Canad. Math. Bull. Vol. 20 (3), 1977

APPLICATIONS OF DECOMPOSITION THEOREMS TO TRIVIALIZING *h*-COBORDISMS

BY

TERRY LAWSON¹

ABSTRACT. A geometric proof is presented that, under certain restrictions, the product of an h-cobordism with a closed manifold of Euler characteristic zero is a product cobordism. The results utilize open book decompositions and round handle decompositions of manifolds.

We wish to give a geometric approach to the following theorem.

PRODUCT THEOREM FOR h-COBORDISMS. Suppose (W, M, M') is an h-cobordism and P is an orientable closed manifold with Euler characteristic $\chi(P) = 0$. Then, if dim W+dim P ≥ 6 , $(W, M, M') \times P \simeq (M \times I, M \times 0, M \times 1) \times P$.

One may prove the theorem using the product theorem for Whitehead torsion [7] and the s-cobordism theorem. Independent of the product theorem for Whitehead torsion, Kervaire [6] presented a geometric proof due to deRham that $(W, M, M') \times S^1 \simeq (M \times I, M \times 0, M \times 1) \times S^1$. This proof (as given in [6]) was incomplete, but the gap was filled by Siebenmann [10]. Morton Brown independently has a proof that taking a product with a circle trivializes an *h*-cobordism (cf. [4]); still different proofs appear in [11], [8]. In [10], Siebenmann extended his geometric proof to $P = S^{2k+1}$ or L^3 , where L^3 denotes a 3-dimensional lens space. His proof is based on the following lemma.

LEMMA S. ([10, Prop IV]). Suppose $P = P_1 \cup P_2$ where $P_0 = P_1 \cap P_2$ is collared in P_1 and $c \times (P_i, P_0)$ are product cobordisms, i = 1, 2, for any invertible cobordism c = (W, M, M'). Then $c \times P$ is a product.

Recall that for dim $W \ge 5$ any *h*-cobordism is invertible; invertible cobordisms are always *h*-cobordisms.

In this note we show how to apply the open book decomposition theorem and the round handle decomposition theorem to extend Siebenmann's proof to a wide class of manifolds P with $\chi(P) = 0$. We work throughout in the differentiable category; \approx denotes diffeomorphism.

We first look at the open book decomposition theorem as given by Alexander [2], A'Campo [1], and Winkelnkemper [12]. These papers express P as $V_h \cup D^2 \times N$, where V_h denotes the mapping torus of a diffeomorphism h, V is

389

8

Received by the editors June 17, 1976 and, in revised form, October 26, 1976.

⁽¹⁾This research was partially supported by NSF Grant MPS 74-01460 A01.

a compact manifold with boundary N, and $h \mid N$ is the identity, under the hypotheses:

- (a) P is any oriented closed 3-manifold [2].
- (b) P is any simply connected closed 5-manifold [1]. Here $N \simeq S^3$.
- (c) P is any simply connected closed (2k+1)-manifold, k>2 [12]. Here N is also simply connected.

THEOREM 1. If c = (W, M, M') is an invertible cobordism and P is any simply connected odd dimensional closed manifold, then $c \times P$ is a product cobordism.

The proof is an easy induction argument using (a), (b), (c) above, Lemma S and the following lemma.

LEMMA 1. If c is an invertible cobordism, then $c \times (V_h, N \times S^1)$ is a product cobordism (as pair).

Proof. Let c = (W, M, M'). Then $c \times V_h = ((W \times V)_{1 \times h}, (M \times V)_{1 \times h})$. $(M' \times V)_{1 \times h}$). Now $c \times V$ is itself invertibly cobordant to $(M \times I, M \times 0, M \times 1) \times V$ V (cf [10, Theorem I']) and the map $1 \times h : W \times V \to W \times V$ extends to a diffeomorphism of this cobordism which restricts to $1 \times h : (M \times I) \times V \to (M \times I) \times V$ on the other end. Now by [9, Theorem 1] this implies that $(W \times V)_{1 \times h} \simeq (M \times I \times V)_{1 \times h}$. The argument is purely formal and respects $N \subset V$, thus giving a product structure to $c \times (V_h, N \times S^1)$.

We now look at the round handle decomposition theorem of Asimov [3]. It states that if P is a closed manifold of dimension $\neq 3$ with $\chi(P) = 0$, then P has a round handle decomposition. A round handle decomposition of P expresses P as $R_0^1 + \cdots + R_0^{k_0} + \cdots + R_{m-1}^1 + \cdots + R_{m-1}^{k_m}$, where R_i^i is $S^1 \times D^i \times D^{m-i-1}$ and is attached to the boundary of the round handlebody to the left of it via an embedding of $S^1 \times S^{i-1} \times D^{m-i-1}$. If further dim $P \ge 6$, we may decompose P as $A \cup B$, where A, B are round handlebodies where the core $(S^1 \times S^{i-1} \times 0)$ of the attaching maps are embeddings of codimension ≥ 3 and $\partial A = \partial B$. We are now ready for our second product theorem.

THEOREM 2. Suppose (W, M, M') is an invertible cobordism P is a closed p-dimensional manifold, $p \ge 6$, with $\chi(P) = 0$. Then $W \times P \simeq M \times I \times P$.

Proof. Write $P = A \cup B$ as above. The result now will follow from Lemma S if we can show $W \times (A, \partial A)$ and $W \times (B, \partial B)$ are products. The significant fact about A (or B) is that it is a round handlebody where the cores of the attaching maps have codimension ≥ 3 . We now show $W \times (A, \partial A)$ is a product using induction on the number of round handles in the decomposition of A. If this is one, then $A = S^1 \times D^n$ and the result follows from the result for S^1 .

For the induction step, we write $A = C \cup R$, where C is a round handlebody with $W \times (C, \partial C) \simeq M \times I \times (C, \partial C)$ and R is a round handle (so $W \times (R, \partial R) \simeq$ $M \times I \times (R, \partial R)$, again using the S¹ factor). Now look at the composition

390

 $M \times I \times \partial R \cong W \times \partial R \subset W \times \partial C \cong M \times I \times \partial C$. This is a concordance from the inclusion of $M \times 0 \times \partial R$ in $M \times I \times \partial C$. Now the core of ∂R is $S^1 \times S^{k-1} \times 0$ and is of codimension ≥ 3 in ∂C . Then Hudson's concordance implies isotopy theorem [5] together with the isotopy extension theorem implies that $M \times I \times S^1 \times S^{k-1} \times 0 \subset M \times I \times \partial R \to M \times I \times \partial C$ extends to a diffeomorphism of $M \times I \times \partial C$ which is the identity on $M \times 0 \times \partial C$. Moreover, this concordance is concordant to the identity (cf. [10]) and thus extends to a diffeomorphism of $M \times I \times C$. Composing the trivialization $W \times C \to M \times I \times \partial C$ so that it preserves $M \times I \times S^1 \times S^{k-1} \times 0$. By the tubular neighborhood theorem we may then assume that the new trivialization $W \times C \to M \times I \times C$ restricts to a diffeomorphism between $W \times \partial R$ and $M \times I \times \partial R$. One now applies Lemma S.

REMARKS. Theorems 1 and 2 take care of the product theorem except for P of dimension 2, 4, or 5. Dimension 2 is easily handled since the only closed 2-manifolds with Euler characteristic zero are the torus and Klein bottle. Theorem 1 covers dimension 5 in the simply connected case. There are no simply connected closed 4-manifolds with Euler characteristic zero so the result is proved for all simply connected manifolds P with $\chi(P) = 0$.

References

1. N. A'Campo, Feuilletages de codimension 1 sur les variétés simplement connexes de dimension 5, Comm. Math. Helv. 47 (1972), 519-525.

2. J. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.

3. D. Asimov, Round handles and non-singular Morse-Smale flows, Ann. Math. 102 (1975), 41-54.

4. R. Edwards and R. Kirby, Deformations of spaces of imbeddings, Ann. Math. 93 (1971), 63-87.

5. J. Hudson, Concordance, isotopy, and diffeotopy, Ann. Math. 91 (1970), 425-448.

6. M. Kervaire, Le théorème de Barden-Mazur-Stallings, Comm. Math. Helv. 40 (1965), 31-42.
7. K. Kwun and R. Sczarba, Product and sum theorems for Whitehead torsion, Ann. Math. 82

(1965), 183-190. 8. T. Lawson, Classification throrems for sphere bundles and mapping tori, Ph.D. Thesis, Stanford University, 1971.

9. T. Lawson, Splitting isomorphisms of mapping tori, Trans. Amer. Math. Soc. 205 (1975), 285-294.

10. L. Siebenmann, Pseudo-annuli and invertible cobordisms, Archiv der Math. 19 (1968), 528-535.

11. L. Siebenmann, A total Whitehead torsion obstruction, Comm. Math. Helv. 45 (1970), 1-48.

12. H. Winkelnkemper, Manifolds as open books, Bull Amer. Math. Soc. 79 (1973), 45-51.

DEPT. OF MATH. College of Arts and Sciences Tulane University New Orleans, Louisiana 70118.