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Abstract

Computation of eigenvalues of regular Sturm-Liouville problems with periodic or
semiperiodic boundary conditions is considered. A simple asymptotic correction
technique of Paine, de Hoog and Anderssen is shown to reduce the error in the
centred finite difference estimate of the fcth eigenvalue obtained with uniform step
length h from O(k4h2) to O(kh2). Possible extensions of the results are suggested
and the relative advantages of the method are discussed.

1. Introduction

Considerable recent progress [1, 2, 4-9, 11, 13] on the efficient computation of
higher Sturm-Liouville eigenvalues (which are much more difficult to compute
than the lower eigenvalues) has followed from an idea of Paine, de Hoog and
Anderssen [12]. They considered computation of the eigenvalues Ai < A2 < . . .
of the regular Sturm-Liouville problem

-y" + qy = Xy (1)

2/(0) = y{*) = 0 (2)

by the centred finite difference method with uniform mesh, and showed that,
when q is constant, the error in Ajt (which in that case is known in closed form)
has the same asymptotic form as k —• 00 as the error for general q. They
showed that the accuracy of the estimates obtained for high eigenvalues could
be dramatically improved at negligible extra cost by using the known error for
q = 0 to correct the estimates obtained for general q. Their numerical results
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[2] Finite difference eigenvalue correction 461

indicate that this correction generally improves the accuracy of all computed
eigenvalues, not just the higher ones.

Anderssen and de Hoog [1, 2] extended the analysis of [12] to problems with
the general separated boundary conditions

<TlJ/'(O) + CT2J/(0) = OZ}/{v) + CT42/00 = 0- (3)

One difficulty with (1), (3) is that closed form solutions for the error when q is
constant are generally no longer available, though an efficient means of comput-
ing that error is suggested in [2]. Three important exceptions not emphasised in
[1, 2] are

2/'(0) = J / ' « = 0 , (4)

2/(0) = J/'M = 0 (5)

and
3/(0) = y(jr) = 0. (6)

When n (equal) subintervals are used, corrected eigenvalues are obtained by
adding to the centred finite difference estimate of A*, (k — I)2 — 4sin2[(A; —
l)h/2)]/h? in the case of (4) and (Jfc - ±)2 - 4sin2[(2fc - l)h/4]/h2 in the case
of (5) or (6), where h = n/n. This correction has been used successfully in
a numerical investigation of acoustic propagation problems in stratified oceans
[13]. This involves a problem of the form (1), (5).

There are also several examples involving nonseparated boundary conditions
in which closed form solutions are available, but not all are suitable candidates for
this "asymptotic" correction technique. For example, with the (non-selfadjoint)
boundary conditions

y(0) = -y(n), y'(0) = y'(ir) (7)

or
y (0 )=»W, i/(0) = -2/'(TT), (8)

all real numbers are eigenvalues of (1) when q is constant. For all real c, y is
then an eigenfunction with (7) if y(x) = sinh[c(x — TT/2)], y[x) = sin[c(z — TT/2)]

or y(x) = x — 7r/2, while the derivatives of these functions are eigenfunctions
with (8).

Important nonseparated boundary conditions for which the correction tech-
nique can be used successfully are the periodic boundary conditions

ff(0) = v(7r), y'(0) = y'(n) (9)

and the semiperiodic boundary conditions

y(0) = -y(jr), y'(0) = -y'(ir). (10)

Periodic boundary conditions arise in the study of planetary orbits and other
periodic physical phenomena (including some models for crystal structure) and of
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462 Alan L. Andrew [3]

course when polar co-ordinates are used in partial differential equations solved by
the method of separation of variables. Problems with these boundary conditions
in applications [10] usually satisfy

9(0) = <7(TT). (11)

Use of the correction technique in conjunction with the finite element method was
studied in [8] in the special case (2) and later in [5] this analysis was extended to
the boundary conditions (4), (5), (6), (9) and (10). However, no analysis has yet
been done of the correction technique with finite differences when the boundary
conditions are not separated. This paper gives this analysis for the important
nonseparated boundary conditions (9) and (10) and compares the advantages of
the finite difference and finite element approaches. Whereas the results in [1], [2]
and [12] required kh to be "sufficiently small", our proof, which uses ideas from
[5] and [7] and is readily adapted to cover the boundary conditions (2), (4), (5)
and (6), is valid for all computed eigenvalues.

2. Analysis of the correction

The centred finite difference method with mesh length h approximates the first
n eigenvalues, A^4),..., X(

n
4), of (1), (9) by the eigenvalues, A(

x
4'n) < < A$'n)

of the matrix -A(4) + Q, and the first n eigenvalues, A^5),..., A^5), of (1), (10)
by the eigenvalues A^'n) < < A&5'"' of -A<5) + Q, where

Q = diag[g(xi),...,i?(zn)], x* = ih (i = l , . . . ,n)

and the matrices A^4\ A^ are as defined in [5]. That is, the element in the ith
row and jth column of A<4) is -2/h2 (if i = j), 1/h? (if \i - j \ = 1 or n - 1) and
0 (if 1 < \i — j \ < n — 1), while A'5) is obtained from A^4) by changing the sign
of the elements in the (l,n) and (n, 1) positions.

When q = 0 then, as noted in [5],

\[4)=K? and X^^Kl (12)

where
Kx = 2[fc/2] and K2 = 2[{k + l)/2] - 1 (13)

and, in (13), [x] denotes the greatest integer not exceeding x. Moreover it is
readily checked that

- A ^ s j ^ = MiP 'n )s ip ) , fc = l , . . . , n , p = 4,5 (14)

where
l4) 2 2 (15)

(16)
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all components of a[4' are equal and, for m > 0, the ith components of s^,
82m+i> 4 m - i an<^ 82m a r e cos(2rra7i), sin(2rm7i), cos[(2m - l)ih] and sin[(2m -
l)ih] respectively. Hence the finite difference eigenvectors again give the values
of the exact eigenfunctions at the mesh points when q is constant.

Theorem 1 below shows that, at least for large k, the corrected estimates

and

are much better estimates than A^4'"̂  and A^5'"' of the true eigenvalues Â  and
A(5)

The restriction sin(Kih) ^ 0 is also required for the corresponding results for
(4), (9) and (10) in [5] and [6] to be meaningful. This is not a severe restriction
as, apart from the case A; = 1 with (1), (9) (when the correction produces no
change), sin(/f,/i) in Theorem 1 can be zero only when k — n and then only
for (1), (9) when n is even and for (1), (10) when n is odd. Moreover, the
analysis here and in [5] is readily extended to the case sin(/ft7i) = 0 by making
a minor extension to Lemma 5 of [7] and Lemma 2.2 of [12]. If k = n + 1 in
Lemma 5 of [7], the bound in that lemma becomes (n + l)||0||oo. When f3 = px
(p an integer) in Lemma 2.2 of [12], all terms in the sum there have value one.
Using these extensions of Lemma 5 of [7] and Lemma 2.2 of [12] to extend cited
results from [5], [7], [8] and [12], shows that A&"'n) - An = O(l) for p = 4 and
5 even when sin(Kih) = 0. Since our methods are most useful when k < n (see
Section 3), details of the analysis in the exceptional case sin (A", ft) = 0 (and the
corresponding cases in [5]) are left to the reader.

THEOREM 1. For each q € C2[0, w] satisfying (11), there exist constants ci,C2,
depending only on q, such that, for all n e N,

\A[4'n) - \[4)\ < aKitf/siniKih), k = 2,...,n

and
|j(6,n) _ A(6)| < C2Klh3/sai{K2h), k = 1, . . . , n,

provided the denominator on the right hand side is non zero.

PROOF. We outline the proof for (9) only. The proof for (10) is exactly similar.
For notational convenience, the subscript k and the superscripts (4) and (4, n) are
suppressed throughout the proof. For any function g: [0, n] —* R, we write g =
{g{xi),..., g(xn))

T, g" = {g"(xi),..., g"{xn))
T etc. Without loss of generality

we assume
q{x) dx = 0. (19)

/ '
Jo
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This implies [5, 10] that
). (20)

Our first step is to establish the existence of real numbers 6 and ip such that, when
y and the solution u of the difference equations below are suitably normalised,

y = se + e (21)

and
u = 8̂ , + e (22)

where
se{x) = sm(Klx + 6), si>{x)=sui(K1x + ip) (23)

and e and e are "small" for large k. In fact (21) was proved in the proof of
Theorem 2 of [5], where it was shown that

e(x) = Ki1 I f(t) sm[Kt (x - t)} dt (24)
Jo

where / = (Kf — A + q)y, and it was also shown that, if q € C2[0, TT], then

e" + K?e = f (25)

and

slf = -h f P2{x/h){si,f)"{x) dx + 0{h) = OiKftf/tAailbh)), (26)
Jo

where the piecewise polynomial Pi is denned in [5].
The difference equations

and boundary conditions u0 = un, Ui - w_i = u n + i - un-i, from which the
matrix -A<4) + Q is constructed, imply that u\ = u n + i . Hence the arguments
used to prove Theorem 2.1 and Corollary 2.1 of [12] (and also Lemma 1 of [7])
show that (22) is also true with

t-i

6i = J2MKih(i - j))h2(qj + fx- A)ui/sin(K1/i) (27)

and hence
Iklloo < 2hn\\q\\O0\\u\\0O/sm{K1h). (28)

As in the proof of Theorem 2 of [5] (see also equation (17) of [7]), it follows from
(1), (14), (21), (22), (23) and (25) that

(A - A)uTy = (M - Kl)nTB0 + sj(e" - Ae) + eT(e" - Ae)

= (/* - Kl)uTy + sjf + eT(f - Ae - /xe). (29)
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Now, since by (21) e(0) = e(ir) and e'(0) = e'(7r), the argument used for the first
part of the proof of Lemmas 3 and 4 of [7] (and also Lemma 3 of [8]) shows that

i2 (30)

where, for j = 1 , . . . , n,

Ej = / f(t) sinftfi {xJ+l - t)) dt+ f{t) sin^i {XJ-I - t)] dt

= (h2vt/K1)fi+0{K1h
4\\r\\oo)

(In the definition of En, f is assumed to have period TT.)
Hence, since ||/"||oo = O(Kf) and, by (15), /x = K\ + O{Kfh2), it follows

from (28) and Cauchy's inequality that

|eT(f - Ae - pe)| = O(Kfh3/wa(Kih)). (31)

Hence by (17), (26) and (29) |A - A| |uTy| = O{K\h2/sin(#i/i)) and the result
follows by the concluding arguments used in the proof of Theorem 1 of [7] (also
used in [8] and [5]). The remarks following the proof of Theorem 1 of [5] also
apply.

3. Numerical results and discussion

In order to facilitate comparison with the results of [5], the same q was chosen
for numerical computation, namely

g(z) = 10cos(2x). (32)

Since this q is even about TT/2, the eigenfunctions of (1), (9), (32) and those of
(1), (10), (32) and (1), (2), (32) and (1), (4), (32) are either even or odd about
TT/2 (cf. [3]). From this it can be deduced that, with (32), in contrast to most
q including those satisfying (11), the even eigenvalues A2m and corresponding
eigenfunctions of (1), (9) are precisely the even ones of (1), (2) and the odd
eigenvalues and eigenfunctions of (1), (9) are the odd ones of (1), (4), while the
eigenvalues and eigenfunctions of (1), (10) are precisely the remaining ones of
(1), (2) and (1), (4). This special property of (32) was used to compute some
"exact" eigenvalues by the method of [7] for comparison with those computed
by the method described here.

For k = 1 , . . . , n the uncorrected and corrected estimates AJ^ and Ajf1' were
computed for (1), (9) and (1), (10) for n = 5,10,20,40 and 80 and for (1), (9)
also for n = 4,8,12 and 16. Some representative results are shown in Table
1. From left to right the columns of Table 1 show, for various k, the exact
eigenvalue, the error in the uncorrected finite difference estimate with n = 80,
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and the errors in the corrected estimates with n = 80,40 and 20 respectively.
The correction changes all computed eigenvalues for (1), (10) and all except
k = 1 (which is consequently omitted from Tables 1 and 2) for (1), (9), and in
all the author's calculations this change produced an improvement. Moreover
Table 1 shows that, for all k > 4, the corrected results for (1), (9) with n = 20
are better than the uncorrected results with n = 80 which require much more
computation and, as predicted by the theory, the improvement produced by the
correction increases rapidly with k.

k

2
3
4
5
6
7
8

10
12
14
16
18
20
30
38
40

TABLE l. Results

Afc

2.09946
7.44911

16.64822
17.09658
36.35887
36.36090
64.19884

100.12637
144.08745
196.06412
256.04903
324.03870
400.03133
900.01390

1444.00866
1600.00782

Afc-At*0'

0.006
0.008
0.037
0.034
0.169
0.169
0.528
1.282
2.649
4.891
8.316

13.272
20.148
99.400

249.850
303.097

i for (1), (9), with (32)

A*-A<80)

0.0044
0.0058
0.0041
0.0011
0.0031
0.0031
0.0033
0.0034
0.0034
0.0036
0.0037
0.0038
0.0040
0.0052
0.0071
0.0078

fc — k

0.0175
0.0235
0.0169
0.0048
0.0134
0.0131
0.0145
0.0158
0.0175
0.0197
0.0225
0.0263
0.0313
0.1244
3.4343

- 5.7986

A*-A<ao)

0.0714
0.0974
0.0745
0.0242
0.0687
0.0675
0.0898
0.1264
0.1965
0.3575
1.1214
3.3904

- 5.7942
—
—
-

Theorem 1 and the remarks preceding it show that

- An = (33)

and numerical results show this estimate to be sharp. Indeed, with (1), (9),
(32), 5.79 < A^4'n) - An < 5.8 for n = 16,20,40 and 80. Similar results hold,
with similar proofs, for (2), (4), (5), (6) and (10), and numerical results show
these estimates to be sharp also. Also, with (1), (9), (32), the growth with
k of |An — A^4-") | for n/4 < k < 3ra/4 is not much less than the growth of the
bound of Theorem 1. However, although, for k < n/2, the bound of Theorem 1 is
effectively O{kh2), numerical results for (1), (9), (32) shows that |Am-A^'4 m ) | <
|A2 — Aj | for m = 5,10 and 20 and suggest that

\ T(4,2m) f}(rn~^} f'iA}

showing that, for k < n, the bound of Theorem 1 is not sharp.
Sharper bounds could perhaps be obtained by adapting the (lengthier) proof

given for (3) in [1] and summarised in [2]. (See also the comments in [5].) An
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alternative approach is to sharpen the estimates obtained here. The argument of
Lemma 6 of [7] shows that, when q EC4 [0, n] (as in the case for (32) and all q used
in [1, 2, 4-8, 12]), (26) can be strengthened to sjf = O(K*h4/s\n(Kih)) + O{h).
For sufficiently small K\ h, the first term will be dominated by the second and,
for sufficiently smooth q, may perhaps be reduced further by taking more terms
in the Euler-Maclaurin expansion in the proof in [7]. Since also (27) and (30)
contain more information than (31), it should be possible to adapt the proof
of Theorem 1 to obtain sharper results for "small" k. Sharpening the results
of Theorem 1 (and of course the corresponding results of [2], [5], [7], [8] and
[12]) may be of more than theoretical interest as it may increas the range of kh
for which extrapolation may be successfully applied to the corrected estimates,
Aj.n^. As with the method of [8], Table 1 shows that, for moderately small kh, the
accuracy of the corrected estimates may be improved substantially by simple h2-
extrapolation, but that for larger values of kh a more appropriate extrapolation
formula is required.

Comparison of Table 1 with Table 2 of [5] shows that, at least for (32), the
corrected second order finite difference estimates studied here are generally less
accurate than the corrected second order finite element estimates of [5], especially
when n is close to or slightly less than 2k. Indeed, with (1), (9), (32), it is easy
to show that, when m = 1,

T(4,4m) _ T(4,4m) _ . 2 foci
A 2m — A 2m+1 ~ 4 m ' l ^ J

and numerical results suggest that (35) is true for all positive integers m. (Note
that, by (20), (35) implies (34).) Since (32) implies (19), the corrected finite
difference estimates in (35) are exactly the same as the simple asymptotic esti-
mate of (20) and much worse than the corrected finite element estimates of [5].
(To keep this result in perspective, it should be noted that, for n > 2k, the cor-
rected finite difference estimate was always better than the asymptotic estimate
(20), with the superiority of the methods of this paper increasing rapidly as kh
decreases, as predicted by (20) and Theorem 1.) There is also some numerical
evidence [9] that the correction technique can be extended to higher order finite
element methods and this is likely to lead to a great improvement in accuracy,
just as the method of [7] is much more accurate than that of [12]. (See the
remarks in [8].)

However there are two advantages of the finite difference approach of this
paper over the finite element approach of [5]. First, the method of [5] requires
the solution of an eigenvalue problem of the form Ax = ABx with B ^ I,
whereas with the method described here B = I. The most easily used software
packages from sources such as EISPACK for solving Ax = ABx with B ^ I
do not take advantage of the special periodic tridiagonal structure of A and B
for this problem, possibly because of the philosophy adopted in [14] of including
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only routines which were in some sense optimal. Although the author found no
difficulty with the method described in [5] for solving the matrix problem, it
has not had the extensive testing of the EISPACK routines. Secondly, the finite
element approach requires the numerical evaluation of a number of integrals not
required for the finite difference approach. A user wishing to compute, say, the
first 20 or 30 eigenvalues with uniform accuracy significantly greater than that
obtainable from the simple asymptotic formula (even for the greatest of these),
but who does not require the still greater accuracy which can be obtained by
the corrected finite element method, and who wishes to use packaged software,
is likely to find the method of this paper easier to implement than that of [5].

TABLE 2. Results for (1), (9), with (36)

k

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Afc

6.5005
7.0151

18.5848
18.6655
38.5816
38.6215
66.5821
66.6054

102.5825
102.5977
146.5829
146.5935
198.5831
198.5910
258.5833
258.5893
326.5834
326.5882
402.5835

0.0117
0.0084
0.1347
0.1318
0.6651
0.6619
2.0820
2.0786
5.0401
5.0365

10.3529
10.3491
18.9732
18.9690
31.9691
31.9645
50.4981
50.4930
75.7783

Afc-A<«0>

0.0035
0.0002
0.0036
0.0006
0.0038
0.0006
0.0040
0.0006
0.0042
0.0006
0.0044
0.0005
0.0047
0.0005
0.0050
0.0004
0.0055
0.0004
0.0061

Afc-A?°>
0.0144
0.0006
0.0152
0.0024
0.0173
0.0022
0.0200
0.0017
0.0246
0.0010
0.0332

- 0.0005
0.0527

- 0.0040
0.1155

- 0.0173
0.5571

- 0.2362
- 0.5197

Following a suggestion of a referee that some numerical results for an example
with nonsymmetric q be added, some calculations were made with

q{x) = x2{ir-x). (36)

The simple method of calculating "exact" solutions used for (32) is not available
for (36), but the "exact" solutions of Table 2 were obtained by extrapolating
the corrected results obtained by the method of this paper with n — 100 and
n = 125. Comparison with solutions obtained by extrapolation of corrected
results for n = 80 and n = 100 suggests that all figures shown in Table 2 are
correct.

In general the results obtained for (1), (9), (36) were similar to those obtained
for (1), (9), (32) and in particular they satisfied (33). There was however one
notable difference which is probably due to the fact that the pairs of eigenvalues
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of (1), (9), (32) coalesce much more rapidly than those of (1), (9), (36) as k
increases. Although in both cases the corrected eigenvalue estimates for (1),
(9) were generally more accurate for odd k than for even k, the difference for
midrange k was negligible with (32). With (1), (9), (36) the difference was quite
significant, and, whereas for even k the error in the corrected estimates increased
monotonically with k, for odd k it actually decreased as k increased, for midrange
k. This is demonstrated by Table 2 which, for k = 2 to 20, gives, in successive
columns, the exact eigenvalues, the error in the uncorrected estimates for n = 40
and the error in the corrected estimates for n — 40 and n = 20 respectively for
(1), (9), (36). It may be relevant that the odd eigenvalues of (1), (9), (36) are
much closer than the even eigenvalues to eigenvalues of (1), (2), (36).
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