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and chaotic advection
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In the 1980s the incorporation of ideas from dynamical systems theory into theoretical
fluid mechanics, reinforced by elegant experiments, fundamentally changed the way in
which we view and analyse Lagrangian transport. The majority of work along these
lines was restricted to two-dimensional flows and the generalization of the dynamical
systems point of view to fully three-dimensional flows has seen less progress. This
situation may now change with the work of Pouransari et al. (J. Fluid Mech., this issue,
vol. 654, 2010, pp. 5–34) who study transport in a three-dimensional time-periodic flow
and show that completely new types of dynamical systems structures and consequently,
coherent structures, form a geometrical template governing transport.
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1. Introduction

The 1980s saw the rise in applied dynamical systems theory. A consequence of this
was the creation of a large amount of phenomenology, often guided by existing theory,
related to two-dimensional area preserving maps. At the same time the widespread
recognition that the motion of fluid particles in two-dimensional incompressible time-
periodic flow was equivalent to an area preserving map meant that the variety of
phase space structures found in two-dimensional area preserving maps might offer new
insights into fluid transport and mixing (Aref 1984). The development that solidified
the merging of these two areas was a series of elegant experiments that illustrated the
role of ‘dynamical systems structures’ in Lagrangian transport and mixing.

A compelling aspect for the use of the dynamical systems approach to Lagrangian
transport was that it provided a theoretical and computational setting leading to
the realization and exploitation of earlier physical insights. A notable example was
the stretching and folding picture of mixing due to Reynolds, described in detail in
Ottino, Jana & Chakravarthy (1994), which received no attention until the 1980s.
In particular, ‘stretching and folding’ was quantified through the idea of a Smale
horseshoe map, which characterized regions of the flow that stretch and fold in
a particular manner, giving rise to a mathematically precise form of deterministic
chaos. In a seminal experiment, the existence of horseshoes, and the role they play
in mixing, was demonstrated in Chien, Rising & Ottino (1986). Examining the
‘horseshoe mechanism’ more deeply, lower dimensional ‘structures’ – the stable and
unstable manifolds of hyperbolic (saddle-like) fluid particle trajectories – formed
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the geometrical template in the flow responsible for circumstances leading to the
horseshoe map. This is the content of the Smale–Birkhoff homoclinic theorem. Further
analysis of this geometrical template led to the development of lobe dynamics, which
describes how regions of fluid move throughout chaotic regions (a theory developed in
Rom-Kedar, Leonard & Wiggins 1990, with experimental confirmation in Horner et al.
2002).

A complementary approach is through the consideration of ‘non-mixing’, i.e. the
nature of regions of ‘trapped’ fluid that cannot mix with fluid outside the region. These
are referred to as ‘islands’, and dynamical systems theory gives them a precise meaning
through the Kolmogorov–Arnold–Moser (KAM) theorem, beautifully visualized in
Kusch & Ottino (1992). Most significantly, the KAM theorem also predicts that they
exist ‘sufficiently close to’, and surrounding, elliptic (linearly stable) periodic fluid
particle trajectories. A common theme is that certain types of flow structures allow us
to infer the nature of transport and mixing of specific regions of the flow. These flow
structures are all examples of invariant manifolds (dynamical systems terminology)
or material curves (fluid mechanical terminology). Identifying and characterizing
invariant manifolds is a topic of central interest in dynamical systems theory, and, as
we have described above, the techniques that have been developed have an immediate
implication for mixing and transport in fluids. Invariant manifolds are the rigorous
mathematical manifestation of the fluid mechanical notion of coherent structures,
allowing for description, prediction and computation.

2. Overview

Essentially all of the work described above is for two-dimensional incompressible
time-periodic flows, and of the little work that has been done in three dimensions,
most involves the case of a spatial periodicity which reduces it to the two-dimensional
time-periodic case. The natural question is ‘how does the dynamical systems approach
generalize to three dimensions?’ Can horseshoe maps be constructed and have the
same implications for mixing and transport? Is there an analogue to an island in
three dimensions? Is there a lobe dynamics that describes the motion of fluid through
the complex geometrical template formed by the intersecting stable and unstable
manifolds? These notions do generalize to three dimensions, but their implications
for fluid transport and mixing are, in general, very different. More significantly,
however, is that there are completely new geometrical structures – invariant manifolds
– governing new transport and mixing mechanisms in three dimensions.

This is most easily seen by asking the question ‘what is an island’? In the two-
dimensional case we could use the KAM theorem to conclude that KAM tori
surrounded elliptic periodic points of the associated Poincaré map. These resulted in
‘trapped’ regions of fluid that did not mix with their surroundings. The standard KAM
theorem does not apply to odd dimensional dynamical systems, but generalizations
of the KAM theorem have been developed that allow one to conclude that under
certain conditions two-dimensional KAM tori exist in the Poincaré maps associated
with three-dimensional time-periodic flows (Cheng & Sun 1990). Most significantly,
the ‘center’ of such a KAM tube is a (normally) elliptic periodic invariant curve.
This is a structure unique to three dimensions and while the theory has not been
fully developed, some spectacular visualizations of ‘three-dimensional islands’ can be
seen in Fountain, Khakhar & Ottino (1998). Normally hyperbolic periodic invariant
curves having two-dimensional stable and unstable manifolds also exist, and from
these manifolds a lobe dynamics can be developed. Moreover, the intersection of
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these stable and unstable manifolds provides a new mechanism for chaos in three
dimensions.

While fragments of the mathematics necessary to realize this ‘three-dimensional
picture’ have been developed over the past 15 years (Mezic & Wiggins 1994), they
have not been embraced by fluid mechanicians. There are, probably, several reasons
for this. One is that it is more difficult to visualize, both mentally and computationally,
geometrical objects in three dimensions. Another is that the mathematics is, relatively,
new, and not widely known. But probably the most important reason is that there
has not been a compelling example showing that these three-dimensional dynamical
systems tools are necessary for describing fluid transport. This has changed with the
recent work of Pouransari, Speetjens & Clercx (2010).

They consider a three-dimensional lid-driven cylinder flow where the fluid is set
in motion through periodic forcing resulting from in-plane motion of the lower
endwall. Three forcing protocols are considered. They first consider the non-inertial
limit – zero Reynolds number (Re = 0). A significant issue in three dimensions is
the determination of invariant manifolds in the flow. For two-dimensional flows the
‘seeds’ of coherent structures are periodic particle trajectories, which may still play a
role, but in three dimensions there is the possibility of periodic invariant curves and
two-dimensional invariant surfaces. Pouransari et al. (2010) use a powerful method
based on symmetries that they developed in Speetjens, Clercx & van Heijst (2004) to
identify periodic invariant curves. They then determine the stability of these curves
and, in general, find that a particular curve may be normally hyperbolic along a
certain length but change to normally elliptic along the rest of the length. The point
where the curve changes stability is normally parabolic, and this ‘exceptional’ point
plays an important role for non-zero Re. They also discuss two-dimensional invariant
surfaces given by constants of the motion and show that the flow structure is such
that it is ‘filled out’ by concentric, invariant spheres. The particle motion on the
invariant spheres can take a variety of forms, depending on the radius of the sphere,
as well as the forcing. In particular, invariant spheres can exhibit particle motions
that appear integrable (regular), a mixture of regular and chaotic, and completely
chaotic. Moreover, the dynamics of particle motion on the sphere is governed by
two-dimensional time-periodic Hamiltonian dynamics.

For Re =0 the particle motion is not three-dimensional, being confined to two-
dimensional invariant spheres. Nevertheless, understanding the invariant manifold
structure for Re = 0 is a crucial step for understanding fully three-dimensional motion
for small, but non-zero Reynolds number since the invariant manifold structure for
Re =0 will provide the ‘skeleton’ governing fully three-dimensional transport. A
central question is whether or not the invariant spheres are destroyed for non-zero
Reynolds number. Pouransari et al. (2010) find the intriguing result that those on
which the particle motion appears to be fully chaotic persist for ‘long times’. This is
reminiscent of KAM-type results where tori on which the dynamics is ergodic persist
under perturbation. This is significant since the persistence of even one invariant
sphere would be sufficient to prohibit transport throughout the entire domain. They
also consider the behaviour of the periodic invariant curves for non-zero Reynolds
number. An important observation is the role that they play in causing the ‘breakdown’
of the invariant spheres. This can occur when a periodic invariant curve intersects an
invariant sphere in a parabolic point. Parabolic points typically undergo bifurcation
under perturbation, and this can result in a ‘hole’ forming in the invariant sphere
allowing for transport through the sphere. This phenomenon is called ‘resonance-
induced merger’ (RIM) by Pouransari et al. (2010). Moreover, ‘KAM-like tori’, or
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tubes, appear to surround the normally elliptic segments of the invariant curves, and
this can result in a complex geometric structure involving tubes connecting spheres.
They show that the complexity of this arrangement depends on the forcing protocol.
RIM appears to play a central ‘organizing’ role in each case, and it may well be
a ‘universal’ mechanism underlying the formation of such coherent structures in
three-dimensional time-dependent flows. Litvak-Hinenzon & Rom-Kedar (2002) and
Vainchtein, Neishtadt & Mezic (2006) may well be relevant.

3. Future

The work of Pouransari et al. (2010) has the potential to stimulate many avenues
of research on Lagrangian transport and mixing in three dimensions. Experiments
played a fundamental role in establishing the dynamical systems point as essential for
our understanding of mixing and transport in two-dimensional time-periodic flows.
The same will be true for three-dimensions and Pouransari et al. (2010) have provided
a ‘roadmap’ for experimental investigations. Such experiments have become feasible
recently due to advancements such as three-dimensional ‘particle tracking velocimetry’
and ‘laser-induced fluorescence’ (for concentration fields).
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