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1. Introduction 

I want to start by addressing the question, 1 What is inversion?' My answer would 
be that inversion is the process of going from data to making inferences about the 
object under study. In the case of helioseismology, the data at the present time are 
principally the mode frequencies, and the object under study is the solar interior. 

For example, suppose we found that observed frequencies of ρ modes confined to 
the convection zone agreed well with the frequencies of a theoretical model, but that 
the observed frequencies of modes penetrating just beneath the convection zone were 
higher than those in the model. We might reasonably infer that there was something 
wrong about our model just beneath the base of the convection zone. Moreover, since 
for acoustic modes the frequency ν ~ A/ J c _ 1 d s , where c is the sound speed, the 
integral is with respect to distance s along a ray path, and A is just some constant 
of proportionality, we might infer that the sound speed was too small in this region 
in the model. Since we know that increasing the opacity in the model in this region 
would have the effect of increasing the sound speed there, we might infer therefore 
that the opacity in the model might need to be increased in this region. 

In my view, this hypothetical scenario (based though on the actual findings of 
Christensen-Dalsgaard et al. 1985) is already an example of inversion. It illustrates 
how knowledge about the details of the mode physics - the depth of penetration of 
different modes, and the role of the sound speed - is used to make localized inferences 
about possible errors in the model. In a real case, one would also make some quantita-
tive estimate of the shortfall in the model sound speed, and give proper consideration 
too to the uncertainties on that inference. 

The frequencies of the Sun's global modes depend on conditions in the interior 
through adiabatic exponent Γι , pressure ρ and density ρ - all functions of position r. 
The observed ρ modes depend on these three quantities principally in the combination 
c 2 = Tip/p. They also depend on the interior velocity field v(r) (in particular the 
rotation) and magnetic field B(r) . These - and functions that can be derived just 
from a knowledge of these quantities - are the primary seismic variables about which 
we can make helioseismic inferences. Inferences about secondary quantities, such as 
the opacity in the example above, which affect the modes only through influencing the 
primary seismic variables, are at a different level, since there may be other physical 
causes that may change lead to the same change in the primary variables. 
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The simple example above also illustrates that it is necessary to have a framework 
for solving the forward problem in order to perform an inverse analysis. Only if one 
can predict (albeit perhaps in some approximation) what data would be produced by 
a particular physical model can one hope to use the data to make inferences about 
that physics. 

The dependence of the mode frequencies on the structure and dynamics of the solar 
interior is intrinsically nonlinear. Most helioseismic inversion is based on some form of 
linearization, and for that reason I shall concentrate on the linearized problem for most 
of this review. However, I should at least note that there are other approaches. One 
such might be described as inversion by doing the forward problem, namely changing 
some aspect of the model, seeing what effect this has on the frequencies and thus 
finding which model amongst some set best fits the observational data. This approach 
is known as model calibration. Recently there have been several attempts at what is 
in effect an implementation of this approach with an automated search through some 
set (or space) of models. Specifically Paul Charbonneau at H A O and Barry Lapthorn, 
a student of mine, have both been looking at using genetic algorithms for inverting 
for the solar internal rotation (see, e.g. Charbonneau et al. 1997) . The approach 
looks promising, at least when only a few dozen independent parameters are used to 
parametrise the space of models to be explored. Another set of nonlinear methods is 
based on using an asymptotic description of the forward problem, usually leading to 
having to invert an Abel integral (e.g. Gough 1984, 1986; Brodsky & Vorontsov 1988; 
Shibahashi 1988). 

In the context of inversions for radial hydrostatic structure, linearization is gen-
erally performed by formally perturbing a variational principle for the frequencies. 
Retaining only first-order perturbation quantities, one obtains a linear functional 
equation that relates differences in global frequencies between the Sun and a model 
to differences in their primary variables (e.g. Gough 1985). Further assumptions and 
manipulations can be used to relate the frequency differences instead to differences in 
secondary quantities such as opacity, chemical abundances or temperature. 

It is rather natural also to handle the effects on the mode frequencies of the 
internal magnetic and velocity fields, and in particular the internal rotation, in a 
linearized approximation. For example, the rotation period of roughly one month is 
very much longer than the typical period of a mode, which is around five minutes, 
so that including the effects of rotation on the mode as a linearized perturbation is a 
very good approximation. 

As a very simple example of a set of linear constraints to be inverted, I introduce 
the archetypal equation 

Here d{ represent the M pieces of observational data, Ω(χ) the unknown function 
about which we wish to make inferences, the errors in the data, and Ki(x) are known 
functions. For simplicity I take the errors to be independent normally distributed 
with zero mean and with variance σ\. The linearized problem for inferring the Sun's 
internal rotation is very similar to this, except that the function Ω depends on radius 
and latitude rather than on just one variable x: the data are the so-called frequency 
splittings between modes with different azimuthal degrees m. The linearized problem 
for inferring the differences in radial structure between Sun and reference model is also 
of this form, except that the structural differences generally need to be represented 

(1) 
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by more than one unknown scalar function ü(x): the data are then differences (or 
relative differences) between observed frequencies and those of the reference model. 

2 . D a t a f itt ing 

An obvious way to solve the observational constraints represented by equation (1) is 
to use the least-squares method. Thus one might seek a representation of Ω of the 
form 

Ν 

Ù(x) = Συιφι(χ) 

where 4>j{x) (j = l , . . . , i V ) are chosen basis functions, and the constants Clj are 
determined by minimizing the data mismatch 

M 

ι / - _ ι / 

(2) 

Γ ί 1 1 / 
Σ υ - KiÙdx / σ\ . 
ζ=1 I Jo \ I 

In practice this is not very successful unless Ν is chosen to be very small. The reason 
is that the data depend on the unknown Ω through J ΚίΩ,άχ: this tends to smooth 
variations in Ω, just as straightforward integration of a function tends to produce a 
result that is smoother than the original function itself. Inversion - inferring Ω from 
the data di - is analogous to the inverse of integration, namely differentiation; and as is 
well known, differentiating noisy data means that the noise tends to get magnified. The 
same happens with a naive application of least squares to the helioseismic inversion 
problem: if the base functions permit it, the solution will generally be dominated by 
rapidly varying oscillations caused by the solution attempting to fit the noise in the 
data. 

A commonly employed resolution of this problem is to introduce some regulariza-
tion into the least-squares method. Instead of minimizing expression (2) one instead 
minimizes an expression such as 

Mr rl _ - .2 . ! 

Σ di - J KiÙdx j σ\ + λ 2 y (Ù")2dx 
(3) 

Here the double prime denotes second derivative with respect to x, and the inclusion 
of the new term penalizes solutions which have large second derivatives. The value of 
the constant λ is chosen so as to trade-off the essentially opposing aims of minimizing 
the data mismatch and minimizing the penalty term. The choice of the exact form of 
the penalty term is rather ad hoc, but the advantage of making it quadratic in Ω is 
that one is still led to a set of linear equations to be solved to find the coefficients Ω^. 

It is illuminating to see how a Bayesian would analyse the difficulty we encounter 
with unregularized least-squares and our ad hoc solution of regularized least squares. 
Bayes's Theorem says that 

P{Q\DX) oc P(D\nX)P(Ü\X) , 

The expression on the left is the a posteriori probability of Ω, given the data D and 
any prior information (or prejudice) X. The first term on the right is the probability 
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of observing the data D given Ω and any prior information X , and the remaining 
term is the prior probability of Ω before the data is obtained. Given our assumption 
about the data errors being independent and normal, 

so —2\nP{D\VtX) is precisely the expression (2) . Thus minimizing (2) is equiva-
lent to maximizing the likelihood of the data. If we accept that what we should 
be doing in fact is finding the function Ω that maximizes P(Q,\DX), then we see 
that unregularized least squares is equivalent to assuming that the prior probabil-
ity Ρ ( Ω | Χ ) is the same for all Ω. Maximizing P(Q,\DX) is equivalent to minimizing 
—2\nP(Cl\DX) which, apart from an additive constant, is equal to the usual least-
squares term plus — 2 1 η Ρ ( Ω | Χ ) . By equating this with expression (3) , it is evident 
that the regularized least squares is equivalent to assuming a prior probability satis-
fying - 2 1 η Ρ ( Ω | Χ ) = λ 2 / ( i ï " ) 2 d x plus constant, i.e. 

This then is our prior probability for Ω. It embodies a prejudice that functions Ω 
with large second derivatives are less probable (prior to getting any data to the con-
trary). However, its form has no firm justification. Could we instead introduce a prior 
which had physical motivation, perhaps updated in the light of previous helioseismic 
inference? 

3 . C h a r a c t e r i z i n g all funct ions tha t are consistent w i t h t h e d a t a 

The regularized least-squares method at best provides just one example of a function 
that is consistent with the data. (I say 'at best' because if the value of the chi-squared 
per degree of freedom is not close to unity then the method fails even to do that.) 
Because the data provide only a finite number of linear constraints (1) , there must 
be an infinite number of other solutions that are equally consistent with the data. 

An alternative approach to the inversion problem is to try to characterize all 
functions that are consistent with the data. It is almost tautological to say that the 
set of original constraints (1) provides such a characterization. And each of the original 
constraints individually provides a partial characterization, since all solutions must 
satisfy each such constraint. It follows then that any linear combination of the original 
constraints also provides a partial characterization: any function consistent with the 
original data must satisfy 

P(D\ÜX) oc Y[e-(di-J K i ( l d x ) /2*2 , 

P(Ü\X) oc e 

(4) 

where 
M 

(5) 

for any constants c» we choose. W h y is this progress? We have still just got an integral 
constraint on Ω. But in helioseismology the original kernels Κ ι are oscillatory functions 
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with substantial amplitude over perhaps a large part of the solar interior. Suppose that 
with the freedom to choose the constants one could arrange to make the averaging 
kernel Κ localized close to some point χ — xo and moreover nicely peaked there, 
with unit area when integrated from χ = 0 to χ = 1. Then the localized average of 
any solution Ω, weighted by the averaging kernel /C, would have to satisfy constraint 
(4) , the left-hand side of which is determined by the data. It turns out that in the 
various helioseismic applications and over a large part of the Sun it is indeed possible 
to construct beautifully localized averaging kernels. Each of these corresponds to a 
constraint of the form (4) on the set of all possible solutions, which I at least find 
easier to comprehend than the original data constraints. Each of the constraints says 
that although there may be an infinite set of functions Ω consistent with the data, in 
the vicinity of xo where one has succeeded in constructing a well-localized averaging 
kernel any solution Ω must have a local average (made precise by the weighting K) 
equal to the left-hand side of (4) , modulo the error term Y^c^i whose statistical 
properties can be established if the statistics of the original data errors Ci are known. 

There are various ways in which the coefficients C{ can be found in order to con-
struct averaging kernels with desired degree of localization. Such optimally localized 
averages methods are based on ideas by Backus &; Gilbert (1968), and are described 
in the helioseismic context by e.g. Gough (1985) and Pijpers & Thompson (1992). As 
with regularized least squares, there is a trade-off to be made, since trying to localize 
the averaging kernel too much would increase the variance of the error term Σ ciei 
and would eventually render the constraint (4) practically useless. 

4 . R e s o l u t i o n 

If it is possible to localize an averaging kernel in the vicinity of xo, with a substan-
tial positive peak there and with little amplitude elsewhere, then one can define the 
resolution in the x-direction attained by the inversion in terms of some measure of 
the width of the averaging kernel peak, e.g. its full width at half maximum ( F W H M ) . 
In the case of a 2-D inversion, this can be done in both the radial and latitudinal 
directions. 

With a quadratic penalty term, as in eq. (3) , the regularized least-squares (RLS) 
method is linear, in the sense that the solution at any point xo is a linear combination 
of the data d{. Thus implicitly coefficients Ci(xo) exist, and so the RLS solution at xo is 
actually also an average of the true function Ω weighted by an averaging kernel of the 
form (5) . Likewise, the solution from any linear data-fitting method can be interpreted 
point-by-point in terms of averaging kernels and linear functionals characterising the 
set of all functions that are consistent with the data. Of course the RLS averaging 
kernels may not be so nicely localized - after all, one did not explicitly seek to localize 
them. However, in practice they often are, albeit perhaps with negative sidelobes 
adjacent to the main positive peak, and so for the RLS too one can define attained 
resolution in terms of the width of the averaging kernel's main peak in regions where 
the kernel is well-localized. And if over a range of different target locations xo it is 
possible using the explicit averaging kernel construction methods to produce well-
localized kernels, why not interpret the solutions Y^Ci{xo)di as forming a continuous 
curve - a solution - which probably does not fit the data but which can rather be 
interpreted as a smoothed-out approximation to the true Ω(χ 0 ) · 

The standard deviation of the error Σ°ί(χο)βί in the solution is ( ^ c f t f f ) 1 / 2 . 
The coefficients Q depend on any adjustable parameters in the method, and there-
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fore so too do the error standard deviation and the attained resolution as defined 
above. One can then define at a given location XQ a trade-off curve of error stan-
dard deviation against resolution, for any given method. As one tries to squeeze the 
coefficients to get better resolution, the error increases; and, conversely, as one tries 
to reduce the error, the resolution gets poorer. Not only do the trade-off curves for 
different linear helioseismic inversion methods have the same qualitative behaviour, 
Christensen-Dalsgaard et al. (1990) found that they were very similar quantitatively, 
in regions where well-localized kernels could be constructed. The resolution, in the 
sense defined above, cannot be reduced to arbitrarily fine values. In fact there is a fun-
damental limit on how fine the resolution can be, which is determined by the shortest 
scales of variation of the kernels Κ ι in the vicinity of XQ . For a primary variable such 
as rotation or sound-speed, this scale is directly related to local wavenumber of the 
mode eigenfunctions. Within the propagation region of ρ modes the wavenumber is 
related to c / ω , where c is adiabatic sound speed evaluated at location XQ and ω is 
the angular frequency of the mode. Thus the finest attainable resolution at XQ when 
inverting p-mode data for rotation or sound speed is c / i / m a x times a number of order 
unity (to allow for the conversion from eigenfunction to kernel), z / m a x being the top 
limit on the range of frequencies in the data set. The practical resolution limit may 
be poorer than this because of the noise in the data, which prevents the averaging 
kernel from being so well localized while keeping the error standard deviation within 
acceptable bounds. 

The best resolution in the convection zone is probably now achieved with the S 01 -
MDI dataset. Just to give some idea of the currently attainable resolution, I quote 
some values for the typical resolution achieved with the 144-day MDI set of splitting 
coefficients in the region where averaging kernels can be reasonably well localized 
(values are for the RLS inversion of Schou et al. 1997a; but values for 2-D optimally 
localized averages would be similar). At 30° latitude, for example, the F W H M radial 
widths of the averaging kernels (i.e. radial resolution) are 0.02.R at r = 0.965Ä (R be-
ing the solar radius), 0.05R at r = 0.82Ή, 0.08Ή at r = 0.72R and 0 .11# at r = 0.52Ή; 
the corresponding F W H M widths measured in the latitudinal direction (i.e. latitudi-
nal resolution) are 0.1SR, 0.14.R, 0.20R and 0.29.R. These results are summarised in 
Table 1. Widths vary less with latitude than with radius: at radius 0.72/Î, for example, 
the F W H M radial widths at different latitudes are 0.07Λ at 15° latitude, 0.08Ä at 45° 
and 0.09R at 60°. The latitudinal widths hardly vary with latitude at fixed radius, 
in the region where the averaging kernels are reasonably well localized. The latitudi-
nal resolution is poorer than the radial resolution, probably because the splittings are 
only available as so-called a-coefficients rather than individual splittings. Nonetheless, 
with a-coefficients up to 03e (see Schou et al. 1997b), the latitudinal resolution is the 
best yet achieved. 

Table 1. Radial and latitudinal resolution attained with a 2-D RLS inversion of the 144-day MDI 
set of splitting coefficients, as measured by averaging kernel widths at selected target locations. 

Target 
radius 

Target 
latitude 

Radial 
wid th(FWHM) 

Latitudinal 
wid th(FWHM) 

0.965.R 30° 0.02Ä 0.13Ä 
0.82Ä 30° 0.05R 0.UR 
0.72Ä 30° 0.0SR 0.20A 
0.52R 30° 0.1LR 0.29Λ 
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Note that if one quotes interquartile widths instead of F W H M (e.g. Christensen-
Dalsgaard et al. 1990) the interquartile widths are smaller by a factor of about 0.57 
when the shapes of the kernels are approximately Gaussian. 

Before leaving the subject of resolution, I would like to point out that what one 
might call super-resolution can be achieved, but only by the imposition of additional 
assumptions in the inversion. If for example in a hypothetical problem the underlying 
function Ω were assumed to be a delta function, and if the averaging kernels were (for 
simplicity) nice Gaussians whose properties varied only slowly with target location xo, 

then the position of the delta function could be inferred from where the solution (4) 
- viz the convolution of the kernels with the delta function - attained its maximum. 
Provided the data noise were sufficiently small, the position of this maximum could 
be located much more precisely than one F W H M of the Gaussian kernels. I call this 
super-resolution. But features have not really been resolved beneath the lengthscale 
given by the width of the kernels. If for example, the true Ω had in fact contained 
two closely-spaced delta functions, these would not have been resolved. A similar 
example, of more relevance to our applications, is if the true Ω were assumed to have 
some simple form locally like a step function, then the position at which the step 
occurs could be localized more precisely than one kernel width. Helioseismic examples 
where specific forms have been assumed include the attempts to locate the base of the 
convection zone (Christensen-Dalsgaard et al. 1991) and to measure the position and 
thickness of the tachocline (e.g. Kosovichev 1996). In these cases, a particular form 
of the radial structure or rotation profile were assumed, and the data then allowed 
the location of the assumed form to be determined rather precisely. However, these 
regions might have a more complex structure not represented by the simple assumed 
form and unresolved by the inversions. 

5 . O n interpret ing results of inversions 

When presented with the result of a linear helioseismic inversion, there are several 
questions one would be wise to ask, and also several issues to be borne in mind. The 
first question is, what is the resolution? In 1-D inversions, this might be represented 
by horizontal bars on a solution plot, denoting the F W H M of the averaging kernels. 
Fuller information, at selected points, can be provided by seeing the averaging kernels 
themselves. In 2-D, it is again feasible only to show kernels at selected targets; or one 
might display radial width and latitudinal width of kernels as functions of position 
as plots in their own right. At least in the (one hopes) substantial region where the 
kernels can be well localized, such measures are an adequate substitute for seeing 
the kernels themselves. Of course, one also wants to ask, what is the uncertainty 
('error bar') on the solution? The formal error at a point, which is a measure of how 
much the solution at that point could change if the data errors C{ had a different 
realization, is just (Σ c f σ<ΪΫ^ (under the assumption of independent errors) and this 
can be included as error bars or bands on 1-D plots or can be plotted in its own right. 
But it should be borne in mind that the assumptions about the size or independence 
of the data errors may be wrong (see below). Also the error bars are only formal: 
because the data are integrals, the true Ω could take arbitrarily large (positive or 
negative) values over a sufficiently small region and not affect the data perceptibly, 
so that the true solution at a single point has in a sense infinitely great uncertainty 
(e.g. Genovese et al. 1995). This problem is resolved if one thinks of the solution 
as a localized average, which is really what the inversion provides. Also, even if the 
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original data errors are independent, the solution at different points x0 and x\ say 
are different linear combinations but of the same data, so that the errors at 
the two locations are correlated (e.g. Howe & Thompson 1996). Howe & Thompson 
found that, for least-squares and optimally localized averages inversions for rotation, 
the lengthscale over which errors are positively correlated is similar to the resolution 
length as defined by the width of the averaging kernel's main peak. Thus it is difficult 
to know whether a feature in the solution at the limit of resolution is (a) a true 
feature with that scale; (b) a smaller-scale feature blurred out by the finite resolution 
of the inversion; or (c) an artifact of the data noise, because the error at neighbouring 
points in the solution are correlated. (For inversions for structural differences, e.g. 
for density differences, errors can be correlated over essentially the whole of the solar 
interior, which introduces further problems of interpretation.) The possibility also 
exists that features in the solution are due to systematic errors in the data, which we 
have explicitly ignored in our assumptions about the statistics of the e^. 

6. Sources of uncer ta inty in current inversions 

A quick survey through the literature of recent helioseismic results will reveal that, 
although the results agree in broad terms, when one looks at fine details there are 
discrepancies (e.g., Tomczyk et al. 1995; Thompson et al. 1996; Schou et al., 1997b). 
What has been achieved in making deductions about the solar interior is remarkable, 
but as the data become more and more precise we want to use that improvement 
by making more ever more subtle inferences. Thus it is pertinent to ask what is the 
reason that inversion results are discrepant, in whatever respect. Korzennik et al. 
(1997) identified three particular sources of uncertainty in current inversions: (a) the 
inversion results are obtained by different methods and/or different choices of trade-
off parameter values; (b) the inversions use data from different instruments and/or 
observations; and (c) the inversions use data that has been reduced by different peak-
bagging pipelines (viz the reduction from observations to finally identifying the modes 
and quantifying the frequencies and/or frequency splittings). Let us consider each of 
these briefly. 

That applying different inversion methods to the same data yields different looking 
results should not be a surprise, in the light of the discussion in the preceding section. 
The data-fitting methods at best yield but one example of a solution that fits the data, 
so there is no surprise if two such solutions differ, provided the difference between the 
two solutions lies in the annihilator (see Gough 1985; Gough & Thompson 1991). But 
even if this is not the case, and of course methods like optimally localized averages 
don't even purport to find a solution that 'fits' the data, we may interpret the two 
solutions at a given point as averages of the true solution weighted by the averaging 
kernels for the respective methods. Because the averaging kernels inevitably differ, 
the solutions are taking different averages of the true underlying function and if the 
solutions at a given point differ it does not necessarily mean that the solutions are 
inconsistent. The solutions are only truly inconsistent if there is no possible underlying 
Ω which, when convolved with the averaging kernels for the two methods, would give 
the respective solutions. This is hard to assess, but one possible test when comparing 
the solution of a data-fitting method with the result of an optimally localized averages 
approach would perhaps be to see whether the former solution, when convolved with 
the optimally localized averaging kernels, produced a result that was similar to the 
optimally localized averages solution. I am not aware that this has ever been done. 
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Of course the way in which the two methods handle data errors might also produce 
different results, but if the different averaging kernels are again taken into account, 
then the difference in the two solutions at a given point should be consistent with 
the error budgets, Y^Citi from each of the two methods. Of course, the two errors 
are correlated and this must be taken into account when making the comparison, but 
that is easily done if the coefficients c» are known and the statistical properties of the 
data errors are as we have assumed. These kinds of intercomparisons have at best only 
been done to a very limited extent, but Hare and Hounds exercises - where different 
inversion methods are applied to the same artificial data - are also useful in helping 
understand the differences between results of different inversion methods, and these 
have been used in several studies. 

The second source of uncertainty is that data come from different instruments 
or observations. Different instrumental characteristics might lead to systematic dif-
ferences in the time series. Although a comparison of the time series from the three 
SOHO experiments shows that they are indubitably looking at the same Sun (Toutain 
et al. 1997), it is possible that the differences that do exist might lead to systematic 
errors in the frequency determinations and in the inversions. The actual solar fre-
quencies also change with time. Thus observations from different epochs should only 
be combined in a single inversion with great caution. In terms of our eq. (1) , these 
sources of uncertainty can be viewed as translating into the errors ei having a sys-
tematic component. (Alternatively, one could view the fact that Ω is time-varying as 
being an instance of a systematic error in the solution arising from the inadequacy of 
the underlying model inherent in eq. 1.) One way in which progress can be made on 
eliminating this source of uncertainty is a careful study of the systematic differences 
between frequencies and splittings from different instruments or observations. 

The third source of uncertainty is that the data is reduced through different 
peak-bagging pipelines. The peak-bagging is itself a form of inversion, and has similar 
potential susceptibilities to incorrect assumptions about the errors on the data put 
into the pipeline. It also in general uses a model of the line shape which is now 
thought to be deficient in that it does not take into account the asymmetry of the 
line profile. And the peak-bagging is a nonlinear optimisation problem in which a 
given algorithm might fall into a local minimum or otherwise be sensitive to an initial 
guess. Assuming that all the internal checks one can think of have been done, it is 
highly desirable that systematic comparisons be made of the frequencies and splittings 
coming out of different peakbagging pipelines, particularly if they can be applied to 
exactly the same input data. Such comparisons are being undertaken. 

I should not end, though, on the problems with inversion! This paper has been 
a review of some aspects of the inversion methods, and it is a fact that the methods 
have been developed in helioseismology to an impressive degree. More importantly, the 
inversions of solar data are revealing the structure and dynamics of the solar interior 
in ways that a few years ago would have seemed unimaginable. It falls however to 
other authors in this volume of proceedings to discuss those exciting results. 
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