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Abstract

Helminth zoonoses remain a global problem to public health and the economy of many coun-
tries. Polymerase chain reaction-based techniques and sequencing have resolved many taxo-
nomic issues and are now essential to understanding the epidemiology of helminth zoonotic
infections and the ecology of the causative agents. This is clearly demonstrated from research
on Echinococcus (echinococcosis) and Trichinella (trichinosis). Unfortunately, a variety of
anthropogenic factors are worsening the problems caused by helminth zoonoses. These
include cultural factors, urbanization and climate change. Wildlife plays an increasingly
important role in the maintenance of many helminth zoonoses making surveillance and con-
trol increasingly difficult. The emergence or re-emergence of helminth zoonoses such as
Ancylostoma ceylanicum, Toxocara, Dracunculus and Thelazia exacerbate an already discour-
aging scenario compounding the control of a group of long neglected diseases.

Introduction

Given this is the centenary of the Journal of Helminthology, one might have expected great
inroads to have been made into the control, and in some cases elimination, of helminth zoo-
noses. Unfortunately, this is not the case. Tremendous advances have been made over the last
100 years in the tools at our disposal and our understanding of the diversity, taxonomy, host
range, distribution, ecology and public health significance of helminth zoonotic agents.
However, this is not reflected in a reduction in their global impact and attempts at controlling
the causative agents have largely been impeded by anthropogenic factors (Lindahl & Grace,
2015). For example, one of the best-known helminth zoonotic agents is Toxocara canis. The
‘tools’ available to control this parasite in dogs, in terms of prophylactic and therapeutic
drugs have been available for several decades. However, whereas control has been readily
accomplished in some countries, such as Australia, the parasite is an emerging issue elsewhere
(see below). It is principally human behaviour in one way or another that allows the causative
agents of helminth zoonoses to thrive. Helminths such as T. canis and Echinococcus granulosus
can be effectively controlled in domestic dogs, but this requires education and a willingness by
dog owners to administer prophylactic drugs to puppies or ensure dogs do not have access to
raw uninspected meat, respectively.

Helminth parasites feature prominently in the World Health Organization’s list of
neglected diseases (8/17). Most are zoonotic with animal reservoirs playing a significant
role in the epidemiology of human infections and thus they are a focus of control efforts.
Most of the helminth species were described many years ago, but their zoonotic potential
became clear much later. We have known about the zoonotic potential of helminths such
as Echinococcus and Trichinella (echinococcosis and trichinosis) for over 150 years because
of the pioneering experiments of researchers such as von Siebold, Zenker and
Kuchenmeister, whereas the aetiology of visceral larva migrans was demonstrated much
more recently by Beaver (see Grove, 1990). The history of helminth zoonoses is fascinating
and detailed descriptions given by authors such as Calvin Schwabe (1969) and David Grove
(1990) provide a valuable education on the types of investigations that would not be practical
or possible today. The first papers on zoonotic helminths were published in the Journal of
Helminthology in the 1920s on Hymenolepis, Opisthorchis, Echinococcus, Trichinella and
Toxocara.

Education and public health measures, supported by drugs with some species, remain the
main strategies in the control of helminth zoonoses. Considerable research has been under-
taken on the development of helminth vaccines, including those with zoonotic potential,
but vaccines have had no impact on the global burden. The technological advances that
have been made in developing molecular-based vaccines have yet to be put into practice.
No vaccines are approved for human or animal use (Bain, 2019; Perera & Ndao, 2021). The
only successful vaccine against a helminth infection remains the oral vaccine containing live
irradiated lungworm larvae (L3) developed by Jarrett and colleagues at the University of
Glasgow to protect calves against infection with the bovine lung worm Dictyocauls viviparus
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(Jarrett et al., 1960; Poynter, 1963). It is a live attenuated vaccine
that allows larval development to the fourth stage in an immuno-
genic site, the mesenteric lymph nodes, following which there is
no development to the adult stage. It is extremely effective in pre-
venting infection and disease (parasitic bronchitis or ‘husk’) in
cattle, but the other factor that made this vaccine a success was
the clear market need given that there were no effective drugs
to treat a potentially fatal infection (Poynter, 1963). In contrast,
an effective vaccine developed against canine hookworm using a
similar approach was not a commercial success given the avail-
ability of cheaper, effective therapeutic approaches (Miller,
1978). The attenuated vaccine approach taken in the development
of the canine hookworm unfortunately would not be transferable
to the development of a similar vaccine for human hookworm for
reasons of registration. In the 60 years since the bovine lungworm
vaccine was developed, molecular approaches have only resulted
in potentially effective vaccines against E. granulosus in sheep
and some species of Taenia. These vaccines are not yet used in
control programmes, for a variety of reasons, principally
economic, but trials have been undertaken and continue
(e.g. Larrieu et al., 2019; Nsadha et al., 2021).

Nearly 30 years ago, Calvin Schwabe referred to the dynamic
state of flux and new discovery that has always characterized stud-
ies on zoonoses (Schwabe, 1984). Helminth zoonoses are always
changing in terms of host range, geographical distribution and
the emergence of new or unexpected challenges. This is what
makes them so interesting but at the same time so demanding.

In this review, the advances that have been made using
molecular techniques in the characterization of the causative
agents of helminth zoonotic infections are examined. The knowl-
edge gained has provided comprehensive data on the epidemi-
ology of zoonotic helminthiases yet progress in their control has
been thwarted by increasingly problematic anthropogenic factors
which are discussed.

Impact of molecular tools

The advent of polymerase chain reaction (PCR)-based techniques
and sequencing has had a tremendous impact on our understand-
ing of helminth zoonoses and developing strategies for their
control.

Taxonomy

A sound taxonomy of helminths with accurate descriptions of
individual species and accepted names is the first step in their
control. The formal naming of a species is a prerequisite for
effective communication which is particularly important when
the species in question are of public health importance and
require coordinated control efforts. The molecular characteriza-
tion of numerous helminths has helped in resolving taxonomic
issues, identifying new zoonoses and interpreting epidemiological
observations.

Molecular approaches have proved useful where the taxonomic
significance of morphological characters was questionable, for
example in Echinococcus, or difficult to resolve, as with
Ancylostoma ceylanicum (see below). The lack of morphological
differences between many inter-specific and intra-specific var-
iants has, in the past, compounded an often-confusing taxonomic
picture, which in many cases has taken decades to resolve. For
example, with Trichinella, there were no morphological characters

that could complement increasing epidemiological evidence that
Trichinella spiralis is not a uniform species (Zarlenga et al., 2020).

Echinococcus has a long history of taxonomic and nomencla-
tural confusion, particularly regarding the species level taxonomy
(Thompson, 2017). This has resulted not only from a lack of use-
ful morphological characters, but also when taxonomic uncer-
tainty overshadowed the importance of host occurrence
(Thompson, 2017). The application of molecular tools has
resolved much of the uncertainty of the past and there is now
widespread agreement based on not only molecular but also mor-
phological and ecological criteria that Echinococcus should be split
into ten species (Thompson, 2020; table 1). Molecular approaches
have been pivotal in resolving taxonomic issues and interestingly
have largely confirmed original taxonomic considerations, and
importantly, from a practical point of view, the reliability of dif-
ferential morphological characters. As a consequence of establish-
ing a sound taxonomy, the ecology of transmission of
Echinococcus in areas where multiple host species are infected
has only recently been interpreted with confidence. The life cycles
and host range of all ten species are now well documented (Romig
et al., 2017; table 1) and represent an essential foundation for
control efforts.

Of all the helminth zoonoses, Trichinella provides the best
example of the value of molecular characterization in determining
the genetic distinctness of inter-specific/intra-specific variants in
the genus when differential morphological characters to support
epidemiological observations are lacking. All developmental
stages of currently recognized species and intra-specific var-
iants/strains/genotypes of the genus (table 2) are morphologically
indistinguishable. Until the 1950s, T. spiralis was considered a
uniform species. The seminal studies by George Nelson and col-
leagues on Trichinella in the 1960s proved pivotal in establishing
our current understanding of the intra-specific diversity of the
genus and the epidemiology of trichinosis (trichinellosis) globally.
Their studies in Africa were stimulated by observations that
demonstrated differences in infectivity between local Kenyan iso-
lates and ‘typical’ isolates of T. spiralis, particularly low infectivity
to domestic pigs (Nelson & Mukundi, 1963). Locally acquired
infections were also less clinically severe in humans than with
‘typical’ T. spiralis, and subsequent studies demonstrated that
the local strain is principally maintained in a wild animal cycle
(Nelson et al., 1963; Capo & Despommier, 1996). Nelson’s studies
‘shattered many of the preconceived ideas about the parasite’
(Nelson et al., 1966) and importantly, complemented earlier
observations of Rausch and colleagues in the Arctic who found
that the local form of Trichinella was adapted to a wildlife cycle
and not introduced but endemic to Arctic regions (Rausch
et al., 1956). The application of molecular tools has been instru-
mental in defining the taxonomy of both encapsulated and
non-encapsulated forms of Trichinella thus providing a firm
foundation on which to interpret the wealth of epidemiological
data obtained over a period of more than 50 years since the dis-
covery of what we now know as Trichinella nelsoni. A total of ten
species (table 2) and three so far unresolved genotypes T6, T8 and
T9, have been recognized in the genus Trichinella (Zarlenga et al.,
2020).

Characterization

The ability to diagnose and characterize a helminth infection
based on faecal stages is an important factor both clinically and
epidemiologically. However, morphology is often of limited
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value for the detection and characterization of helminth parasites
as well as for the diagnosis of infections. This may be because of
insufficient, or poor-quality material; no differential morpho-
logical characters between species of the same genus; and the
need for staff well trained in microscopy (Singh, 1997; Betson
et al., 2020), a skill that is sadly very much in decline.
Molecular tools have thus provided an important alternative or
adjunct to the use of microscopy, providing better sensitivity as
well as a means of characterizing helminth parasites genetically.

The eggs of Taenia species are morphologically identical
which in the past has been a problem for studies on the epidemi-
ology of taeniid infections where several species may coexist in an
endemic area. Such situations require the use of molecular tools to
determine the source of infection in humans and any cohabiting
non-human definitive hosts. For example, in Laos Taenia solium
is an important public health issue (Conlan et al., 2012a; Ash
et al., 2017). However, in rural areas people may be infected
with both, or either, Taenia solium and Taenia saginata and
appropriate PCR-based assays are the only way to determine
the prevalence of the two species from faecal samples (Conlan
et al., 2012b). Interestingly, in rural villages in Laos, dogs were
found to be infected with Taenia hydatigena using PCR, raising
questions about the possible competitive interactions of T. solium
and T. hyadatigena in pigs acquiring infections with both species
(Conlan et al., 2009, 2012b).

Similarly, the eggs of the zoonotic trematodes Clonorchis and
Opisthorchis are identical which has made it difficult to determine
their geographical distribution in endemic areas where both spe-
cies occur. This is the case in south-east Asia where molecular epi-
demiological studies have provided a more accurate picture of the
distribution of both species (Traub et al., 2009; Saijuntha et al.,
2019). Similarly, with the faecal stages of zoonotic nematodes,
PCR-based tools have proved valuable in differentiating between
species, particularly of Ancylostoma (see below).

Smyth (1995) identified two nematodes as emerging zoonoses,
Angiostrongylus costaricensis and Oesophagostomum bifurcum.
Since then, the zoonotic significance of both parasites has
increased and molecular tools have proved invaluable in terms
of diagnosis, in the case of A. costaricensis (Rojas et al., 2021)
and determining prevalence and genetic diversity of
Oesophagostomum (Sirima et al., 2021).

Surveillance and biosecurity

Otranto & Deplazes (2019) predicted that the use of DNA-based
analyses of clinical material would allow the specific diagnosis of
exotic (i.e. unexpected) infections. This was demonstrated in a
case of the diphyllobothriid cestode, Adenocephalus pacificus in
a child in southern Australia (Moore et al., 2016). Infection was
traced to a locally caught marine finfish which was unexpected
since recent food risk assessments in Australia did not recognize
A. pacificus tapeworms as a potential zoonotic threat from locally
caught finfish (Moore et al., 2016). Morphologically, limited
information could be obtained from strobilar material and eggs
in the faeces of the infected child, and could only suggest diphyl-
lobothriosis, not the genus or species. However, DNA sequencing
confirmed this diagnosis and identified the causative agent as A.
pacificus. This is the first human case of diphyllobothriosis
reported in Australian waters which is discussed further below.

Opportunities for the introduction of exotic helminth parasites
have increased with globalization and the expansion of tourism
and illegal wildlife trade (Thompson et al., 2003; Thompson,
2018; Betson et al., 2020; Bezerra-Santos et al., 2021), emphasiz-
ing the need for improved border security and surveillance. From
an economic perspective T. spiralis has always been considered a
major parasite threat to the biosecurity of many countries in
terms of trade (Thompson et al., 2003; Thompson, 2018). The
importance of demonstrating Trichinella-free status is a

Table 1. Species and genotypes of Echinococcus.

Species strain/genotype Distribution Known intermediate hosts
Known definitive

hosts
Infectivity to
humans Disease

Echinococcus granulosus
(sheep/G1–G3)

worldwide sheep, cattle, goats,
macropods, etc.

dog, fox, dingo,
jackal, hyena

yes CE

Echinococcus equinus
(horse/G4)

Europe, United States, Africa,
Middle East

horses and other equines dog probably not CE?

Echinococcus ortleppi
(cattle/G5)

Europe, Asia, Africa, Central and
South America

cattle, buffalo (sheep, goat) dog yes CE

Echinococcus canadensis
(cervid/G8, G10)

North America, Canada, Eurasia cervids wolf, dog yes CE

Echinococcus
intermedius camel/G6
(Pig/G7)

Middle East, Africa, Asia, South
America (pig) Worldwide

camels, sheep, pig dog yes CE

Echinococcus felidis Africa warthog, other wildlife? lion, hyena not known –

Echinococcus
multilocularis

Northern Hemisphere: Alaska,
United States, Canada, Asia,
Europe

rodents, domestic and wild
pig, dog, monkey, horse

fox, dog, cat, wolf,
racoon-dog, coyote

yes AE

Echinococcus shiquicus Tibet pika Tibetan fox not known –

Echinococcus vogeli Central and South America rodents bush dog yes PE

Echinococcus oligarthra Central and South America rodents wild felids yes PE

Data updated from Thompson (2017) and Romig et al. (2017).
CE, cystic echinococcosis; AE, alveolar echinococcosis; and PE, polycystic echinococcosis.
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significant trade issue for many countries which is exacerbated by
the limitations of meat inspection procedures, particularly in free-
ranging situations, as well as a lack of appropriate surveillance in
wildlife populations (Thompson, 2013). Pig producers need to
show negligible risk of their animals becoming infected from
wildlife. New molecular and biochemical-based methodologies
have improved detection, differentiation and characterization of
Trichinella species and genotypes (Zarlenga et al., 2020).
Confinement production systems, improvements in biosecurity,
surveillance programmes and laws regulating commercial pork
production are considered to have ‘essentially eradicated’
Trichinella in the United States and Europe (Diaz et al., 2020;
Shurson et al., 2022). However, this view is not correct because
of the numerous wildlife reservoir species in the United States
and elsewhere in the world which may impact domestic environ-
ments (Pozio, 2013 and e.g. see Reichard et al., 2021; and see
below).

Australia has long been considered to be free of T. spiralis
(Thompson, 2018). Australia’s domestic pig population is free
from Trichinella pseudospiralis and other Trichinella species
(Wildlife Health Australia, 2022). Its discovery would be a signifi-
cant impediment to trade. With the advent of molecular tools for
surveillance the question of Australia’s presumed Trichinella-free
status has been questioned because in the past surveillance, par-
ticularly of potential wildlife reservoirs, has relied on traditional
detection techniques (Thompson, 2013). Trichinella spiralis has
never been reported in Australia. However, until relatively
recently, surveys had not been undertaken on the mainland of
Australia (Cuttell et al., 2012a). Recent surveys detected
Trichinella papuae in a wild pig from an Australian island in

the Torres Strait which has also been described in pigs in New
Guinea (Cuttell et al., 2012a). Trichinella papuae is not only
infective to other mammals, including humans, but also to croco-
diles (Pozio et al., 2009). Trichinella pseudospiralis infection has
been detected in marsupials and birds in Tasmania (Obendorf
et al., 1990) and in a human from Tasmania (Andrews et al.,
1994). Real-time PCR has been developed as a surveillance tool
for the detection of Trichinella in muscle samples from wildlife
(Cuttell et al., 2012b).

Unlike Australia, Trichinella is present in several South
American countries apart from Peru, Colombia and Uruguay
which have no documented evidence of Trichinella spp. in ani-
mals and humans (Ribicich et al., 2020). However, these authors
point to the lack of surveillance in other countries. In particular,
the growth of the guinea pig meat market in the Andean region,
and the high prevalence of Trichinella reported in free range pigs
and wild boars, as well as other game animal species, are consid-
ered important risks. It is therefore considered important to focus
on the role of biosecurity and risk management, while improving
meat market regulations, and detection of infection prior to con-
sumption. This will reduce the risk of transmission of Trichinella
to humans (Ribicich et al., 2020).

Trichinosis in humans is typically related to cultural food prac-
tices, including the consumption of raw, undercooked, fermented
or cured meat and there has been an increasing reliance on testing
to demonstrate food safety (Dorny et al., 2009). As outlined
above, in terms of control, much of the emphasis had focused
on domestic environments and the role of pigs and synanthropic
hosts such as the rat in transmission. However, globally, wildlife is
now seen as playing the major role in maintaining cycles of

Table 2. Species and genotypes of Trichinella.

Species/genotype Hosts* Distribution

1. Trichinella spiralis (T1) domestic and wildlife cycles,
pig, wild boar, rat, fox, bear, horse, seals, many other mammals

Europe, the United States, South America,
Africa, Asia, Middle East

2. Trichinella nelsoni (T7) wildlife cycles,
warthog, hyena, jackal, lion, bush pig, serval, leopard, genet, big-eared fox

Sub-Saharan Africa

3.Trichinella britovi (T3) wildlife cycles,
red fox, raccoon dog, wolf, jackal, wild cat, lynx, brown bear, badger, marten,
otter, domestic pig, wild boar, horse

Eurasia, north-western Africa,
south-western Asia

4. Trichinella nativa (T2) wildlife cycles
polar bear, walrus, seals, brown and black bear, wolf, polar fox, red fox,
raccoon dog, lynx, wild cat, tiger, wild boar, mustelids, pig, dog, cat

Arctic and sub-Arctic regions of North
America and Eurasia

5. Trichinella murrelli
(T5)

wildlife cycles,
red fox, raccoon, coyote, bobcat, black bear, cougar, mustelids, horse, dog, cat

Southern Canada, the United States

6. Trichinella
chanchalensis

wildlife cycle,
wolverine

North-west Canada

7. Trichinella
patagoniensis

wildlife cycle,
cougar

Argentina

8. Trichinella
pseudospiralis (T4)

wildlife cycle,
red fox, raccoon dog, lynx, badger, raccoon, wild boar, domestic pig, cat, rat,
various bird species

cosmopolitan

9. Trichinella papuae
(T10)

wildlife cycle,
wild and domestic pig, saltwater crocodile

Papua New Guinea, Thailand

10. Trichinella
zimbabwensis (T11)

wildlife cycle,
Nile crocodile (and farmed crocodiles), Nile monitor, lion

Africa

Data from Deplazes et al. (2016) and Zarlenga et al. (2020).
*All zoonotic but no human cases reported for T. patagoniensi, T. chanchalensis and T. zimbabwensis.
1–7, encapsulated clade; and 8–10, non-encapsulated clade.
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transmission (Rostami et al., 2017; and e.g. see Sharma et al.,
2021; Gherman et al., 2022). The consumption of undercooked
commercial pork products is no longer considered the main
source of human trichinosis, but in most regions, infection occurs
following the consumption of raw or undercooked wild game
meats, especially bear, moose, deer, walrus and wild/feral boar/
hog (Diaz et al., 2020). Thus, although biosecurity and ongoing
surveillance is successful in domestic livestock settings, wildlife
present an ongoing threat and if a true ‘One Health’ approach
is taken it must take into account wildlife reservoirs.

Anthropogenic activities may exacerbate opportunities for
spillover from wildlife to domestic foci which may threaten biose-
curity for pig producers (Thompson, 2013). There are therefore
growing demands for producers, not only to demonstrate that
their pigs are Trichinella-free but that there is no risk of
Trichinella infection spilling over to their pigs from wildlife.
The situation has been exacerbated by the insensitivity of diagnos-
tic assays used in meat inspection, and the growing demand for
free-range pork (Thompson, 2014). Although routine screening
for Trichinella in meat from endemic regions is mainly done
using enzyme-linked immunosorbent assay-based techniques,
molecular tools are playing a vital role in the screening of wildlife
(Barlow et al., 2021). It appears that political manoeuvring asso-
ciated with market access is serving to artificially inflate this as an
issue (Thompson, 2014). This may be the case in the United
Kingdom where there is a perceived need for data gathering
and assessment of Trichinella in United Kingdom wildlife even
though it has rarely been detected in the past (Zimmer et al.,
2009; Food and Environmental Research Agency, 2013).

Epidemiology – understanding transmission

As discussed above, molecular tools have been invaluable in defini-
tively characterizing many helminths genetically and thus settling
taxonomic issues. It follows from the resolution of taxonomic
issues that a better understanding of the epidemiology of zoonotic
helminth infections, for example those caused by Echinococcus and
Trichinella, is possible. However, with some species of helminth
that have long been recognized as being distinct species, their zoo-
notic potential and geographical distribution have been uncertain.
This has certainly been the case with the hookworm A. ceylanicum.
The A. ceylanicum ‘story’ highlights better than no other how
molecular tools led to the taxonomic and epidemiological recogni-
tion of a zoonotic hookworm, and in recent times has also demon-
strated how widespread the parasite is globally (Traub, 2013;
Thompson, 2015; Colella et al., 2021; Traub et al., 2021).

Dogs and cats are the definitive hosts of A. ceylanicum but it
has long been known to have the ability to establish patent infec-
tions in humans. It is the only hookworm with this zoonotic
potential and for many years, infections were considered to be
uncommon in humans. This was undoubtedly because of difficul-
ties in specific diagnosis since the eggs of hookworm species are
morphologically identical (see above). However, with the develop-
ment of PCR-based techniques that can differentiate between all
species of hookworm in humans, dogs and cats, A. ceylanicum
has been shown to have a much broader geographical distribution
than previously thought (Palmer et al., 2007; Conlan et al., 2012a;
Ngui et al., 2012; Traub, 2013) and until recently was considered
the most neglected of all human hookworm (Traub, 2013). As a
consequence, the development and application of molecular epi-
demiological tools is now being undertaken in numerous hook-
worm endemic regions. Surveys in Asia have shown that A.

ceylanicum is the second most common species of hookworm
infecting humans and in developing areas of south-east Asia
and India, there is now a growing awareness of the role of dogs
in the zoonotic transmission of A. ceylanicum (Conlan et al.,
2012a; Inpankaew et al., 2014; George et al., 2015). In Australia,
a recent study of wild dogs (dingoes and dingo hybrids) in peri-
urban areas of northern Australia found that up to 100% were
infected with A. ceylanicum thus constituting a zoonotic risk to
communities in this tropical area of northern Australia (Smout
et al., 2013). Most recently, molecular tools have confirmed the
presence of A. ceylanicum in the West Indies and South America
(Sears et al., 2022; Zendejas-Heredia et al., 2022). In many areas
where hookworm is endemic, dogs are common in villages and
communities where a number of hookworm species may coexist
in humans and dogs. Ancylostoma ceylanicum is not usually the
dominant hookworm in such settings with Ancylostoma duodenale
or Necator americanus more prevalent in humans (Conlan et al.,
2012a). Mixed infections may occur in both humans (e.g. A. duo-
denale ±N. americanus +A. ceylanicum) and dogs (Ancylostoma
caninum +A. ceylanicum). Dogs therefore represent a reservoir of
human infections which must be considered when using mass
chemotherapy as a means of controlling hookworm infection in
the human population. Studies in Laos suggest that the limited suc-
cess of mass chemotherapy programmes targeted at humans in
rural communities may have resulted from a proportion of
human infections being due to A. ceylanicum from dogs (Conlan
et al., 2012a). The clinical management of hookworm disease in
humans in endemic regions where more than one species of hook-
worm circulate will be optimized by specific diagnosis of the causa-
tive species given their different pathogenesis (Conlan et al., 2012a).

The zoonotic trematodes Clonorchis and Opisthorchis are com-
mon throughout south-east Asia and their distributions may over-
lap (Traub et al., 2009). It is important to differentiate between the
two species because of differences in clinical presentation and the
prognosis of infection in humans. There is therefore a need for the
surveillance of human populations in endemic and potential new
endemic regions. However, Clonorchis and Opisthorchis produce
morphologically identical eggs, as do the more common, often
co-occurring heterophyid flukes. Fortunately, direct characteriza-
tion of the causative species of fluke from faecal samples is now
possible using PCR-based tools. Recent surveys in Vietnam
revealed that infection with several minute intestinal flukes, such
as Haplorchis pumilio and Haplorchis taichui, are much more
common than infection with Clonorchis sinensis or Opisthorchis
viverrini, and they often co-infect humans (Doanh & Nawa,
2016). Further, previously reported prevalences of heterophyid
infection in Vietnam were likely over-estimated due to misidenti-
fication of parasites in faecal examinations (Doanh & Nawa, 2016).
For many years, Opisthorchis was thought to be the only species
occurring in Thailand, but PCR-based tools identified the presence
of C. sinensis for the first time in 2009 (Traub et al., 2009).

Of the zoonotic schistosome species, S. japonicum has the lar-
gest number of animal reservoirs. Over 40 species of domestic
and wild mammals have been described as definitive hosts of S.
japonicum (Carabin et al., 2015; Budiono et al., 2019; Gordon
et al., 2019). In south-east Asia, animal reservoirs are believed to
play a significant role in the maintenance of the parasite and its
transmission to humans, making control very difficult (Betson
et al., 2020). Surprisingly, few molecular epidemiological studies
have been undertaken to confirm the actual role of different species
of wild and domestic definitive hosts. These need to be undertaken
at a local level in different countries and regions in south-east Asia.
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The identity of which non-human definitive hosts contribute to
zoonotic transmission of S. japonicum is important so that they
can be targeted for control (Betson et al., 2020).

In a number of endemic areas, molecular epidemiological stud-
ies have been instrumental in identifying and describing sympatric
cycles of transmission involving more than one species of
Echinococcus (Thompson, 2020). Although morphology can be
used to differentiate between adult worms belonging to different
species, this is not practical given the difficulties in recovering
adult specimens from definitive hosts and the associated public
health risks involved. However, molecular tools allow species iden-
tification from eggs in faeces. For example, a study of wild canids
on both sides of the Canada–United States border in eastern
North America, found wolves and coyotes infected with
Echinococcus canadensis (Schurer et al., 2018). This species com-
prises two genotypes, G8 and G10, and it was possible using appro-
priate PCR-based techniques to discriminate between the two
genotypes, finding single and mixed infections in both canid spe-
cies (Schurer et al., 2018). In the Southern Italian Alps, a
molecular-based faecal survey of. Echinococcus granulosus in wolves
and dogs in the Southern Italian Alps, unexpectedly detected
Echinococcus multilocularis eggs in four faecal samples from at
least two shepherd dogs, and in five wolf faecal samples (Massolo
et al., 2018). Co-infection of Echinococcus ortleppi and E. multilo-
culalris was also identified in two wolves. Similarly, co-infections
of E. multilocularis and E. canadensis were detected by PCR in coy-
otes and red foxes in Alberta, Canada (Schurer et al., 2018).

In some areas where multiple species of Echinococcus are
endemic, it is important to determine the species responsible in
clinical infections of humans as this will inform public health
measures. Using molecular diagnostic techniques, a recent study
in China characterized the species of Echinococcus in patients,
with 22 isolates of E. granulosus, and E. multilocularis recovered
from one patient and Echinococcus intermedius in another (Cao
et al., 2018). Another study of 42 patients in south-east Iran,
found that 18 were infected with E. granulosus and 24 with the
G6 genotype (=Echinococcus intermedius) (Lashkarizadeh et al.,
2019). In one patient, a mixed infection of E. granulosus in the
liver and right lung, and E. intermedius in the left lung, was
detected (Lashkarizadeh et al., 2019). This study showed a signifi-
cantly high proportion of patients infected with E. intermedius,
particularly in the southern parts of the country (Lashkarizadeh
et al., 2019). In another recent molecular epidemiological study
that examined 140 human cases in China, 108 were caused by
E. granulosus, one by E. intermedius, and 31 by E. multilocularis
(Shang et al., 2019). Misdiagnosis between E. granulosus and E.
multilocularis was common in these cases (Shang et al., 2019)
demonstrating the value of using molecular diagnostic procedures
to ensure appropriate therapeutic interventions.

Anthropogenic factors

As Schwabe predicted in 1984, there are many situations yet to be
discovered about how humans’ changing activities may influence
the transmission of zoonoses (Schwabe, 1984). How such activ-
ities will influence wildlife ecosystems as well as public health
remain to be uncovered. Nearly 40 years later, anthropogenic fac-
tors are increasingly exacerbating the impact of zoonotic hel-
minths on humans and animals. As discussed above, molecular
tools have increased our knowledge about the diversity of hel-
minth zoonotic agents which, in turn, has enabled a much better
understanding of how anthropogenic factors, directly or

indirectly, for example through climate change, are influencing
the occurrence and emergence of helminth zoonoses.

Culture, poverty, poor hygiene and diet

The frequency of transmission of many helminth zoonoses is
highest in poor and rural, often disadvantaged communities
where cultural and educational issues, contact with contaminated
water, poor hygiene and poverty, are major impediments to con-
trol. Under such conditions children are especially vulnerable to
infection. Control is very difficult when it requires changes to
long held cultural and community practices. For example, with
schistosomiasis in areas where local populations spend much
time close to contaminated water sources for washing, collecting
water, agriculture and recreation.

Diet is a major factor with many zoonotic helminths and their
transmission to humans, particularly in developing regions. The
transmission of fish-borne flukes to humans and to intermediate
hosts is influenced by human behaviour (Jones, 2015). The distri-
bution of human infections in south-east Asia corresponds well
with the availability of snail and fish intermediate hosts and the
food consumption habits of local populations. Principally, eating
raw or poorly cooked fish and inadequate sanitation leading to
contaminated groundwater (Jones, 2015; Betson et al., 2020). In
the Arctic, indigenous communities are exposed to infection
with Trichinella as a consequence of subsistence hunting and
traditional methods of food preparation, particularly raw or
poorly cooked food (Jenkins et al., 2013). In poor rural commu-
nities, for whom livestock are a crucial source of income and eco-
nomic security, zoonoses affecting livestock represent a double
burden, in terms of their economy and health. There are many
pig associated zoonoses in Asia and a lack of epidemiological
studies may exacerbate their spread (Okello et al., 2015). For
example, in Laos, where Taenia solium is endemic in farmed
pigs which are a source of income as well as serving as a food
source for rural communities (Conlan et al., 2008; Okello et al.,
2015), the dual routes of infection require a focus on basic
hygiene and diet. In such situations, the vaccination of pigs,
once available, is likely to have a beneficial impact on local levels
of infection in pigs (Okello et al., 2016).

Conversely, each year thousands of cases of anisakiasis are
reported globally, particularly in developed countries with a sig-
nificant fishing industry and high fish consumption, particularly
of dishes comprising raw fish or squid (Adroher-Auroux &
Benítez-Rodríguez, 2020; Sugiyama et al., 2022). Using data
from 2018 to 2019 health insurance claims, the average annual
incidence of anisakiasis in Japan was estimated to be 19,737
cases (Sugiyama et al., 2022).

The combination of traditional societal behaviours and sub-
sistence hunting enhance the potential for zoonotic transmission.
This is particularly the case in Arctic regions where trichinosis
remains a public health challenge (Jenkins et al., 2013).
Unfortunately, ‘spill-over’ of such behaviour to tourists taking
part in recreational hunting ‘holidays’ has resulted in local out-
breaks of trichinosis when travellers, often illegally, take the
meat from hunted animals back to their home countries
(Dupouy-Camet et al., 2016; Rostami et al., 2017).

Urbanization

The importance of increasing urbanization has been neglected
until relatively recently. The central driver that attracts wildlife
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away from their natural habitats into urban areas is food. From an
ecological standpoint, this is eloquently discussed by Altizer et al.
(2018) and Becker et al. (2018) in terms of ‘resource provisioning’,
which may be accidental, as when wildlife capitalize on refuse or
agricultural by-products, or intentional, through supplemental
feeding for management or recreation (in Becker et al., 2018).
Environmental encroachment, deforestation and agricultural
intensification, also contribute to the movement of wildlife into
urban areas (Otranto & Deplazes, 2019; Anon, 2020; Pozio,
2020). All these factors are likely to increase in the future due
to human population expansion and increasing demand for
resources (White & Razgour, 2020).

The most frequent wildlife to have exploited food resources
available in urban areas are carnivores, and include the fox, coyote,
bears, hyaenas, wolves, raccoons, raccoon dogs, mountain lions, as
well as wild boars and stone martins. As a consequence of adapting
to urban environments, their ecology has been altered. Such urban
invasions are seen throughout Europe, Canada, the United States,
Australia and Japan (Otranto & Deplazes, 2019; Pozio, 2020;
Waindok et al., 2021). The urbanization of some of these animals,
for example raccoons and raccoon dogs, has been exacerbated by
translocations (Otranto & Deplazes, 2019). From a zoonotic and
public health perspective, the most important parasites infecting
such urban wild carnivores are helminths.

Echinococcus multilocularis ‘evolved’ with a successful wild, syl-
vatic life cycle involving foxes as definitive hosts and microtine,
principally arvicolid, rodents as intermediate host. Initially, in nat-
ural ecosystems such as the Arctic tundra or Tibetan high-altitude
grasslands, and subsequently in highly anthropogenic central
European farming landscapes or Japanese city parks (Rausch,
1986; Mackenstedt et al., 2015). It is a cycle now perfectly suited
to transmission in an urban environment once its principal hosts
successfully adapted to urban environments with the result that
spillover to domestic hosts has occurred along with additional
wild invaders playing increasingly important roles in transmission,
such as the raccoon dog (Nyctereutes procyonoides).

The urbanization of E. multilocularis has now emerged as a
significant public health issue, particularly in Europe. Fox dens-
ities can build up to be larger in urban than rural areas represent-
ing an enhanced contact zone between humans and infected foxes
(Mackenstedt et al., 2015). Echinococcus multilocularis is the cause
of alveolar echinococcosis in humans, which is considered one of
the most potentially fatal zoonotic diseases in the Northern
Hemisphere (Avcioglu et al., 2021), because of the metastasizing
nature of infection with the larval (metacestode) parasite
(Thompson, 2017).

In the past, zoonotic transmission of E. multilocularis was
principally associated with occupations such as fox trapping
(Schantz et al., 1995) and other rural activities. However, over
the last 40 years it has emerged as a major urban zoonosis as a
consequence of various human interventions, most notably vac-
cinating foxes against rabies which has led to an increase in the
numbers of foxes in many European countries, exacerbated by
provisioned urban red foxes in Europe (Schweiger et al., 2007;
Scott et al., 2014; Romig et al., 2017; Altizer et al., 2018). The arvi-
colid rodent intermediate hosts have also, like the fox, proved to
be very successful urban adaptors (Romig et al., 2017). Since
the 1980s the autochthonous presence of E. multilocularis has
been reported in over 20 European countries that were previously
considered non-endemic (Davidson et al., 2012; Deplazes et al.,
2017; Avcioglu et al., 2021). In addition, another urban adaptor,
the raccoon dog, has successfully invaded Western Europe from

the east, and is an excellent definitive host for E. multilocularis,
comparable to the fox (Kapel et al., 2006; Thompson et al.,
2006), although its future role in transmission is uncertain
given differences in the ecology of foxes and raccoon dogs
(Bružinskaitė-Schmidhalter et al., 2012; Romig et al., 2017).

The urbanization of the life cycle of E. multilocularis has
become a major public health issue not only in Europe but also
Japan (Uraguchi et al., 2022), and more recently in Canada
where both foxes and coyotes are involved in transmission of
the parasite (Romig et al., 2017). Anthropogenic landscape
changes such as deforestation and overgrazing (White &
Razgour, 2020) have resulted in an expansion of known inter-
mediate hosts in North America and Tibet (Schantz et al.,
1995; Giradoux et al., 2003; Deplazes et al., 2004; Romig et al.,
2006, 2017; Wang et al., 2007; Davidson et al., 2012) and new
intermediate hosts, such as the southern red-backed vole
(Myodes gapperi) have been identified in urban areas in Canada
(Liccioli et al., 2012). It has been known for some time that
domestic dogs are also capable of acting as suitable definitive
hosts of E. multilocularis (Thompson et al., 2006). Recently
domestic dogs have been found to be an increasing risk as defini-
tive hosts in urban areas in Germany (Schmidberger et al., 2022),
especially considering the rapidly increasing number of dog own-
ers. Schmidberger et al. (2022) reported that dog ownership in
Germany is associated with increased odds of human alveolar
echinococcosis. A recent literature review and meta-analysis
drew attention to the need to re-assess the role of dogs in the epi-
demiology of E. multilocularis infections (Toews et al., 2021).

In other areas of the world such as Canada, the public health
significance of E. multilocularis is also an emerging issue in urban
areas, and communities with interaction between coyotes, red
foxes and most recently wolves, as well as free roaming domestic
dogs, with access to abundant populations of intermediate hosts
(Davidson et al., 2012; Romig et al., 2017). Further, the inter-
action between wild and domestic cycles raises the possibility of
‘mixing’ of the recently introduced ‘European’ strain of E. multi-
locularis (Jenkins et al., 2012), which may differ in pathogenicity,
zoonotic potential and host specificity (Jenkins et al., 2013;
Deplazes et al., 2017; Romig et al., 2017; Santa et al., 2021).

Accidental and deliberate wildlife translocations have also
allowed the range expansion of E. multilocularis in different
parts of the world. The unfortunate accidental introduction of
microtine rodents to Svalbard in the Norwegian Arctic, where
foxes were also present, led to the establishment of a successful
E. multilocularis cycle (Romig et al., 2017). In contrast, foxes
were deliberately translocated within the south-eastern United
States to enhance recreational hunting, whereas the movement
of foxes from endemic Kuriles to Rebun Island off the north-
western coast of Hokkaido, Japan was for rodent control
(Davidson et al., 1992, 2012; Schantz et al., 1995; Romig et al.,
2006, 2017).

Unlike the urbanization of E. multilocularis from wildlife foci,
in Australia, early settlers introduced E. granulosus with their
sheep which subsequently resulted in the establishment of E.
granulosus in a wildlife cycle involving dingoes and macropod
marsupials (Thompson & Jenkins, 2014). Recently, dingoes
(increasingly referred to as wild dogs) infected with E. granulosus
have been reported in peri-urban areas of Queensland and New
South Wales (Harriott et al., 2019). Dingoes/wild dogs in urban
Australia are associated with the transmission of a number of hel-
minth zoonoses, apart from E. granulosus including A. ceylanicum
and Toxocara canis, as they can reach higher population densities
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in urban areas than in their natural habitats (Smout et al., 2013,
2017; Mackenstedt et al., 2015; White & Razgour, 2020).

Raccoons are native to North America and are the principal
definitive host of Baylisascaris procyonis which was highlighted
by Smyth (1995) as a potential emerging zoonosis. There is no
doubt now that Baylisascaris has emerged and is a significant
public health issue. As a result of introductions of raccoons
from North America, principally for hunting, raccoons are now
widely distributed across Europe, Russia and Japan. Like the
fox, due to its adaptability, the raccoon has been able to colonize
urban areas as a habitat where it readily co-exists with humans
often making an engaging pet which can readily transmit
Baylisascaris to humans via its faeces. The parasite seems to thrive
better in terms of prevalence in association with human-
dominated landscapes which put paratenic hosts (rodents and
other mammals, birds) under pressure and where domestic
dogs can become infected and extend the range of environmental
contamination (Page, 2013).

Apart from the public health significance of Baylisascaris in
urban areas, the impact of the parasite on conservation is an
emerging issue that should not be overshadowed by the public
health issue (Otranto & Deplazes, 2019). The low host specificity
for paratenic hosts and the pathogenic potential of the migratory
larval parasite is considered to be a potential contributor to the
extinction of vulnerable species of wildlife (Page, 2013). For
example, B. procyonis is believed to have contributed to local
declines and extinctions of the Allegheny woodrat (Neotoma
magister) in the United States (LoGiudice, 2003), but other wild-
life species are also thought to be at risk and not just in the United
States, but also in Europe and Japan (Bauer, 2013; Page, 2013).
The fact that raccoons have caused the introduction and spread
of ‘exotic’ parasites, such as B. procyonis in Central European
countries, with a potential risk of spill-over to other autochthon-
ous species should be considered as a threat to the conservation of
biodiversity (Otranto & Deplazes, 2019).

Climate change

It is difficult to predict how a changing climate will affect the
structure and functioning of terrestrial, freshwater and marine
parasite ecosystems (Jenkins et al., 2013), as well as the biology
of definitive and intermediate hosts, given the diversity of parasite
life cycles (Froeschke et al., 2010). In this context, of most signifi-
cance perhaps are saprozoonoses such as the taeniids, ascarids
and hookworm, which all produce resistant stages which will be
directly affected by climate change, increasing or decreasing
their survival in the environment. Some require sojourn in the
environment to embryonate and they are all capable of prolonged
survival under suitable conditions of temperature and humidity.
For example, climate change is predicted to favour the survival
of Toxocara eggs in the soil (Blum & Hotez, 2018). Trichinella
is unusual among the helminth zoonoses in having one species,
T. britovi, that is specifically adapted to cooler climatic zones.
Trichinella britovi larvae survive longer in carcasses beneath
than in those above the snow (Pozio, 2022). During the past 60
years, there has been a significant reduction in T. britovi preva-
lence in red foxes from Alpine regions (Pozio, 2022) of between
20 and 30% (Marazza, 1960; Rossi et al., 2019) which correlates
with a significant decrease in snow depth and snow cover in
the Alps (Scherrer et al., 2004; Marty, 2013).

Globally, a warming climate and the associated ecological dis-
turbances are modifying the structure of helminth ecosystems

(Jenkins et al., 2013). For example, with the diphyllobothriid ces-
todes (Kuchta et al., 2015), these changes will influence patterns
of distribution, seasonal timing of migration and reproduction
of their definitive hosts, as well as the development and survival
of fish hosts (second intermediate, and paratenic, hosts), as well
as invertebrate intermediate hosts and free-living parasite stages
(eggs and coracidia). Recently, the first human case of a patent
diphyllobothriid infection with A. pacificus was reported in
humans in South Australia (see above). Infection was acquired
by the ingestion of raw locally caught marine fish (Moore et al.,
2016). It will be interesting to see if plerocercoids are recovered
from more marine fish off the coast of South Australia in the
future and determine the possible influence of climate change
on this apparent change in distribution.

These effects will be especially felt in the Arctic where a recent
study concluded that it has warmed nearly four times faster than
the rest of the world since 1979 (Rantanen et al., 2022). Since the
current distribution of E. multilocularis is restricted to
the Northern Hemisphere, it is likely to be highly susceptible to
the effects of climate change (Jenkins et al., 2013). Already, this
parasite is emerging (increasing in distribution and prevalence)
in wildlife and human hosts in the Arctic and is colonizing new
regions through anthropogenic and natural movements of wild
and domestic hosts (in Jenkins et al., 2013).

As discussed above, the raccoon dog is rapidly expanding in
Europe and is likely to exacerbate the already worsening problem
caused by the spread of the fox as a definitive host of E. multilo-
cularis. Although the raccoon dog occupies a similar ecological
niche to that of foxes, particularly in terms of diet and urbaniza-
tion, competition has not been observed (Kauhala & Kowalczyk,
2011). However, the raccoon dog has a greater reproductive
potential than the fox and this may increase with the effects of
global warming (Mustonen & Nieminen, 2018). This is because
climate is likely to have a marked effect on the productivity of
the raccoon dog, especially on the proportion of reproducing
females and annual birth rate (Kauhala & Helle, 1995).

Anisakiasis is an emerging zoonosis where the causative agents
have complex multi-host aquatic life cycles. Like the diphylobo-
thriids, all stages of the life cycles will be very sensitive to envir-
onmental factors including temperature. Climate change will
adversely affect the complex trophic webs that form part of the
complex life cycles of anisakid nematodes involving different spe-
cies of marine mammals, fish and invertebrates which act as
definitive and intermediate hosts (Mattiucci & Nascetti, 2007).
For example, in south-east Asia anisakiasis is an emerging zoo-
nosis and new fish hosts have been identified (Betson et al.,
2020). The prevalence of anisakid infection in two species of
Croaker fish (Johnius carouna and Dendrophysa ruselli) were
found to be 31.7% and 87.5%, respectively (Nuchjangreed et al.,
2006), highlighting the potential reservoirs present that could
favour zoonotic emergence. Mature adult anisakids have been
found in marine animals in Indonesia, the Philippines and
Thailand (Wiwanitkit & Wiwanitkit, 2016). Although cases in
humans are not well reported in the literature, examples of anisa-
kiasis have been recorded in Thailand and Malaysia (Hemsrichart,
1993; Amir et al., 2016).

Wildlife

Some wildlife cycles are a major impediment to the eventual con-
trol of certain helminth zoonoses, and in the case of T. spiralis,
they can be of economic significance with respect to trade (see
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above). With T. spiralis, much of the emphasis has been on the
control of the parasite in domestic environments, principally
involving pigs and synanthropic hosts such as the rat. However,
the maintenance of Trichinella spp. in a variety of wildlife trans-
mission cycles and the involvement of humans in these cycles is
central to the zoonotic transmission of the parasite (Pozio et al.,
2009).

Globally, most Trichinella infections occur in wildlife (Pozio,
2013). Infections in wildlife have been documented in 66 (33%)
countries worldwide compared with 43 (21.9%) countries for
domestic animals (Pozio, 2007). Therefore, the spillover from
wildlife to domestic foci represents a constant challenge for con-
trol in both endemic regions and from a biosecurity viewpoint for
those countries which are considered to be Trichinella-free (dis-
cussed in detail above).

Wildlife is essential for maintaining the life cycle of some spe-
cies of Echinococcus in nature. For E. multilocularis, foxes and
microtine rodents serve this role whereas for E. canadensis it is
wolves and cervids, Echinococcus oligarthra wild felids and large
rodents, and for Echinococcus felidis lions and warthogs
(Thompson, 2008; Romig et al., 2017). Throughout most of its
geographical range, E. granulosus exists almost invariably under
conditions modified by humans (Rausch, 1986) perpetuated by
domestic animals with infection of humans principally a result
of domestic dogs having access to infected livestock.
Unfortunately, anthropogenic activities allowing spillover from
the domestic sheep/dog cycle, led to the establishment on the
Australian mainland of a cycle involving native wildlife, macropod
marsupials and dingoes, that not only impacts on public health
and livestock industries but also on wildlife health (Jenkins
et al., 2005; Thompson et al., 2009). This artificial, man-made
cycle also represents a barrier to the control or eradication of E.
granulosus in sheep on the Australian mainland due to infected
dingoes contaminating sheep pasture (Jenkins et al., 2005).
There is no evidence of an indigenous species of Echinococcus
in Australia or that E. granulosus was present before the arrival
of European settlers, with whom E. granulosus was introduced
in sheep (Thompson et al., 2010).

From a conservation perspective, indigenous macropodid mar-
supials in Australia, particularly small species of wallabies, are
highly susceptible to infection with the cystic stage of E. granulo-
sus which may seriously impair respiratory function enhancing
their predation (Barnes et al., 2007). As discussed above, the
urban encroachment of infected dingoes is also an emerging pub-
lic health issue.

Echinococcus felidis is confined to Africa and may represent an
indigenous form perpetuated in wildlife cycles involving the lion
as the principal definitive host and the warthog as an intermediate
host. With the introduction and domestication of livestock in
Africa, E. granulosus has become widespread in domestic livestock
including sheep, cattle and goats, with E. intermedius also occur-
ring in camels (Hüttner et al., 2009; Addy et al., 2012). Over 18
species of wild herbivores from different parts of southern, central
and eastern Africa have been found to be infected with hydatid
cysts (Macpherson, 1983; Romig et al., 2017). These include the
most common prey species of the lion although the role of
other intermediate hosts is as yet unknown (Schantz et al.,
1995; Huttner & Romig, 2009; Hüttner et al., 2009; Romig
et al., 2017). The existence of an independent cycle in wild mam-
mals in Africa has been proposed (Macpherson et al., 1983;
Rausch, 1986), and there was speculation that E. felidis was
responsible for infections in domestic livestock and other wildlife

intermediate hosts of Echinococcus in Africa. However, without
molecular characterization of isolates from intermediate hosts it
was not possible until recently, to determine the extent of trans-
mission cycles of E. felidis in African wildlife. Molecular epi-
demiological studies support an indigenous wildlife cycle in
Africa involving the lion and spotted hyaena as definitive hosts,
with the warthog and possibly other wild Suidae as intermediate
hosts (Romig et al., 2017).

Echinococcus canadensis (formerly genotypes G8 and G10) is
also maintained in a wild animal cycle involving wolves and
large cervids (moose and caribou), originally referred to as the
‘northern form’ of E. granulosus (Rausch, 2003), and principally
occurring in northern Canada, Alaska, parts of Scandinavia,
Eastern Europe and the United States (Himsworth et al., 2010;
Thompson, 2015; Romig et al., 2017; Dell et al., 2020).
Domestic or free-roaming dogs have long been recognized as
important ‘bridging hosts’ between the wild, sylvatic cycle of E.
canadensis and people (Rausch, 2003; Himsworth et al., 2010).
In northern Canada, interaction between the wildlife cycle and
indigenous communities occurs due to subsistence hunting
within indigenous communities where domestic dogs have access
to offal and carcasses leading to infection with E. canadensis
(Lichtenwalner et al., 2014; Oksanen & Lavikainen, 2015;
Schurer et al., 2018). A domestic cycle of transmission involving
domestic dogs and farmed elk was also identified in western
Canada (Thompson, 2013). Recent reports of E. canadensis in
coyotes in Canada suggest the emergence of this species in new
endemic regions (Santa et al., 2018; Priest et al., 2021) and
given that, the urbanization of the coyote in Canada is of potential
public health significance.

Wildlife also plays an increasingly important role in the epi-
demiology of schistosome infections. For example, with S. japoni-
cum, wild animals play a very significant role as reservoirs of
transmission to humans, making S. japonicum difficult to control.
Over 40 species of domestic and wild mammals have been
described as definitive hosts (Gordon et al., 2019). Riley et al.
(2008) explored the rate of transmission of S. japonicum from dif-
ferent mammals using mathematical modelling. The model
inferred that rats are key hosts in the infection cycle, while
water buffaloes are found to be a less important reservoir host
in the Philippines situation than the bovines in China (Riley
et al., 2008). However, most emphasis over the last ten years
has focused on the role of bovines in zoonotic transmission. A
recent study found that rodents are likely to become the main res-
ervoir of ongoing transmission of S. japonicum and a severe risk
to not attaining elimination goals in China (Zou et al., 2020). In
West Africa, Catalano et al. (2018) reported that rodents may be
an important local reservoir for zoonotic schistosomiasis, ampli-
fying transmission to humans and acting as natural definitive
hosts of schistosome hybrids.

Emerging issues

Aquaculture

Whenever animals are farmed, increased density will enhance the
transmission of parasites. As with livestock industries, this applies
to aquaculture for which the impact of parasite infections has long
been recognized. In particular, fish-borne zoonotic trematodes are
an emerging and rapidly growing concern in developing countries
due to associated economic losses and public health concerns
(Labony et al., 2020). The diseases of most concern include
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those caused by opisthorchid, heterophyid and echinostomid
flukes (Betson et al., 2020; Caffara et al., 2020). The situation is
not improving as the global demand for farmed fish continues
to rise and developing countries seize opportunities to develop
their aquaculture capabilities to serve export markets. For
example, Vietnam is a densely populated developing country
and aquaculture forms part of their economic development strat-
egy, with fisheries accounting for 3.7% of its gross domestic prod-
uct (Nguyen et al., 2021). It has become one of the largest
aquaculture producers worldwide, accounting for 4.5% of the glo-
bal production, and the third largest world fish exporter after
China and Norway (United Nations Food and Agriculture
Organization, 2018; Nguyen et al., 2021). As such, the ability to
rapidly detect zoonotic trematodes in farmed fish is very import-
ant but has been difficult as the infective metacercariae are hard to
detect visually in fish (Caffara et al., 2020). An important advance
has been the development of a rapid and cost-effective multiplex
PCR for the simultaneous detection of opisthorchid and hetero-
phyid metacercariae in fish or fish products (Caffara et al., 2020).

Dracunculus (Guinea worm)

Dracunculus has been known since early recorded history,
undoubtedly because of the female’s spectacular behaviour
when releasing L1 larvae from infected humans into fresh water
which are infective to Cyclops crustaceans. Intensive global eradi-
cation efforts spanning several decades which focused on educa-
tion and clean drinking water raised optimism that this
zoonotic helminth would be the first to be eradicated (Callaway,
2016). However, in Africa, dogs are playing an increasingly
important role as reservoirs of infection contaminating water
sources and thus enhancing transmission to humans. In addition
to increasing reports of the role of dogs in the epidemiology of
dracunculiasis in humans, has been the recognition of novel para-
tenic hosts such as fish and amphibians. This has raised awareness
of the potential for Dracunculus medinensis to emerge in new geo-
graphical areas (Molyneux & Sankara, 2017; Hopkins et al., 2020).

Most of the focus on controlling Guinea worm has, under-
standably, been on D. medinensis. However, the application of
molecular tools has also revealed more definitive data on the
diversity of species in the genus Dracunculus and the limitations
of past knowledge based on morphology. These emerging con-
cerns recently culminated in the report of a human patient in
Vietnam infected with Dracunculus (Thach et al., 2021).
Molecular characterization demonstrated that infection was not
with D. medinensis, but with a previously undescribed species,
in a different clade phylogenetically to D. medinensis. It clustered
with the animal infective Dracunculus insignis and Dracunculus
lutrae, (Thach et al., 2021) and thus is potentially of zoonotic
significance.

Toxocara canis

There is increasing concern that T. canis and its impact on human
health have been neglected. For many years, anthelmintics have
been available to prevent T. canis infection in domestic dogs
and the veterinary profession has done much to educate dog own-
ers about the public health significance of T. canis and how it can
be readily controlled. This has had dramatic effects in countries
such as Australia where the prevalence in domestic dogs has fallen
to less than 1% (Palmer et al., 2008; Massetti et al., 2022).
Surprisingly, this has not been the case in other Western countries

(Deplazes et al., 2011; Mathison & Pritt, 2018) where the parasite
is still persisting in large endemic areas despite the availability, as
in Australia, of effective anthelmintics (Deplazes et al., 2011), per-
haps due to human complacency or variable levels of dog owner
education.

Hotez (2020) considers that insufficient attention is given to
the potential emergence of toxocariasis in developing countries
where increasing urbanization in tropical and sub-tropical areas
coupled with large numbers of stray dogs and cats will lead to
increasing levels of environmental contamination with Toxocara
eggs (Hotez, 2017). In addition, increasing urbanization of the
red fox in many parts of the developed world with a reproductive
cycle giving rise to large numbers of cubs with high T. canis worm
burdens, will contribute significantly to environmental contamin-
ation with eggs (Otranto & Deplazes, 2019). In addition, climate
change in some areas such as the Arctic may extend the range of
Toxocara through increasing numbers of wildlife hosts such as the
red fox, leading to a spillover into local wildlife such as wolves and
Arctic foxes (Jenkins et al., 2013).

Thelazia callipaeda

Thelazia callipaeda is a zoonotic filarial nematode transmitted by
lachryphagous drosophilids that was first described in a dog from
India in 1910 (Railliet & Henry, 1910). Seven years later the first
case of infection in the eye of a human in China was reported
(Stuckey, 1917). Subsequently, occasional human cases have
been reported throughout south-east Asia and India (Sillman,
1953; Otranto & Deplazes, 2019). However, since the late 1980s
when it was first reported in dogs in Italy, T. callipaeda has rap-
idly expanded its distribution throughout Europe with infections
in domestic and wild animal species as well as increasing numbers
of cases reported in humans (Otranto & Deplazes, 2019). Not sur-
prisingly, canine thelaziosis is considered an emerging vector
borne helminth with significant zoonotic potential. The reason
why it has emerged, and continues to do so, in Europe is not
clear but may be associated with the increasing importance of
wildlife, such as the fox, but also animals such as bears and wolves
(Papadopoulos et al., 2021) and mustelids (Ionică et al., 2019) in
maintaining infection in their natural habitats which increasingly
encroach into domestic environments. Another zoonotic filarial
nematode, Brugia malayi, has re-emerged in Sri Lanka after a qui-
escent period of four decades with dogs and cats the potential
reservoirs for human infections (Mallawarachchi et al., 2018).
Overall microfilaraemia rates of over 80% in dogs and 75% in
cats were found with higher levels in rural than urban areas.

Haycocknema perplexum

The nematode, H. perplexum, cannot be considered an emerging
zoonotic helminth but remains a curiosity in terms of its zoonotic
potential. Haycocknema perplexum is a minute muspiceoid nema-
tode with related species in native wildlife including koalas, bats
and kangaroos (Spratt, 2005; Ward et al., 2022). However, the nat-
ural host of H. perplexum remains unknown. It has been identi-
fied in 12 human patients, who have contracted infection in
Australia (Northern Australia and Tasmania) since 1998
(Dennett et al., 1998; Spratt, 2005; Basuroy et al., 2008;
McKelvie et al., 2013; Vos et al., 2016; Koehler et al., 2018;
Pritt et al., 2022; Ward et al., 2022). Clinical features common
to infection are limb wasting and weakness associated with myo-
sitis, dysphagia and persistent eosinophilia, suggesting a long
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period of subclinical infection (Basuroy et al., 2008; Ward et al.,
2022). Diagnosis based on symptoms alone is difficult given
that they are similar to those of muscular dystrophy and inflam-
matory myopathy (Pritt et al., 2022). The source of infection with
H. perplexum is not known and its zoonotic potential remains to
be proven, although some of the cases were associated with the
consumption of bush meat (Spratt, 2005; Ward et al., 2022).

Identifying zoonotic potential

Recently, Majewska et al. (2021) developed a predictive model from
a global dataset to identify factors contributing to spillover of hel-
minths from wildlife to domestic animals and humans. By doing
this with well recognized zoonotic helminths, their model identified
several non-zoonotic helminths with zoonotic potential. Among
these were Paramphistomun cervi, followed by Schistocephalus sol-
idus and Strongyloides papillosus. Predisposing factors for zoonotic
potential included the nature of the intermediate hosts, involve-
ment of wildlife and livestock in the life cycles, free-living environ-
mental stage in the case of Strongyloides and likely scenarios of
transmission to humans. These authors concluded that their results
highlight the importance of the often-changing interface between
wildlife, companion animals and humans in determining the risk
of zoonotic helminth infections (Majewska et al., 2021).

One Health

Finally, I would like to mention ‘One Health’. It seems mandatory
nowadays to advocate taking a One Health approach in the con-
text of controlling zoonotic infections, including helminths.
Unfortunately, the term is increasingly mentioned in papers,
often in just the title or abstract, without qualification or explan-
ation for its relevance to the published study. It is therefore losing
its significance in ecological and epidemiological studies of infec-
tious diseases. This is a shame as there are important elements,
particularly with respect to parasite zoonoses (Thompson,
2013), that form part of ‘One Health’ as originally proposed
(Gibbs, 2014). In terms of zoonotic helminths, effective control
must take a One Health approach, and this has been clearly
demonstrated in the successful control programmes of
Echinococcus infections in different parts of the world.
Although implemented before the term One Health was adopted,
their control by necessity included collaborative strategies encom-
passing environmental, human and animal health as envisioned
by the ‘father’ of One Health Calvin Schwabe (Schwabe, 1969;
Zinsstag et al., 2011).

Concluding comments

We have the ‘tools’ that have enabled the characterization of the
causative agents of helminth zoonotic infections and significant
inroads have been made into understanding their ecology and epi-
demiology. Molecular tools and improved surveillance continue
to provide information on emerging zoonoses and to identify
‘new’ zoonoses. Importantly, we now better understand transmis-
sion patterns more than ever before and know from past experi-
ence that breaking the cycles of transmission is the key to control.
So, theoretically, we are in the best position possible to control
helminth zoonoses. However, this is not the case. For example,
T. canis remains a problem in developed countries and is an
emerging issue in developing countries, even though effective
cheap, prophylactic drugs have been available for decades.

Unfortunately, we cannot rely on vaccines to control helminth
zoonoses but even if they were available, would they really have
an impact? They would still have to be administered, which, in
regions where they would be most effective would require finan-
cial support. This would need to come from governments and aid
agencies, given the likely lack of commercial interest. We need to
act now, not procrastinate, with well utilized, successful
approaches that require education and government support. If
not, the situation will only worsen due to anthropogenic factors
such as urbanization and climate change which are exacerbating
the problem of helminth zoonoses.
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