p|+ = v−(p)= v∗+(p′) by construction. If NNF(φ)= χ ∧ψ , then NNF(φ)=
(χ ∧ψ)∗ = χ∗ ∧ψ∗. By the induction hypothesis, |χ |+ = |χ∗|+ and |ψ |+ = |ψ∗|+. Hence,
|χ ∧ψ |+

M
= |(χ ∧ψ)∗|+

M∗ . The case of NNF(φ)= χ ∨ψ can be considered in the same way.
It follows that e1(Prφ)= e∗1(Pr(NNF(φ)∗)). The cases of Ł2(�,→) connectives can be proven by a

straightforward application of the induction hypothesis.
For the converse, assume that α∗ is not PrŁ2� -valid. Hence, e1(α∗) �= 1 in some model

M= 〈W, v+, v−,μ, e1, e2〉 by Lemma 17. We define M• = 〈W, v•+, v•−,μ, e•1, e•2〉 with v•−(p)=
v+(p′) and v•+(p)= v+(p). We can now show that e1(α∗)= e•1(α) (i.e., e•1(α) �= 1) as in the
previous case. The result is as follows. �

We can now apply this lemma to adapt the proof of the NP-completeness of FP(Ł).

Theorem 42. Validity of PrŁ2� and 4PrŁ� is coNP-complete.

Proof. Recall that PrŁ2� and 4PrŁ� can be linearly embedded into one another (Theorems 24 and
25 and Lemma 26). Thus, it remains to provide a non-deterministic polynomial algorithm that
decides whether a formula is falsifiable (i.e., non-valid) for one of these logics. We choose PrŁ2�
since it has only one modality.

Let α ∈LPrŁ2�
be over modal atoms Prφ1, . . ., Prφn. By Lemma 41, we can w.l.o.g. assume that

α does PrŁ2� -valuation PrŁ2� -valuation for α.
First, we replace every modal atom Prφi with a fresh variable qφi . Denote the new formula

α−. It is clear that l(α−)=O(l(α)). We construct a PrŁ2� tableau beginning with {α− �1 c, c< 1}.
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As α− does not contain ¬, every branch gives us an a system of linear inequalities that has a
solution iff α− is Ł2(�,→)-falsifiable: α

− is Ł2(�,→)-falsifiable iff at least one system of inequalities
corresponding to a tableau branch has a solution. Clearly, if α− is not Ł2(�,→)-falsifiable, it is not
PrŁ

2
� -falsifiable either.

Now letBr= {B1, . . . ,Bw} be the set of all open branches in the T
(
Ł2(�,→)

)
tableau for α−.

We guess a B ∈Br and consider the following system of (in)equalities:

(LI(1)B)z1�t1, . . . , zn�tn, k1 ≤ k′1, . . . , kr ≤ k′r ,m1 ≥ 1, . . . ,ms ≥ 1,m′1 ≤ 0, . . . ,m′t ≤ 0

Here, zi’s correspond to the values of qφi ’s in α− and ti’s are linear polynomials that label qφi ’s.
Numerical constraints give us k’s, k′’s, m’s, and m′’s. Denote the number of inequalities and the
number of variables in (LI(1)B) with l1 and l2, respectively. It is clear that l1 =O(l(α−)) and
l2 =O(l(α−)).

We need to check whether zi’s are coherent as probabilities of φi’s. that is that there is a prob-
ability measure μ on 2Prop(α) s.t. μ(|φi|+)= zi. Recall again that because of Klein et al. (2021,
Theorem 4), we can assume that the probabilities are classical. Moreover, we can assume that
there are n propositional variables in α (we can always add new superfluous variables or modal
atoms to α to make their numbers equal).

Now, introduce 2n variables uv indexed by n-letter words over {0, 1}. These denote whether
the variables of φi’s are true under v+ and thus correspond to subsets of Prop(α). For example, if
Prop(α)= {p1, p2, p3, p4}, then u1001 encodes {p1, p4}. Note that ¬ does not occur in α− and thus
we care only about e1 and v+. Furthermore, while n is the number of φi’s, we can add extra modal
atoms or variables to make it also the number of variables. We let ai,v = 1 when φi is true under
v+ and ai,v = 0 otherwise. Now add new equations to LI(1)B, namely∑

v
uv = 1

∑
v

(ai,v · uv)= zi (LI(2exp)B)

The new problem – (LI(1)B) ∪(LI(2 exp )B) – has a solution over [0, 1] iff α is PrŁ2� -satisfiable
since (LI(2 exp )B) encodes a measure on Prop(α) while the existence of a solution for (LI(1)B)
ensures that α is Ł2(�,→)-satisfiable. Furthermore, although there are l2 + 2n + n variables in
(LI(1)B)∪(LI(2 exp )B), it has no more than l1 + n+ 1 (in)equalities. Thus by Fagin et al. (1990,
Lemma 2.5), it has a solution with at most l1 + n+ 1 non-zero entries. We guess a list L of at most
l1 + n+ 1 words v (its size is n · (l1 + n+ 1)). We can now compute the values of ai,v’s for i≤ n
and v ∈ L and obtain a new system of inequalities:∑

v∈L
uv = 1

∑
v∈L

(ai,v · uv)= zi (LI(2poly)B)

It is clear that (LI(1)B)∪(LI(2poly)B) is of polynomial size w.r.t. l(α−) and thus can be solved in
polynomial time. Moreover, (LI(1)B)∪(LI(2poly)B) has a solution iff the values of Prφi’s occur-
ring on B are coherent as probabilities. If there is no solution for (LI(1)B)∪(LI(2poly)B), we
guess another open branch from the tableau and repeat the procedure. If there is no open branch
B′ ∈Br s.t. its corresponding system of inequalities LI(1)B′ ∪ LI(2poly)B′ has a solution, then α
is PrŁ2� -valid as well by Lemma 41. �

4. Belief and plausibility functions over BD
In this section, we introduce BD-models with belief and plausibility functions. We adapt the
definitions from Zhou (2013) and Bílková et al. (2023d).
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Definition 43 (Belief function). A belief function on W �=∅ is a map bel : 2W→ [0, 1] s.t.

• bel is monotone w.r.t.⊆: if X⊆ Y , then bel(X)≤ bel(Y);
• for every X1, . . . , Xk ⊆W, it holds that

bel

⎛
⎝ ⋃

1≤i≤k
Xi

⎞
⎠≥ ∑

J ⊆ {1, . . . , k}
J �=∅

(− 1)|J|+1 · bel

⎛
⎝⋂

j∈J
Xj

⎞
⎠

• bel(∅)= 0 and bel(W)= 1.

Definition 44 (Plausibility function). A plausibility function on W �=∅ is a map pl:2W→
[0, 1] s.t.

• pl is monotone w.r.t.⊆;
• for every X1, . . . , Xk ⊆W, it holds that

pl

⎛
⎝ ⋂

1≤i≤k
Xi

⎞
⎠≤ ∑

J ⊆ {1, . . . , k}
J �=∅

(− 1)|J|+1 · pl

⎛
⎝⋃

j∈J
Xj

⎞
⎠

• pl(∅)= 0 and pl(W)= 1.

Recall that every plausibility function pl on W gives rise to a belief function belpl and vice
versa: given a belief function bel onW, one can construct a plausibility function plbel.

plbel(X)= 1− bel(W \ X) belpl(X)= 1− pl(W \ X) (3)

Moreover, it was shown in Bílková et al. (2023d, Lemmas 2.10 and 2.11) that a similar statement
holds for BD-models. That is, belief and plausibility functions can be defined via one another even
without set-theoretic complements.

plbel(|φ|+)= 1− bel(|φ|−) belpl(|φ|+)= 1− pl(|φ|−) (4)

In what follows, we will be using two kinds of BD-models with belief functions introduced by
Bílková et al. (2023): in the first one, belief and plausibility will be interdefinable via (4); in the
second one, we will assume them to be independent.

Definition 45 (BD bel-models). A BD bel-model is a tuple Mbel = 〈M, bel〉 with M being a
BD-model (recall Definition 2) and bel a belief function on W.

Definition 46 (BD bel/pl-models). A BD bel/pl-model is a tupleMbel/pl = 〈M, bel, pl〉 with
M being a BD-model (recall Definition 2), bel a belief function onW, and pl a plausibility function
on W.

Observe from Definitions 43 and 44 that the traditional axiomatisation of belief and plausibil-
ity functions is infinite. In the classical case, this can be circumvented following Godo et al. (2001,
2003) if we define belief in φ as the probability of �φ (with� being the non-nesting S5modality).
Then, we can use (3) to define the plausibility of φ as the probability of ♦φ since ♦φ ≡∼�∼φ
(here, ≡ is the classical equivalence and ∼ is the classical negation). In the remainder of the
section, we show that the same can be done in BD.
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Let us first recall the classical result.

Definition 47. A classical uncertainty model is a tuple M= 〈W, v,μ〉 with W �=∅, μ : 2W→
[0, 1], and v : Prop→ 2W extended to the satisfaction relationM,w � φ as follows.

M,w � p iff w ∈ v(p) M,w �∼φ iffM,w � φ M,w � φ ∧ χ iffM,w � φ andM,w � χ
If μ is a belief function, plausibility, probability, etc., we callM belief, plausibility, probabilistic, etc.
model.

The extension of a formula φ is defined as ‖φ‖ = {w :M,w � φ}.
Definition 48 (Classical probabilistic Kripke model). A classical probabilistic Kripke model is a
tuple M= 〈W, R, v, π〉 with W �=∅, R being an equivalence relation on W, π being a classical
probability measure on W and v : Prop→ 2W extended to the satisfaction relation M,w � φ as
follows.

M,w � p iff w ∈ v(p)
M,w �∼φ iffM,w � φ M,w � φ ∧ χ iffM,w � φ andM,w � χ
M,w ��φ iff ∀w′ :wRw′ ⇒M,w′ � φ M,w � ♦φ iff ∃w′ :wRw′ &M,w′ � φ

Theorem 49 (Godo et al. 2001, Theorem 1). Let φ be a propositional classical formula and let
Mbel = 〈W, v, bel〉 andM= 〈W, v, pl〉 be, respectively, a belief and plausibility models, then:

(i) there is a classical probabilistic modelM�=〈W�,R�,v�,π�〉 s.t. π�(‖�φ‖)=bel(‖φ‖);
(ii) there is a classical probabilistic modelM♦ = 〈W♦, R♦, v♦, π♦〉 s.t. π♦(‖♦φ‖)= pl(‖φ‖).

We draw the attention of our readers to the fact that � and ♦ do not have to be S5: it suffices
that the underlying modal logic be normal. The original motivation for choosing S5 was that it
is locally finite. Note, however, that local finiteness can be achieved in other modal logics as well
because� and ♦ do not nest (cf. Flaminio et al. 2013, Section 6) for a detailed discussion).

Moreover, originally only (i) is proven by Godo et al. (2001, 2003). Observe, however, that
(ii) can be obtained from (i) using (3) since

π(‖♦φ‖)= π(‖∼�∼φ‖)
= 1− π(‖�∼φ‖)
= 1− bel(‖∼φ‖)
= 1− bel(W \ ‖φ‖)
= plbel(‖φ‖)

Let us now introduce probabilistic models for modal BD formulas. We borrow the definition
of modalities in BD from Odintsov and Wansing (2017).

Definition 50 (BD probabilistic Kripke models). A BD probabilistic Kripke model is a tuple M=
〈W, R, v+, v−, π〉withW �=∅, R being an equivalence relation onW, π being a classical probability
measure on W and v+, v− : Prop→ 2W extended toM,w �+ φ andM,w �− φ as in Definition 2
for propositional connectives and as below for modalities.

M,w �+ �φ iff ∀w′ :wRw′ ⇒M,w′ �+ φ M,w �+ ♦φ iff ∃w′ :wRw′ &M,w′ �+ φ
M,w �− �φ iff ∃w′ :wRw′ &M,w′ �− φ M,w �− ♦φ iff ∀w′ :wRw′ ⇒M,w′ �− φ

Positive and negative extensions of φ are as in Definition 2.
We also call the 〈W, R, v+, v−〉 reduct a BD Kripke model.
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Remark 51. Since �+ conditions for � and ♦ in the classical logic and in BD coincide, it is clear
(cf. Hájek 1996 for a detailed discussion of the classical case) that given a probability π on a Kripke
modelM, there are a belief and plausibility functions bel and pl onM s.t. bel(|φ|+)= π(|�φ|+)
and pl(|φ|+)= π(|♦φ|+) for every φ ∈LBD.

Theorem 52. Let φ1, . . . , φn ∈LBD and consider a BD bel-model Mbel = 〈M, bel〉 and a BD
bel/pl-modelM′

bel/pl = 〈M′, bel′, pl′〉. Then, there exist

1. a BD probabilistic Kripke modelM� = 〈W�, R�, v+�, v−�, π�〉 with bel(|φi|+)= π�(|�φi|+)
for each i ∈ {1, . . . , n};

2. a BD probabilistic Kripke modelM�,♦ = 〈W�,♦, R1, R2, v+�,♦, v
−
�,♦, π�,♦〉with bel′(|φi|+)=

π�,♦(|�1φi|+) and pl′(|φi|+)= π�,♦(|♦2φi|+) for each i ∈ {1, . . . , n} (here, �1 and ♦2 are
associated to R1 and R2, respectively).

Proof. We prove (1) as (2) can be dealt with similarly. Let w.l.o.g. φ be in NNF and denote φ∗
the result of replacing every negated variable ¬p occurring in φ with a fresh variable p∗. Consider
Mbel = 〈W, v+, v−, bel〉 andM∗

bel (cf. the proof of Lemma 41). It is easy to see that bel(|φi|+)=
bel(|φ∗i |+) for every i.

Now define a classical belief model Mcl
bel = 〈W, vcl, bel〉 with vcl(q)= v+(q) for every q ∈

Prop. Clearly, bel(|φ∗i |+)= bel(‖φ∗i ‖) for all φ∗i ’s. Thus, by Theorem 49, we have that there
is a classical Kripke probabilistic model M�=〈W�,R�,v�,π�〉 s.t. π�(‖�φ∗i ‖)=bel(‖φ∗i ‖) for
every i. It remains to construct a suitable BD probabilistic Kripke model.

We define MBD
� = 〈W�, R�, v+�, v−�, π�〉 with v+�(p)= v�(p) and v−�(p)= v�(p∗). One can

show by induction on φ∗i ’s that ‖φ∗i ‖ = |φi|+, and thus ‖�φ∗i ‖ = |�φi|+ for every i: indeed,
cf. semantical conditions for � in Definitions 48 and 50. Hence, π�(‖�φ∗i ‖)= π�(|�φi|+), as
required. �

We finish the section with a brief observation.

Remark 53. Just as in the classical case,� and ♦ do not need to be S5.We choose BD version of S5
because of the following property: if M= 〈W, R, v+, v−, π〉 is a BD probabilistic Kripke model and
ψ is a modal formula where all propositional variables are in the scope of a modality, and wRw′,
thenM,w �+ ψ iff M,w′ �+ ψ andM,w �− ψ iff M,w′ �− ψ .

5. Logics for belief and plausibility functions over BD
In this section, we recall two-layered logics BelŁ

2
� and BelNŁ for reasoning with belief and plausibil-

ity functions over BD that were presented by Bílková et al., (2023).We then combine the technique
of Hájek and Tulipani (2001) with the results of Godo et al. (2001, 2003) and Theorem 52 to obtain
the coNP-completeness of BelŁ

2
� and BelNŁ.

5.1 Languages and semantics

Definition 54 (BelŁ
2
� : language and semantics). The language of BelŁ

2
� is constructed using the

grammar below.
L
BelŁ2�

� α := Bφ | ¬α | α→ α | ∼α | �α (φ ∈LBD)

A BelŁ
2
� -model is a tupleMbel = 〈M, bel, e1, e2〉 with
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• 〈M, bel〉 being a BD bel-model (cf. Definition 45);
• e1 and e2 being Ł2(�,→) valuations induced by bel:

– e1(Bφ)= bel(|φ|+), e2(Bφ)= bel(|φ|−);
– values of complex L

BelŁ2�
-formulas are computed via Definition 12.

We say that α is BelŁ
2
� -valid iff e1(α)= 1 and e2(α)= 0 in all models. A set of formulas 	 entails

α (	 |=
BelŁ2�

α) iff there is no BelŁ
2
� -model s.t. e(γ )= (1, 0) for all γ ∈ 	 but e(α) �= (1, 0).

Remark 55. Note that we cannot utilise the technique from Lemma 17 to reduce BelŁ
2
� -validity to

checking whether e1(α)= 1 in every model. This is because belief functions are not additive. Thus,
even though we can construct (v∗)+ and (v∗)− s.t. (1) holds, we cannot use it to infer the following
counterpart of (2):

e∗(Bφ)= (1− bel(|φ|−), 1− bel(|φ|+))= (1− e2(Bφ), 1− e1(Prφ)) (5)

Indeed, (5) does not hold in general since it is not necessarily the case that bel(W \ X)= 1− bel(X)
for X⊆W.

BelNŁ logic (NŁ) that is (NŁ) that is inspired by Nelson’s paraconsistent logic from Nelson
(1949). The logic was introduced by Bílková et al. (2021) and further investigated by Bílková et al.
(2023d). We recall its language and semantics below.

Definition 56 (NŁ: language and semantics). The language is constructed via the following
grammar.

LNŁ � := p | ∼N | ¬ | ( ∧ ) | ( � )
The support of truth and support of falsity conditions are given by the following extensions of

v1, v2 : Prop→ [0, 1] (NŁ valuations) to the complex formulas.
v1(¬ ) = v2( ) v2(¬ ) = v1( )

v1(∼N ) =∼Łv1( ) v2(∼N ) = v1( )
v1( ∧ ) = v1( )∧Ł v1( ) v2( ∧ ) = v2( )∨Ł v2( )

v1( � ) = v1( )→Ł v1( ) v2( � ) = v1( )�Ł v2( )
We say that α is BelNŁ-valid iff e1(α)= 1 for every BelNŁ-model. 	 entails α (	 |=BelNŁ α) iff

there is no BelNŁ-model s.t. e1(γ )= 1 for every γ ∈ 	 and e1(α) �= 1.

Definition 57 (BelNŁ: language and semantics). The language is given by the grammar below.
LBelNŁ := B | Pl | ¬ | ∧ | � | ∼N ( ∈LBD)

A BelNŁ-model is a tupleMbel/pl = 〈M, bel, pl, e1, e2〉 with

• 〈M, bel, pl〉 being a BD bel/pl-model (cf. Definition 46);
• e1 and e2 being NŁ valuations induced by bel and pl:

– e1(Bφ)= bel(|φ|+), e2(Bφ)= pl(|φ|−), e1(Plφ)= pl(|φ|+), e2(Plφ)= bel(|φ|−);
– values of complex LBelNŁ-formulas are computed via Definition 56.
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We say that α is BelNŁ-valid iff e1(α)= 1 for every BelNŁ-model. 	 entails α (	 |=BelNŁ α) iff
there is no BelNŁ-model s.t. e1(γ )= 1 for every γ ∈ 	 and e1(α) �= 1.

Note that using (4), we can define a plausibility operator PlB in BelŁ
2
� as PlBφ :=∼ B¬φ. The

main difference between it and PI in BelNŁ is that the latter is independent of belief . We refer read-
ers to Bílková et al. (2023d) for a more detailed discussion of differences between BelŁ

2
� and BelNŁ.

Moreover, PrŁ2� is complete w.r.t. models with classical probability measures (recall Klein et
al. 2021, Theorems 3–4 and Bílková et al. 2023, Theorem 4.24). Thus, as belief and plausibility
functions are generalisations of probabilities, it means that if a statement about belief functions is
valid, then it is valid about probabilities as well. Formally, let α ∈L

BelŁ2�
and let further αPr be the

result of the replacement of Bφ’s with Prφ’s. Then if BelŁ
2
� |= α, it follows that PrŁ2� |= αPr. This

means that PrŁ2� can be thought of as an extension or a semantical restriction of BelŁ
2
� .

In the previous section, we showed (Theorem 52) that belief and plausibility in BD can be
represented as probabilities of modal formulas. We are going to introduce two logics – Pr(�,→)

S5
and PrNŁS5 – BelNŁ – that deal with those and show that BelŁ

2
� and BelNŁ

Definition 58 (Pr(�,→)
S5 : language and semantics). The language is constructed as follows.

LPr(�,→)
S5

� α := Pr♥φ | ∼α | ¬α | �α | (α→ α) (φ ∈LBD,♥∈ {�,♦})

A Pr(�,→)
S5 -model is a tupleMπ = 〈M, π , e1, e2〉 s.t.

• 〈M, π〉 is a BD probabilistic Kripke model;
• e1 and e2 are Ł2(�,→) valuations induced by π :

– e1(Pr♥φ)= π(|♥φ|+), e2(Pr♥φ)= π(|♥φ|−) with♥∈ {�,♦};
– values of complex LPr(�,→)

S5
-formulas are computed via Definition 12.

We say that α is Pr(�,→)
S5 -valid iff e1(α)= 1 and e2(α)= 0 in all Pr(�,→)

S5 -models. A set of for-
mulas 	 entails α (	 |=Pr(�,→)

S5
α) iff there is no Pr(�,→)

S5 -model s.t. e(γ )= (1, 0) for all γ ∈ 	 but
e(α) �= (1, 0).

The next statements can be proven in the same manner as Lemmas 17 and 41, respectively.

Lemma 59. Let α ∈LPr(�,→)
S5

. Then α is Pr(�,→)
S5 -valid iff e1(α)= 1 in all Pr(�,→)

S5 -models.

Lemma 60. Let α ∈LPr(�,→)
S5

. Then there is α∗ where¬ does not occur at all s.t. α∗ is Pr(�,→)
S5 -valid

iff α is Pr(�,→)
S5 -valid.

Definition 61 (PrNŁS5 : language and semantics). The language is generated by the following
grammar.

LPrNŁ
S5

� := Pri♥i | ¬ | ∧ | � | ∼N ∈LBD,♥∈ {�, ♦}, i ∈ {1, 2})
A PrNŁS5 -model is a tupleMNŁ

π1,π2 = 〈W, R1, R2, v+, v−, π1, π2, e1, e2〉 s.t.
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• 〈W, R1, R2, v+, v−, π1, π2〉 is a BD probabilistic Kripke model with two relations and two
measures;

• e1 and e2 are NŁ valuations induced by π1 and π2:

– e1(Pr1♥1φ)= π1(|♥1φ|+), e2(Pr1♥1φ)= π1(|♥1φ|−) with ♥∈ {�,♦};
– e1(Pr2♥2φ)= π2(|♥2φ|+), e2(Pr2♥2φ)= π2(|♥2φ|−) with ♥∈ {♦,�};
– values of complex LPrNŁS5

-formulas are computed via Definition 56.

We say that α is PrNŁS5 -valid iff e1(α)= 1 in all PrNŁS5 -models. A set of formulas 	 entails α
(	 |=Pr(�,→)

S5
α) iff there is no PrNŁS5 -model s.t. e(γ )= 1 for all γ ∈ 	 but e(α) �= 1.

5.2 Embedding of belief logics into probabilistic logics
Theorem 52 shows that beliefs can be represented as probabilities of modal formulas. In this
section, we use this result to prove that we can faithfully embed BelŁ

2
� and BelNŁ into Pr(�,→)

S5
and PrNŁS5 . To simplify the presentation, observe that all L

BelŁ2�
- and LBelNŁ-formulas can be

transformed into an outer-¬-free form since Ł2(�,→) and NŁ permit NNF’s and since the following
holds.

e(¬Bφ)= e(B¬φ) ( in BelŁ
2
� )

e(¬Bφ)= e(Pl¬φ) e(¬Plφ)= e(B¬φ) ( in BelNŁ)

Definition 62 (Embedding of BelŁ
2
� into Pr(�,→)

S5 ). Let α ∈L
BelŁ2�

be outer-¬-free, we define α�
and α� as follows.

(Bφ)� = Pr(�φ) (Bφ)� = Pr(�¬φ)
(�β)� =�(β�) (�β)� =∼�∼(β�)
(∼β)� =∼(β�) (∼β)� =∼(β�)

(β→ γ )� = β�→ γ� (β→ γ )� = γ� � β�

Definition 63 (Embedding of BelNŁ into PrNŁS5 ). Let α ∈LBelNŁ be outer-¬-free, we define α�,♦ as
follows.

(B )�,♦ = Pr1(�1 ) (Pl )�,♦ = Pr2(♦2 )

(∼N )�,♦ =∼N( �,♦) ( ◦ )�,♦ = �,♦ ◦ �,♦ (◦ ∈ {∧, �})

We can now prove the following statement.

Theorem 64.

1. α ∈L
BelŁ2�

is BelŁ�-valid iff (a) e1(α�)= 1 in every Pr(�,→)
S5 -model and (b) e1(α�)= 0 in every

Pr(�,→)
S5 -model.

2. α ∈LBelNŁ is Bel
NŁ-valid iff α�,♦ is PrNŁS5 -valid.
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Proof. Webegin with (1). Consider the ‘only if’ direction: we assume that either (i) e1(α�)= x< 1
in some Pr(�,→)

S5 -model or (ii) e1(α�)= y> 0 in some Pr(�,→)
S5 -model.We prove by induction that

in this case, there are some BelŁ
2
� -models where e′1(α)= x or e′2(α)= y, respectively.

Let α� = Pr(�φ) and e1(Pr(�φ))= x< 1. This means that π(|Pr(�φ)|+)= x. Using Remark
51, we obtain that there is a belief function bel s.t. bel(|φ|+)= x< 1. Thus, ebel

1 (Bφ)= x< 1 for
the evaluation ebel

1 induced by bel, as required. The induction steps can be obtained by a simple
application of the induction hypothesis since Pr(�,→)

S5 and BelŁ
2
� use Ł2(�,→) as their outer-layer

logic. Thus, (i) is tackled.
For (ii), we proceed similarly. Let α� = Pr(�¬φ)= y> 0. Again, we obtain that there is a

belief function bel s.t. bel(|¬φ|+)= x> 0 (i.e., bel(|φ|−)= y> 0). Hence, ebel
2 (Bφ)= x> 0 for

the evaluation induced by bel. The cases of propositional connectives can be tackled similarly, so,
we only consider α� = γ� � β�. Let e1(γ� � β�)= y> 0. Thus, z=e1(γ�)>e1(β�)=z′ with
z−z′=y. Applying the induction hypothesis, we have that e′2(γ )=z, e′2(β)=z′, and z−z′=y. Hence,
e′2(β→ γ )= y> 0.

Let us now deal with the ‘if’ direction. Assume that α is not BelŁ
2
� -valid, BelŁ

2
� -model where

e1(α)= x< 1 or (ii) there is a model where e2(α)= y> 0. We prove by induction that there is
where e1(α)= x< 1 or (ii) there is a model where e2(α)= y> 0. We prove by induction that
there is a Pr(�,→)

S5 -model s.t. e′1(α�)= x< 1 or e′1(α�)= y> 0.
First, if α = Bφ and e1(Bφ)= x< 1 in some BelŁ

2
� -model, then we have that there is a BD bel-

model s.t. bel(|φ|+)= x. Hence, by Theorem 52, there is a BD probabilistic Kripke model s.t.
π(|�φ|+)= x, and thus, eπ1 (Pr(�φ))= x< 1 for the induced valuation eπ1 . In the second case,
we have BelŁ

2
� -model. Thus, bel(|φ|−)= y which is equivalent to bel(|¬φ|+)= x. Again, apply-

ing Theorem 52, we obtain that there is a probabilistic Kripke model with π(|�¬φ|+)= y> 0.
Hence, eπ1 (Pr(�¬φ))= y> 0, as required. The cases of propositional connectives can be obtained
by simple applications of the induction hypothesis as in the ‘only if’ direction. hypothesis as in the
‘only if’ direction.

(2) can be shown similarly. Assume that e1(α�,♦)= x< 1 in some PrNŁS5 -model. Applying
Remark 51, one can show by induction that there is a BelNŁ-model with e′1(α)= x. Conversely,
using Theorem 52 one obtains that if α is not BelNŁ-valid, then α is not PrNŁS5 -valid either. �

One can show that both translations are linear.

Lemma 65.

1. Let α ∈L
BelŁ2�

. Then l(α�)=O(l(α)) and l(α�)=O(l(α)).

2. Let β ∈LBelNŁ . Then l(β�,♦)=O(l(α)).

Proof. Analogously to Lemma 26 �

5.3 Complexity

Theorem 64 and Lemma 65 give us a polynomial reduction from validity in BelŁ
2
� and BelNŁ to

Pr(�,→)
S5 and PrNŁS5 . It is, thus, sufficient to prove that Pr

(�,→)
S5 -validity and PrNŁS5 -validity are coNP-

complete. Recall that in the proof of Theorem 42, we used canonical models of BD built over
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the powerset of all literals occurring in a formula which we encoded via uv variables. We define
canonical models for BD with S5modalities.

Definition 66 (Clusters). Let M= 〈W, R, v+, v−〉 be a BD Kripke model. A cluster is any subset
X⊆W closed under R. That is, if w ∈ X and wRw′, then w′ ∈ X.

Definition 67 (Bisimilarity). Two BD Kripke models M= 〈W, R, v+, v−〉 and M′ =
〈W′, R′, v′+, v′−〉 are called bisimilar (denoted M"M′) if there is a relation Z⊆W ×W′
s.t. for every p ∈ Prop, x ∈W, and x′ ∈W, the following conditions hold:

1. M, x �+ p iff M′, x′ �+ p andM, x �− p iff M′, x′ �− p for every x ∈W and x′ ∈W′ s.t. xZx′;
2. if wRx and wZw′, then there is x′ ∈W′ s.t. w′R′x′ and xZx′;
3. if w′R′x′ and wZw′, then there is x ∈ X s.t. wRx and xZx′.

Bisimilarity of Kripke models with two relations are defined similarly but conditions (2) and (3)
have to hold for both relations.

The following statement is straightforward to establish.

Proposition 68. Let M"M′, Z be the bisimilarity relation, and wZw′. Then for every σ over
{¬,∧,∨,�,♦}, it follows that

M,w �+ σ iffM′,w′ �+ σ M,w �− σ iffM′,w′ �− σ

Definition 69 (Canonical model for BD with S5 �). Let 	 = {�φ1, . . .�φm} and Lit[	]=
{l1, . . . , ln}. The canonical model of 	 is the disjoint union of all pairwise non-bisimilar clusters
on 2Lit[	], that is the following structure:

MBDS5
	 =

⊎
S⊆2Lit[	]

〈S, S× S, v+, v−〉 (S �=∅)

with valuations v+ and v− defined as below:
w ∈ v+(p) iff p ∈w w ∈ v−(p) iff ¬p ∈w

Importantly, as the next statements show, we can prove a version of the small model prop-
erty for probabilities of �φ and ♦φ formulas where φ ∈LBD. Namely, we show that in arbitrary
models, we only need clusters whose size is linearly bounded by the number of formulas and that
we can assume the measure to be positive only on clusters with linearly bounded size inMBDS5.

Lemma 70 (Small model property). LetM= 〈W, R, v+, v−, π〉 be aBD probabilistic Kripkemodel,
φ1, . . . , φm ⊆LBD, 1≤ k≤m and 	 = {�φi | i≤ k} ∪ {♦φi | k< i≤m}. Then there is a model
Ms = 〈Ws, Rs, v+s , v−s , πs〉 s.t. Ws ⊆W, Rs = R|Ws , v+s and v−s are restrictions of v+ and v− on
Ws, every cluster of Ms contains at most 2m+ 1 states, and for every σ ∈ 	, it holds that

π(|σ |+)= πs(|σ |+) π(|σ |−)= πs(|σ |−)
Proof. Observe that M is a disjoint union of all its clusters and that for every σ ∈ 	 and every
cluster X⊆W the following two statements hold:

either ∀x ∈ X :M, x, �+ σ or ∀x ∈ X :M, x, �+ σ ;
either ∀x ∈ X :M, x, �− σ or ∀x ∈ X :M, x, �− σ .
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We show how to remove ‘redundant’ states from clusters containing more than 2m+ 1 states and
redefine the measure accordingly.

Now let X be a cluster in W with more than 2m+ 1 states. Let further, �∀X ,�∃X ⊆ 	 be
such that

�∀X = {�φ | ∀x ∈ X :M, x �+ �φ} ∪ {♦φ | ∀x ∈ X :M, x �− ♦φ}
�∃X = {�φ | ∀x ∈ X :M, x �− �φ} ∪ {♦φ | ∀x ∈ X :M, x �+ ♦φ}

It is clear from the semantics of BD with S5modalities (recall Definition 50) that no matter which
and how many states we remove from X

1. all �-formulas from �∀X will remain true in every state non-removed of X while all
�-formulas from 	 \�∃X will remain non-false in every non-removed state of X;

2. dually, all ♦-formulas from �∀X will remain false in every state non-removed of X while all
♦-formulas from 	 \�∃X will remain non-true in every non-removed state of X.

Let us now show how to construct a cluster Xs containing at most 2m+ 1 states s.t.�∀X =�∀Xs and
�∃X =�∃Xs .

First, we take any state x ∈ X. Clearly, all �- and ♦-formulas from �∀X will remain true
(or, respectively, false) in x. Likewise, �-formulas from 	 \�∃X will remain non-false in x and
♦-formulas from 	 \�∃X will remain non-true.

Now let�φ ∈�∃X be a formula s.t. it was false in X but became non-false in x. This means that
there was some x�φ ∈ X s.t. M, x�φ �− φ but x�φ �= x. We set X�φ = {x, x�φ}. It is clear that
�φ is false in X�φ but all other formulas remained true or non-false because they were true or
non-false in X and X�φ ⊆ X. Now we take the next formula, say,�φ′ ∈�∃X that was false in X but
became non-false in x. If it is still non-false in X�φ , it means that there is some x�φ′ ∈ X \ X�φ
s.t. M, x�φ′ �− φ′. Thus, we set X�φ′ = X�φ ∪ {x�φ′ }. We repeat this procedure until we tackle
all �-formulas from �∃X that became non-false in x. Then we do the same with ♦-formulas from
�∃X that became non-true in x. Since there are at most m formulas in �∃X , we will have added at
mostm states to {x}. Denote the resulting cluster X−.

After that, we do the same with�-formulas from 	 \�∀X that became true in x and♦-formulas
from 	 \�∀X that became false in x. This will also add at mostm states to X−. The resulting cluster
which we call Xs will, thus, contain at most 2m+ 1 states. Moreover, we have that�∀X =�∀Xs and
�∃X =�∃Xs , as required.

It remains to define πs on Xs. As Xs ⊆ X, let Xs = X′ ∪ {x′′} and define

πs({x′})=
⎧⎨
⎩
π({x′}) if x′ ∈ X′∑
y∈X\Xs

π({y}) if x′ = x′′

We repeat this procedure with every cluster. It is clear that the obtained model will consist of
clusters containing at most 2m+ 1 states and that π(|σ |+)= πs(|σ |+) and π(|σ |−)= πs(|σ |−)
for every σ ∈ 	, it holds that

π(|σ |+)= πs(|σ |+) π(|σ |−)= πs(|σ |−) �

The next statement shows that any measure assignment to formulas of the form �φ and
♦φ on a given BD probabilistic Kripke model can be transferred to a measure assignment on
MBDS5.
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Theorem 71.

1. Let φ1, . . . , φm ∈LBD, 	 = {�φ1, . . .�φl,♦φl+1, . . . ,♦φm}, andM= 〈W, R, v+, v−, π〉 be a
probabilistic Kripke model. Then there is a probability measure πC onMBDS5

	 s.t.

(a) πC(|σ |+)= π(|σ |+) and πC(|σ |−)= π(|σ |−) for every σ ∈ 	;
(b) if X is a cluster inMBDS5

	 s.t. |X|> 2m+ 1, then πC(X)= 0.
2. Let {φi | i≤ k} ∪ {χj | j≤ l} ⊆LBD, k+ l=m, k′ ≤ k, l′ ≤ l, 	1 = {�1φi | i≤ k′} ∪
{♦1φi | k′ < i≤ k}, 	2 = {�2χj | j≤ l′} ∪ {♦2χj | l′ < j≤ l}, 	 = 	1 ∪ 	2, and M=
〈W, R1, R2, v+, v−, π1, π2〉 be a probabilistic Kripke model. Then there are probability
measures πC1 and πC2 onMBDS5

	 s.t.

(a) πC1 (|σ |+)= π1(|σ |+), πC1 (|σ |−)= π1(|σ |−), πC2 (|τ |+)= π2(|τ |+), and πC2 (|τ |−)=
π2(|τ |−) for every σ ∈ 	1 and τ ∈ 	2;

(b) if X is a cluster inMBDS5
	 s.t. |X|> 2m+ 1, then πC1 (X)= πC2 (X)= 0.

Proof. We begin with (1). As there are only m formulas, it is clear that Lit[	] is finite. We let

|Lit[	]| = k. Thus,M contains at most
2k∑
j=1

(
2k

j

)
= 22

k − 1 pairwise non-bisimilar clusters (recall

Definition 66 for the notion of cluster). In addition to that, using Lemma 70, we canw.l.o.g. assume
that these clusters contain at most 2m+ 1 states. Moreover,W is the disjoint union of all clusters,
whence,

∑
X is a cluster

π(X)=1, and furthermore, for every cluster X⊆M, there is a cluster XC ⊆MBDS5
	

s.t. X" XC. From here, it is clear that
M,w �+ σ iffMBDS5

	 ,wC �+ σ M,w �− σ iffMBDS5
	 ,wC �− σ

holds for every σ when wZwC.
Now, recall from Definition 69 that MBDS5

	 is the disjoint union of all pairwise non-bisimilar
clusters. Thus, we can define πC as follows:

πC({wC})=
∑
wZwC

w∈W

π({w})

It is now easy to see that πC(|σ |+)= π(|σ |+) and πC(|σ |−)= π(|σ |−) for every σ ∈ 	, as
required. Moreover, sinceM w.l.o.g. contains only clusters with at most 2m+ 1 states, no cluster
inMBDS5

	 with a greater number of states has a positive measure assignment under πC.
The proof of (2) is similar. First, we take themono-relational reducts ofM, that is, the following

two models: MR1 = 〈W, R1, v+, v−, π〉 and MR2 = 〈W, R2, v+, v−, π〉. Since every formula in 	
contains only onemodality and thus depends only on R1 or only on R2, it is clear that the following
equivalences hold for every w ∈W, σ ∈ 	1, and τ ∈ 	2:

M,w �+ σ iffMR1 ,w �+ σ M,w �− σ iffMR1 ,w �− σ
M,w �+ τ iffMR2 ,w �+ τ M,w �− τ iffMR2 ,w �− τ

Now, it is clear that MR1 and MR2 are disjoint unions of clusters (w.r.t. R1 and R2, respectively).
We can again use Lemma 70 and assume w.l.o.g. that clusters w.r.t. R1 and R2 contain at most
2m+ 1 states. Hence:
(a) for every cluster X⊆MR1 , there is a cluster XC ⊆MBDS5

	 s.t. X" XC;
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(b) for every cluster Y ⊆MR2 , there is a cluster YC ⊆MBDS5
	 s.t. Y " YC.

We use Z1 and Z2 to denote bisimilarity relations that witness (a) and (b), respectively. Now, we
define πC1 and πC2 as below.

πC1 ({wC})=
∑
wZ1wC

w∈W

π1({w}) πC2 ({wC})=
∑
wZ2wC

w∈W

π2({w})

Again, it is straightforward to check that πC1 (|σ |+)= π1(|σ |+), πC1 (|σ |−)= π1(|σ |−), πC2 (|τ |+)=
π2(|τ |+), and πC2 (|τ |−)= π2(|τ |−) for every σ ∈ 	1 and τ ∈ 	2. �

The decision algorithms for Pr(�,→)
S5 and PrNŁS5 are based upon the one presented in Theorem 42.

Thus, we need a tableaux calculus for NŁ. It was given by Bílková et al. (2021), and we recall it
here. All notions – open and closed branches, interpretations of entries, and satisfying valuations
of branches – are the same as in T

(
Ł2(�,→)

)
(cf. Definitions 34 and 36), so we only list the rules

in the next definition.

Definition 72 (T(NŁ) – the tableau calculus for NŁ). The rules are as follows.

¬�1
¬ �1 i

�2 i
¬�2

¬ �2 i
�1 i

¬�1
¬ �1 i

�2 i
¬�2

¬ �2 i
�1 i

∼N�1
∼N �1 i

�1 1− i
∼N�2

∼N �2 i
�1 i

∼N�1
∼N �1 i

�1 1− i
∼N�2

∼N �2 i
�2 i

��1
1 � 2 �1 i

i ≥ 1

∣
∣
∣
∣
∣
∣
∣
∣

1 �1 1−i+ j

2�1 j

j ≤ i

��2
1 � 2 �2 i

1�2i+ j

2�11− j

��1
1 � 2 �1 i

1�11−i+ j

2�1 j

��2
1 � 2 �2 i

i ≤ 0

∣
∣
∣
∣
∣
∣
∣
∣

1�2i+ j

2�11− j

j ≤ 1− i

∧�1
1 ∧ 2 �1 i

1 �1 i | 2 �1 i
∧�2

1 ∧ 2 �2 i

1 �2 i

2 �2 i

∧�1
1 ∧ 2 �1 i

1 �1 i

2 �1 i

∧�2
1 ∧ 2 �2 i

1 �2 i | 2 �2 i

Remark 73. Note that all connectives in NŁ are continuous and thus all rules of T (NŁ) can be lin-
earised. This will require the introduction of another sort of variables that range over {0, 1}. Tomake
the presentation of both tableaux calculi uniform, however, we decided against the linear version of
the tableau rules.

Theorem 74. Validity in Pr(�,→)
S5 and PrNŁS5 is coNP-complete.

Proof. As Ł2(�,→) and NŁ are coNP-complete (cf. Bílková et al. 2021), we only show the upper
bound. The proof is similar to that of Theorem 42, so we address the main differences.

We begin with Pr(�,→)
S5 . We show how to check the falsifiability of α ∈LPr(�,→)

S5
in nondeter-

ministic polynomial time. Assume that α is built over Prσ1, . . ., Prσn and that |Lit(α)| = n (just
as in Theorem 42, we can add superfluous modal atoms) and that α is outer-¬-free (this holds
because e(¬Pr�φ)= e(Pr♦¬φ) and e(¬Pr♦φ)= e(Pr�¬φ) in every model).
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We construct a T
(
Ł2(�,→)

)
constraint tableau beginning with {α− �1 c, c< 1} where α− is the

result of replacement of every modal atom Prσi with a fresh variable qσi and check in nondeter-
ministic polynomial time whether it is closed. If it has open branches, we guess one (say, B) and
consider its corresponding system of linear inequalities.

z1�t1, . . . , zn�tn, k1 ≤ k′1, . . . , kr ≤ k′r ,m1 ≥ 1, . . . ,ms ≥ 1,m′1 ≤ 0, . . . ,m′t ≤ 0 (LI(1)B�)

Here, zi’s correspond to the values of qσi ’s in α− and ti’s are linear polynomials that label qσi ’s.
Numerical constraints give us k’s, k′’s, m’s and m′’s. Denote the number of inequalities and the
number of variables in (LI(1)B�) with l1 and l2, respectively. It is clear that l1 =O(l(α−)) and
l2 =O(l(α−)).

To check that zi’s are coherent as probabilities of σi’s, we introduce 22
n − 1 new variables of the

form uv with v ∈ {0, 1, ;}∗. Here, v encodes the valuation of literals of α in the corresponding clus-
ter ofMBDS5

α (cf. Definitions 66 and 69). For example, if Lit(α)= {p1,¬p1, p2,¬p2}, u1000;1100;0101
encodes {{p1}, {p1,¬p1}, {¬p1,¬p2}}. Additionally, we put ai,v = 1 if MBDS5

α ,w �+ σi for every
state w in the cluster corresponding to v and ai,v = 0, otherwise. We then add the following
equalities for every i.∑

v
uv = 1

∑
v

(ai,v · uv)= zi (LI(2 exp )B�)

As in Theorem 42, we guess a list L of at most l1 + n+ 1 words v. By Theorem 71, we w.l.o.g.
assume that only clusters with at most 2n+ 1 states have a positive measure assignment. Thus, L
contains only uv’s whose length is not greater than n · (2n+ 1), whence, the size of L is not greater
than n · (2n+ 1) · (l1 + n+ 1). We compute the values of ai,v’s for i≤ n and v ∈ L which takes
deterministic polynomial time w.r.t. l(α−) because clusters contain at most 2n+ 1 states. This
gives us the following system of inequalities.∑

v∈L
uv = 1

∑
v∈L

(ai,v · uv)= zi (LI(2poly)B�)

One can see that the size of (LI(1)B�)∪(LI(2poly)B�) is polynomial in l(α−) as there are polyno-
mially many (in)equalities containing polynomially many variables with linearly bounded labels.
Hence, it can be solved in nondeterministic polynomial time. The rest of the proof follows that of
Theorem 42.

The coNP-membership proof for PrNŁS5 is similar, so, we provide only a sketch. The main differ-
ences are as follows. First, there are two modalities – Pr1 and Pr2; this is why, when transforming
α into α−, we replace Pr1σi’s with qσ1i ’s and Pr2σi’s with qσ2i ’s. Thus, we introduce two sorts of z’s
(z1i ’s and z2i ’s) in the system of inequalities corresponding to an open branch in theT(NŁ) tableau
for α−. Note, however, that since �1 and ♦1 do not occur in the same modal atom as �2 or ♦2,
we can utilise MBDS5

α− for both sets of modalities. However (recall Theorem 71), we will need two
independent measures.

Second, we need two sorts of uv’s – u1v and u2v (v’s are defined as in the case of Pr(�,→)
S5 ) –

to differentiate between two measures on MBDS5
α . This means that (LI(2 exp )B�) will have the

following form:∑
v

u1v = 1
∑
v

(ai1,v · u1v)= zi1
∑
v

u2v = 1
∑
v

(ai2,v · u2v)= zi2

Thus, we have l1 + 2n+ 2 inequalities in total. Hence, we can guess the list L containing l1 + 2n+
2 variables. By Theorem 71, we need only v’s of length at most n · (2n+ 1). Therefore, the size of L
is at most n · (2n+ 1) · (l1 + 2n+ 2), which means that it takes nondeterministic polynomial time
to solve the system of inequalities obtained after guessing L. The result is as follows. �
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Corollary 75. Validity in BelŁ
2
� and BelNŁ is coNP-complete.

Proof. Immediately from Lemma 59 and Theorems 64 and 74. �

6. Conclusion
In this paper, we considered several two-layered logics for reasoning with probability measures
and belief functions defined in the BD-framework. In particular, we established that the logics of
4- and ±-probabilities can be faithfully embedded into one another (Theorems 24 and 25) and
constructed a complete Hilbert axiomatisation for the logic of 4-probabilities (Theorem 33). We
also established coNP-completeness for logics of ±- and 4-probabilities and coNP-completeness
for logics of belief and plausibility functions in BD (Theorem 42 and Corollary 75) utilising the
connection between belief assignments of propositional and modal formulas (Theorem 52) and a
version of the small model property for the canonical model (Theorem 71). Still, several important
questions remain open.

First, our belief and plausibility functions are close to±-probabilities because they assign each
statement φ two measures: the measure of its positive extension and the measure of its negative
extension. It is thus instructive to define 4-valued belief and plausibility functions that will assign
measures to φ according to the pure belief, pure disbelief, conflict and uncertainty extensions
(cf. Convention 5). This is not a trivial task since belief and plausibility functions are not addi-
tive, whence, the measures of these extensions cannot be directly obtained from bel(|φ|+) and
bel(|φ|−).

Third, observe that axiomatisations of BelŁ
2
� proposed by Bílková et al. (2023d) are infinite. In

the case of belief functions over the classical logic, it is shown by Godo et al. (2001, 2003) how to
produce a finite axiomatisation for the two-layered logics of belief functions in the classical case
using the representation of bel(‖φ‖) as π(‖�φ‖). Recall that a similar property (Theorem 52)
holds for the BD as well. It makes sense to use it to obtain a finite axiomatisation of belief and
plausibility functions over BD.

Finally, Bílková et al. (2023a) proposed two-layered logics for qualitative reasoning about dif-
ferent uncertainty measures. In particular, we constructed logics for qualitative reasoning with
belief functions and probabilities. These logics utilised the bi-Gödel logic (biG) in the outer layer.
Since biG is also NP-complete, the question arises whether we can apply the technique of Hájek
and Tulipani (2001) to prove the NP-completeness of two-layered logics for qualitative reasoning
about uncertainty.
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