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Categorical marginal models (CMMs) are flexible tools for modelling dependent or clustered cat-
egorical data, when the dependencies themselves are not of interest. A major limitation of maximum
likelihood (ML) estimation of CMMs is that the size of the contingency table increases exponentially with
the number of variables, so even for a moderate number of variables, say between 10 and 20, ML estima-
tion can become computationally infeasible. An alternative method, which retains the optimal asymptotic
efficiency of ML, is maximum empirical likelihood (MEL) estimation. However, we show that MEL tends
to break down for large, sparse contingency tables. As a solution, we propose a new method, which we
call maximum augmented empirical likelihood (MAEL) estimation and which involves augmentation of
the empirical likelihood support with a number of well-chosen cells. Simulation results show good finite
sample performance for very large contingency tables.

Keywords: categoricalmarginalmodel, Cronbach’s alpha, large categorical data sets,marginal homogene-
ity, maximum empirical likelihood estimation, maximum likelihood estimation, scalability coefficients.

Categorical marginal models (CMMs; Bergsma et al., 2009; also see, e.g., Bergsma, 1997;
Bergsma & Rudas, 2002; Bartolucci et al., 2007; Colombi & Forcina, 2001; Evans & Forcina,
2013; Lang & Agresti, 1994; Lang, 1996; Molenberghs & Lesaffre, 1999; Rudas & Bergsma,
2023) are flexible tools to model location, spread, and association in dependent or clustered
categorical data, when the dependence itself is not of interest. CMMs require data in a table
format for input; that is, for a dataset with N respondents and J categorical variables, CMMs
require a (vectorized) J -variate contingency table, where each cell corresponds to a response
pattern, and the frequencies within the cells represent the observed frequencies of each response
pattern. The only assumption of the CMMs under consideration is that the cell frequencies in the
contingency table follow a multinomial distribution, rendering a very flexible method.

CMMs can be a valuable psychometric tool since they allow for null-hypothesis significance
testing (NHST) of complex coefficients without the need to specify a parametric model or impose
additional assumptions. In Psychometrics, NHTS often occurs under the assumption of a para-
metric model. For example, testing measurement invariance across several groups is typically
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done under a structural equation model (e.g., Cheung & Rensvold, 2002). However, rather than
testing H0 (the null-hypothesis of interest), we implicitly test H∗

0 : H0 plus the assumption that
the structural equation model fits the data. Rejecting H∗

0 does not provide information about H0
because H∗

0 should be rejected either when H0 is false or when the structural equation model does
not fit the data (cf. Jorgensen et al., 2017). In other fields of psychometrics (e.g., nonparametric
modeling, classical test theory) and applied statistics, there is no comprehensive parametric mod-
eling framework. In such situations, it becomes particularly valuable if the assumptions required
for NHST are easily satisfied, ensuring that the null hypothesis of interest is not excessively con-
founded by data failing to meet the assumptions, thus maintaining a close approximation between
H∗
0 and H0. The CMM assumption that cell frequencies follow a multinomial distribution is very

lenient, implying that every response pattern should, in principle, be observable.
The process of relaxing assumptions for NHST can be a time-consuming endeavor spanning

several years. For instance, in the case of NHST for Cronbach’s alpha, there exists a history
of research papers progressively relaxing the required assumptions: Feldt derived tests for three
types of null-hypothesis on Cronbach’s alpha: alpha equals some criterion value (Feldt, 1969),
alpha is equal across groups (Feldt, 1965), and alpha is equal across different measurements (Feldt
1980). Feldt assumed that alpha asymptotically follows an F distribution. This assumptions was
subsequently relaxed by Van Zyl et al. (2000), who derived a distribution without restricting the
covariances,Maydeu-Olivares et al. (2007)who relaxed the assumptions of Feldt’s first hypothesis
by deriving asymptotically distribution-free interval estimates for alpha, Maydeu-Olivares et al.
(2010) who proposed testing Feldt’s hypotheses in a structural equation modeling framework,
and ultimately, Kuijpers et al. (2013), who proposed using CMMs for testing Feldt’s hypotheses.
Each successive paper demonstrated significant enhancements in the properties of NHST for
Cronbach’s alpha when compared to its predecessors.

In some cases, no hypothesis tests are available leaving CMMs as a possible option to derive
hypothesis tests. For example, Van der Ark et al. (2008) used CMMs for developing NHST for
Mokken’s (1971) scalability coefficients, which allows testing scalability coefficients for item
pairs, individual items, and scales across groups and across measurement occasions. Finally, we
would like to note that CMMs can be used in conjunction with latent variables models, although
this needs further development.We refer to Bergsma et al. (2009), for other applications of CMMs,
and Bergsma et al. (2009, 2013) who introduced CMMs with latent variables.

CMMs can be estimated using the maximum likelihood (ML) method, which has many
favorable properties, including asymptotic efficiency. A serious limitation of the ML method is
that for large contingency tables estimation is infeasible, as ML requires the computation of an
expected frequency for each cell in the contingency table. This curse of dimensionalitymay be an
important reasonwhyCMMshave failed to become popular in psychometrics.Most psychological
and educational tests consist of many variables (usually referred to as items) yielding an extremely
large number of possible response patterns and, therefore, extremely large contingency tables.
For example, Raven’s Advanced Progressive Matrices (Raven et al., 2003), measuring general
intelligence, consists of 48 binary items, which yields a contingency table of 248 ≈ 2.81 × 1014

cells; and the personality inventoryNEO-PI-R (Costa&McCrae 2008),measuring five personality
traits, consists of 48 five-category items per trait, which yields a contingency table of 55×48 ≈
5.66 × 10167 cells. Lloyd (2000) estimated that if every particle in the universe could be used as
part of a huge computer, it could store approximately 1090 bits. Hence, for contingency tables
based on psychological and educational tests, the required computer capacity easily exceeds the
ultimate physical limits of computation, whereas TheML estimation procedure to estimate CMMs
implemented in the R-package cmm (Bergsma & Van der Ark, 2023) cannot handle more than a
few million cells.

In this paper, we give a new adaptation to the ML estimation procedure to solve the above
problem. Although there are alternative estimation procedures that may be used to estimate
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CMMs, we preferred to stay within a ML-framework as ML guarantees asymptotic efficiency,
whereas alternatives estimation methods for contingency tables, such as generalizing estimation
equations (GEE’s, e.g., Qaqish & Liang, 1992), and composite likelihood (e.g., Varin et al., 2011)
are not, and weighted least squares (Grizzle et al., 1969; a.k.a the GSK-method) is sensitive to
sparsity in the marginal distribution (cf. Rudas & Bergsma, 2023). In addition, an adaptation of
the ML approach is easy to fit in the existing software.

Initially, we considered the empirical likelihoodmethod (Owen, 2001,Qin&Lawless, 1994),
a data-driven, nonparametric estimation method. The core idea behind the empirical likelihood
method is to construct a likelihood function directly from the observed data, without assuming
any specific underlying probability distribution; that is, given vector valued data x1, . . . , xN ,
an empirical likelihood is the likelihood of a probability distribution with support {x1, . . . , xN }
(Owen, 2001) . In the context of CMMs, the empirical likelihoodmethod involves constructing the
likelihood solely from cells with nonzero frequencies, while regarding cells with zero frequency
as structural zeroes and setting their estimated probability to zero. Given that the number of cells
with nonzero frequencies cannot exceed the sample size, and in the case of psychological and
educational test data, the sample size rarely exceeds 10,000, the empirical likelihood method
serves as a computationally feasible alternative to ML. We abbreviate the method of maximizing
the empirical likelihood subject to model constraints by MEL.

Unfortunately, the support {x1, . . . , xN } belonging to the empirical likelihood may be too
small (i) to estimate the parameters of a CMM, or, even if this can be done, (ii) to estimate the
asymptotic covariancematrix of theML estimators of the parameters of the CMM.Wewill refer to
these two problems as the first- and second-order estimation problems, respectively (seeAppendix
A formore details). The first problemhas also been called the empty set problem (Grendár& Judge,
2009). As far as we are aware, the second problem has not yet been described in the literature. The
solution to these problems which we propose in this paper is to augment the empirical likelihood
support with a number of well-chosen points, and we will refer to the method of maximizing the
resulting empirical likelihood as maximum augmented empirical likelihood (MAEL). Note that
as the sample size goes to infinity, assuming no structural zeroes, the probability that all cells in
a contingency table will have a positive count will go to 1, so for categorical data MEL, MAEL
and ML are asymptotically equivalent.

The reason why MEL and MAEL estimators work asymptotically (as N → ∞) is because
they are with probability tending to 1 equivalent to ML estimator. That justifies testing good-
ness of fit and making inferences for parameters in same ways as we would do with ML. Two
related methods, called adjusted empirical likelihood, Chen et al. (2008) and balanced augmented
empirical likelihood (Emerson & Owen, 2009; also see Nguyen et al., 2015, Xia & Liu, 2019)
have been considered for continuous data. These methods augment the data set with one or two
additional observations. In contrast, our methodology consists of only augmenting the support of
distributions corresponding to the empirical likelihood with additional points, but without adding
any observations to the data.

The remainder of the paper is organized as follows. In Sect. 1, we give a brief overview
of and notation for CMMs. In Sect. 2, we describe ML and MEL estimation for CMMs and
introduce MAEL estimation. In Sect. 3, we present two simulation studies. Study 1 compares the
convergence rate and computation time ofML,MEL, andMAEL estimation for small contingency
tables, and Study 2 investigates the Type I error rate of CMMs using MAEL estimation for small
and large contingency tables, and bias and variance of the model parameters. In Sect. 4, we briefly
discuss the advantages and disadvantages ofMAELestimation in relation to other, non-likelihood-
based estimation procedures. In Appendix A, we describe the first- and second-order estimation
problems in some generality, whereas Appendix B gives details of the estimation algorithm used.
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1. CMMs

Consider the categorical variables X1, . . . , X j , . . . , X J with X j ∈ {0, . . . g j }. Let x1, . . . , xi ,
. . . , xN be i.i.d. data points, where each xi = (xi1, . . . , xi J ) consists of the scores of the i th
respondent on the variables X1, . . . , X J . The data can be collected in a J -way contingency table
of observed frequencies with L = ∏J

j=1 g j cells. The observed frequency of the response pattern

(x1, . . . , xJ ) on variables (X1, . . . , X J ) is denoted by n
X1,
x1,

...,

...,
X J
xJ . The observed frequencies in the

contingency table are collected in an L × 1 vector n, arranged in lexicographical order; that is,
the digit in the last row of the corresponding response pattern changes fastest and the digit in
the first row changes slowest. As an example, Eq. 1 shows the vector n containing the observed
frequencies of the response patterns pertaining to the scores of N = 130 respondents on J = 3
binary variables, a, b, and c:

n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

nabc000

nabc001

nabc010

nabc011

nabc100

nabc101

nabc110

nabc111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

20
15
10
15
0
15
25
30

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1)

If it is clear which variables are involved, then the superscript may be omitted. Marginal frequen-
cies are denoted by removing the appropriate variable(s) from the subscript and score(s) from the
superscript. In some formulas, the subscript i in ni is used as an index. For example,

∑
i ni means

the sum over all elements of n.
The probability that a randomly drawn respondent has response pattern x1, . . . , xJ given that

theCMMof interest is true, is denoted byπ
X1,
x1,

...,

...,
X J
xJ . Assuming a fixed sample size N , letmX1,

x1,
...,
...,

X J
xJ

be the expected frequency satisfying mX1,
x1,

...,

...,
X J
xJ = N × π

X1,
x1,

...,

...,
X J
xJ . The expected frequencies and

probabilities are collected in vectors m, and π, respectively, in the same manner as the observed
frequencies were collected in n. ML estimates ofm and π are denoted by m̂ and π̂, respectively.
Without any constraints imposed upon the data, m̂ = n and π̂ = n/N .

Let A be a matrix of zeroes and ones, so that ATm consists of the relevant marginals from
the contingency table. A CMM is defined by constraints of the form

f(ATm) = Zβ, (2)

where f is an appropriate function, Z is a design matrix of full column rank, and β is a vector of
parameters. For estimation purposes, parameter β is eliminated from the equation as follows. Let
B be the orthogonal complement of the column space spanned by the columns ofZ (i.e.,BTZ = 0
and the concatenated matrix (B Z) is square and non-singular). By pre-multiplying both sides of
Eq.2 by BT, the CMM is written as a set of constraints:

BTf(ATm) = BTZβ = 0. (3)

Downloaded from https://www.cambridge.org/core. 30 Apr 2025 at 10:50:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1232 PSYCHOMETRIKA

Note that parameter β can be obtained from Eq.2 by

β = (ZTZ)−1ZTf(ATm). (4)

The constraint formulation BTf(ATm) = 0 (cf. Eq. 3) is computationally convenient since it
allows the Lagrange multiplier technique to be used, and asymptotic theory has been developed
using this formulation (Aitchison & Silvey, 1958, Lang, 2005). In addition, the parameter for-
mulation f(ATm) = Zβ (Eq. 2) is not possible if BT is of full column rank because Z, the
orthogonal complement of B, does not exist. Therefore, the parameter formulation of CMMs will
be disregarded from here on.

For notational convenience, we can replace BTf(ATm) by g(m). So, the shortest notation for
a CMM is

g(m) = 0. (5)

Let D be the number of constraints in Eq.5; that is, the length of vector g(m). The fit of the CMM
can be investigated by comparing n and the ML estimate under the model, m̂, using a likelihood
ratio test statistic (G2) or Pearson’s Chi-square test statistic (X2), which have an asymptotic Chi-
square distribution with D degrees of freedom if the model is true. Example 1 shows a simple
CMM following the build up in Eqs. 2, 3, 4, and 5, whereas Example 2 shows a CMM that has
been used in psychometrics.

Example 1. Consider n in Eq.1. Suppose that we want to fit the CMM that prescribes marginal
homogeneity: ma

1 = mb
1 = mc

1 (and consequently, ma
0 = mb

0 = mc
0). First, pre-multiplying m by

design matrix AT (Eq.2) yields the required margins; that is,

ATm =
⎛

⎝
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞

⎠ ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mabc
000

mabc
001

mabc
010

mabc
011

mabc
100

mabc
101

mabc
110

mabc
111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛

⎝
ma

1
mb

1
mc

1

⎞

⎠ . (6)

Function f (Eq. 2) is the identity function, so f(ATm) = ATm = (ma
1 mb

1 mc
1)

T. To write the
CMMas a set of constraints, f(ATm) is pre-multiplied by constraint matrixBT (cf. Eq.3, left-hand
side), and set to zero, yielding

BTf(ATm) =
(
1 −1 0
0 1 −1

)

·
⎛

⎝
ma

1
mb

1
mc

1

⎞

⎠ =
(
ma

1 − mb
1

mb
1 − mc

1

)

=
(
0
0

)

. (7)
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As the 3×1 columnvectorZ =
(

1√
3

1√
3

1√
3

)
is the orthogonal complement ofB, with (ZTZ)−1 =

1, parameter β (which in this case is 1-dimensional) can be obtained by Eq.4; that is,

β = (ZTZ)−1ZTf(ATm) = 1 ·
(

1√
3

1√
3

1√
3

)

⎛

⎜
⎜
⎝

ma
1

mb
1

mc
1

⎞

⎟
⎟
⎠ = ma

1 + mb
1 + mc

1√
3

. (8)

Conventional short notation g(m) = 0 (Eq. 5) is obtained by letting g(m) = BTf(ATm); that
is,

g(m) =
(
1 −1 0
0 1 −1

)

·
⎛

⎝
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞

⎠ ·m

=
(
0 0 −1 −1 1 1 0 0
0 −1 0 −1 1 0 1 0

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mabc
000

mabc
001

mabc
010

mabc
011

mabc
100

mabc
101

mabc
110

mabc
111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
0
0

)

. (9)

The vector of expected frequencies that is closest (in an ML sense) to n (Eq.1) and meets the
requirement of Eq.9 is

m̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

20.000
14.397
8.060
11.695
0.000
19.755
26.092
30.000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

Comparing n given in Eq.1 and m̂ given in Eq.10 yields G2 = 2.6107 (df = 2, p = .2711). Using
a nominal Type I error rate of α = .05, the hypothesis of marginal homogeneity should not be
rejected.

Example 2. Item-scalability coefficient Hj ( j = 1, . . . , J ) is used in Mokken scale analysis
(e.g., Mokken, 1971; Sijtsma & Van der Ark, 2017) and expresses the strength of the relationship
between item j and the other items in the test, comparable with a regression coefficient in a
regression model. One of the criteria of aMokken scale is that all coefficients Hj are greater than
some lower bound c. The lower bound that is used as a default is c = 0.30 (Sijtsma & Molenaar
2002). Hence, a relevant question is whether all Hj > 0.30. Coefficients Hj are not independent

Downloaded from https://www.cambridge.org/core. 30 Apr 2025 at 10:50:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1234 PSYCHOMETRIKA

from each other, and CMMs can be used to control for this nuisance dependence and test all
coefficients simultaneously.

Under the assumption that the items are numbered in an ascending order of their probability of
answering the item correctly (i.e., item 1 is the least popular or most difficult item, item J the most
popular or least difficult item), item-scalability coefficients Hj , j = 1, . . . , J for dichotomous
items (Mokken, 1971, p. 151) are defined as

Hj = 1 −
N

(∑ j−1
i=1 mi j

01 + ∑J
i= j+1 m

ji
01

)

∑ j−1
i=1 mi

0m
j
1 + ∑J

i= j+1m
j
0m

i
1

. (11)

Consider the observed frequencies in Eq.1. Let H = (Ha, Hb, Hc) be a vector containing
the item-scalability coefficients of items a, b, and c. Equation11 shows thatH is a function ofm.
The constraints H − (0.3, 0.3, 0.3)T = 0 defines a CMM (Eq.5); we refer to Van der Ark et al.
(2008) for computational details.

The sample values of Hj for the vector of observed frequencies in Eq.1 are Ĥa = 0.231,
Ĥb = 0.164, and Ĥc = 0.055. Fitting the CMM that all item-scalability coefficients equal 0.3 to
the data in Eq.1 yields G2 = 14.84 (d f = 3, p = 0.0023). Using a nominal Type I error rate of
α = 0.05, the hypothesis H = (0.3, 0.3, 0.3)T should be rejected.

2. Estimation of CMMs

2.1. ML and MEL Estimation

Assuming that the frequency vector n follows a multinomial distribution, the likelihood
function is

L(m|n) = N !
∏L

i=1 ni !
L∏

i=1

(mi

N

)ni ∝
L∏

i=1

mni
i . (12)

The maximum likelihood estimate m̂ maximizes L(m|n) subject to the model constraint

g(m) = 0 (13)

and the multinomial constraint

∑

i

mi = N =
∑

i

ni . (14)

In Appendix B, an algorithm for finding m̂ is given.
For multinomial distributions, MEL estimation is similar to ML estimation, with the dif-

ference that all cells for which ni = 0 are treated as structural zeros. The MEL estimate of m
maximizes L(m|n) subject to Eqs. 13 and 14 and the structural-zero constraint

mi = 0 if ni = 0. (15)

MEL estimation can be done using the same algorithm as ML estimation because the cells i for
which ni = 0 can simply be left out of the estimation procedure. For MEL estimation, fewer cells
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need to be estimated, which makes the procedure faster and more suitable for large contingency
tables than ML estimation.

In general, a superscripted asterisk indicates that the cells i for which ni = 0 are left out; that
is, L∗ is the number of cells for which ni > 0, n∗ is the vector of length L∗ of nonzero observed
frequencies (i.e., n∗ is the vector containing those ni that are greater than zero). The corresponding
expected frequencies and expected probabilities are denotedm∗ and π∗, respectively, and g∗(m∗)
equals g(m) with the elements ofm corresponding to zero observed cells set to zero. Example 3
shows an illustration of MEL estimation.

Example 3. This example illustrates MEL estimation of the CMM in Example 1. For the vector
of observed frequencies in Eq.1,

n∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

nabc000

nabc001

nabc010

nabc011

nabc101

nabc110

nabc111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

20
15
10
15
15
25
30

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

In Eq.16, nabc100 has been omitted, which implies that mabc
100 is fixed to zero, and not considered in

the estimation procedure. The CMM in Eq.9 under MEL reduces to

g∗(m∗) =
(
0 0 −1 −1 1 0 0
0 −1 0 −1 0 1 0

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

mabc
000

mabc
001

mabc
010

mabc
011

mabc
101

mabc
110

mabc
111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
0
0

)

. (17)

Comparing n∗ given in Eq.16 and

m̂∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

20.000
14.397
8.060
11.695
19.755
26.092
30.000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

yields G2 = 2.611 (d f = 2, p = 0.271). In this case, ML estimation (see Example 1) and MEL
estimation provide identical expected frequencies and model fit, but this is not true in general.
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2.2. The First- and Second-Order Estimation Problems for CMMs

Unfortunately, the support {x1, . . . , xN } belonging to the empirical likelihood may be too
small for the CMM to be estimated and to do inference. We identify two problems, which are
described more formally and in some more generality in Appendix A. We say that the first-order
estimation problem occurs if the equation g∗(m∗) = 0 does not have any solutions. This is also
known as the empty set problem (Grendár & Judge, 2009). The second-order estimation problem
occurs if the empirical likelihood support is too small to be able to estimate the covariance matrix
of the estimatedmarginal parameters. Occurrence of the first-order problem implies occurrence of
the second-order problem, and absence of the second-order problem implies absence of the first-
order problem. If the second-order problem occurs, inference for the model is problematic. The
first- and second-order estimation problems can occur for MEL estimation with sparse observed
contingency tables, as illustrated next.

Example 4. Consider a 2 × 2 contingency table and let

g(m) = (m0+ − m1+) − (m+0 − m+1) = (
0 1 −1 0

)

⎛

⎜
⎜
⎝

m00
m01
m10
m11

⎞

⎟
⎟
⎠ = 0.

Suppose we observe

⎛

⎜
⎜
⎝

n00
n01
n10
n11

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ .

Then, it can be verified that g∗(m∗) = m01 × 1 = 0 does not have any solutions; that is, the
first-order estimation problem (or empty set problem) occurs, and hence so does the second-order
one. If, on the other hand, we observed

⎛

⎜
⎜
⎝

n00
n01
n10
n11

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1
0
0
1

⎞

⎟
⎟
⎠ ,

then the first-order problem does not occur. Assuming Poisson sampling for simplicity, we have
var(g(n) − g(m)) = 4m01 + 4m10. Under empirical likelihood, this is zero; that is, the variance
of the marginal parameter cannot be estimated, and the second-order problem occurs.

Example 5. Consider dichotomous variables X1 and X2, and let the CMM be H1 = 0.3. Let
n = (n00, n01, n10, n11)T = (30, 0, 30, 30)T, hence n∗ = (n00, n10, n11)T = (30, 30, 30)T. It
follows that X1 = 2

3 and X2 = 1
3 . Under the assumption that E(X1) > E(X2), Eq. 11 reduces to

H1 = H2 = 1 − N × m01

m0 × m1
. (18)

Frequency n01 is not observed, so due to the structural-zero constraint (Eq.15), MEL estimation
produces m̂01 = 0 by definition. As a result, the ratio on the right-hand side of Eq. 18 equals zero,
and H1 = H2 = 1. Hence, there exists no m∗ satisfying H1 = 0.3.
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2.3. MAEL Estimation

A solution to the first- and second-order estimation problems is obtained by augmenting the
empirical likelihood support with a number of support cells, which we call maximum augmented
empirical likelihood (MAEL) estimation. The question arises which cells to add. For CMMs, there
is a fairly natural choice, in particular, suppose the order k marginal distributions are of interest
for a particular CMM. Then clearly, to avoid the first-order estimation problem, the support must
contain for every marginal cell at least one cell in the contingency table contributing to it. Hence,
this is the least augmentation that should be done for the empirical likelihood support. To avoid
the second-order estimation problem, note that the covariance between observed marginals is a
function of higher-order marginals, for example,

cov(ni++, n+ j+) = mi j+ − mi++m+ j+/N ,

cov(ni j++, n+kl+) = δ jkmi jl+ − mi j++m+kl+/N

or

cov(n+i j+++, n++++kl) = m+i j+kl − m+i j+++m++++kl/N

where a plus in the subscript denotes summation over that subscript. If the relevant higher-order
marginals are estimable, the second-order estimation problem can typically be avoided.

If the second-order estimation problem occurs, it can be resolved by augmenting the empirical
likelihood support so that each of the relevant higher-order marginals has one or more cells
contributing to it. We found that the methodology is not affected much by which cells were
chosen. In practice, we randomly added cells, which gave good results.

The notation is as follows. For ML estimation, all L cells of n are considered, and for MEL
estimation, only the L∗ cells with a positive observed count, collected in n∗, are considered.
MAEL can be regarded as an intermediate estimation method, considering the L∗ cells with a
positive observed count plus a number of cells with zero observed count to avoid the first- and
second-order estimation problems. Let L† be such that L∗ ≤ L† ≤ L , and let n†, m†, and π†

denote the augmented vector of observed frequencies, expected frequencies, and probabilities,
respectively.

Example 6 explores some possibilities to augment the empirical likelihood support for a small
example, illustrating that the fit of a CMM decreases dramatically when too few cells are added
to n∗.

Example 6. Suppose that

n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

nabc000

nabc001

nabc010

nabc011

nabc100

nabc101

nabc110

nabc111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
65
0
65
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (19)
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and suppose the marginal homogeneity CMM in Eq.9 is the CMM of interest. The ML estimate
is m̂ = (0, 32.5, 0, 32.5, 32.5, 0, 32.5, 0)T with G2 = 180.22 (df = 2). For MEL estimation, the
second-order estimation problems occur. Because

n∗ =
(
nabc100
nabc110

)

=
(
65
65

)

, (20)

Eq.9 reduces to

g∗(m∗) =
(
1 0
1 1

) (
mabc

100
mabc

110

)

=
(
0
0

)

. (21)

The rows of the design matrix in Eq. 21 contain only nonnegative elements, and the constraints
imply that mabc

100 = mabc
110 = 0. But since nabc100 > 0 and nabc110 > 0, the likelihood function is zero

whenever Eq.21 holds; that is, G2 = ∞.
The problem of a zero likelihood can be circumvented by adding nabc011 to n

∗. Then we obtain

n† =
⎛

⎜
⎝

nabc011

nabc100

nabc110

⎞

⎟
⎠ =

⎛

⎝
0
65
65

⎞

⎠ and g†(m†) =
(−1 1 0

−1 1 1

)
⎛

⎜
⎝

mabc
011

mabc
100

mabc
110

⎞

⎟
⎠ = 0; (22)

yielding m̂† = (65, 65, 0)T with G2 = 1906.93 (d f = 2). Neither ML nor MAEL fit the data
well but G2 is almost 10 times larger for MAEL than for ML. Including more cells may decrease
the difference in global fit between MAEL and ML. The second-order estimation problem can
be circumvented if nabc000, n

abc
011, and nabc101 are added to n∗. In this way, n† includes all bivariate

margins:

n† =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

nabc000

nabc011

nabc100

nabc101

nabc110

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
65
0
65

⎞

⎟
⎟
⎟
⎟
⎠

, and g†(m†) =
(
0 −1 1 1 0
0 −1 1 0 1

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

mabc
000

mabc
011

mabc
100

mabc
101

mabc
110

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0; (23)

yielding m̂† = (0, 54.167, 32.5, 21.67, 21.67)T with G2 = 232.92 (df = 2). G2 is now much
closer to G2 of the ML solution.

3. Comparing ML, MEL, and MAEL

Two studies compared the ML, MEL, and MAEL estimation procedures for three CMMs
relevant for psychology and educational sciences:

1. Model “Alpha". Kuijpers et al. (2013) showed that testing whether Cronbach’s alpha (α)
equals a certain benchmark can be done using a CMM with 1 degree of freedom. Model
“Alpha" is α = .8, because .8 is an arbitrary but commonly used benchmark to assess the
quality of the test-score reliability (see, e.g., Nunnally, 1978).
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2. Model “Hj ". For a set of J items, Van der Ark et al. (2008) showed that testing
whether each item-scalability coefficients Hj ( j = 1, ..., J ) equals the researcher-
specified lower-bound values c can be done using a CMM with J degree of freedom.
Let H = (H1, ..., HJ )

T . Model “Hj” is H = .3 1, as.3 is the default value of for lower
bound c provided by software programs for Mokken scale analysis.

3. Model “Mean”. Bergsma et al. (2009, pp. 185–188) showed that testing equality of means
of J variables can be done using a CMM with J − 1 degrees of freedom. Investigating
equality of means may be useful when investigating whether a set of items are parallel
(e.g., Lord & Novick, 1968, pp. 47–50)

Study 1 is an exploratory simulation study to investigate the convergence rate and compu-
tation time under various settings. The tables are small to allow ML estimation. In Study 2, we
investigated the Type I error rate of CMMs estimated with MAEL for realistic numbers of items
in psychological and educational test data. We considered tables ranging from small (16 cells) to
enormous (1.1×1012). In addition, we investigated bias and variance of parameterβ. ML estima-
tion was not considered because it is feasible only for small tables, and MEL estimation was not
considered because in most cases the algorithm runs into singularity problems and, consequently,
does not converge.

3.1. Population Models and Estimation

Both Study 1 and Study 2 required population models (i.e., the vector of probabilities, π)
that comply with the constraints of the CMM under consideration (i.e., “Model Alpha”, “Model
Hj”, or “Model Mean” for J items). The population models were constructed as follows. First,
we constructed a two-parameter logistic model (2PLM), a popular item response theory model
(Birnbaum, 1968) , for which the location and discrimination parameters were selected (by trial
and error) such that data generated from that 2PLMwere close, in a loose sense, to the requirements
of the CMM under consideration. Next, we generated 1000 response patterns from the 2PLM.
Then, using ML (Study 1) or MAEL (Study 2), the CMM under consideration was estimated for
the generated data, and the resulting estimated probabilities were used as the probabilities π of
the data generating model. Finally, N observations were sampled from π. This data-generating
procedure yields expected frequencies m that meet the constraints of the CMM of interest and
have a relatively close fit to the 2PLM.

In Study 1, a certain percentage of the probabilities from the population model was deliber-
ately set to zero, so as to create conditions with many zero cells. The cells inπ that were set to zero
were randomly selected, and afterwards π was rescaled. Note that setting random cells to zero is
useful to investigate convergence, but makes investigation of Type I error and bias impossible.

The CMMs under consideration were estimated using the generated data as input, employing
the R package cmm (Bergsma & Van der Ark, 2023), which offers MAEL estimation starting
from version 1.0. All CMMs received uniform starting values and a maximum of 1,000 iterations.
The code is available on the Open Science Framework at https://osf.io/yz8rm/).

3.2. Study 1: convergence Rates and Computation Times

For N = 50, we investigated the effect of four independent variables on convergence rate
and computation time. Estimation Procedure had three levels: ML, MEL, and MAEL. Type of
CMM had three levels: “Model Alpha”, “Model Hj”, and “Model Mean”. For “Model Alpha”
the criterion value was set to the sample value plus. 2; and for “Model Hj” the criterion value
was set to the average of the sample Hj values. For convenience, the criterion values depend
on the sample values. Because Study 1 investigated only computation time and convergence
rate, sample-dependent criterion values are not a problem. Minimum Percentage Cells with Zero
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Table 1.
Convergence rates (percentage) and median computation times in seconds for ML, MEL, and MAEL, for three different
CMMs, two numbers of items (J ), and three percentages of unobservable response patterns (U ) based on 1,000 (J = 4, 8)
and 100 (J = 10) replications.

CMM J U Convergence rate Median computation time

ML MEL MAEL ML MEL MAEL

Alpha 4 0% 100.0 100.0 100.0 0.00 0.00 0.00
25% 100.0 100.0 100.0 0.01 0.00 0.01
75% 100.0 96.6 100.0 0.00 0.00 0.00

8 0% 100.0 100.0 100.0 1.14 0.00 0.05
25% 100.0 100.0 100.0 1.16 0.00 0.06
75% 100.0 100.0 100.0 1.25 0.00 0.09

10 0% 100.0 100.0 100.0 107.26 0.10 0.30
25% 100.0 100.0 100.0 114.13 0.05 0.39
75% 100.0 100.0 100.0 108.56 0.10 0.48

Hj 4 0% 100.0 75.5 99.5 0.00 0.00 0.00
25% 100.0 75.6 99.5 0.00 0.00 0.00
75% 100.0 0.0 100.0 0.00 NA 0.00

8 0% 99.8 47.6 99.5 0.14 0.02 0.01
25% 100.0 52.8 99.8 0.14 0.03 0.01
75% 99.7 40.2 99.7 0.14 0.82 0.02

10 0% 0.0 36.0 99.0 NA 0.78 0.50
25% 0.0 30.0 98.0 NA 1.13 0.60
75% 0.0 31.1 99.0 NA 1.12 0.80

Mean 4 0% 100.0 45.9 100.0 0.01 0.01 0.01
25% 100.0 20.8 100.0 0.01 0.01 0.01
75% 100.0 0.0 100.0 0.01 NA 0.01

8 0% 100.0 2.9 100.0 0.02 0.02 0.02
25% 100.0 3.1 100.0 0.02 0.02 0.02
75% 100.0 0.5 100.0 0.02 0.02 0.02

10 0% 0.0 2.0 100.0 NA 0.37 0.02
25% 0.0 0.0 100.0 NA NA 0.03
75% 0.0 0.0 100.0 NA NA 0.03

Observed Frequency (U ) had three levels: 0% (none), 25% (small percentage), and 75% (large
percentage). Number of items (J ) had two levels: 4 dichotomous items, yielding L = 16 possible
response patterns, and 8 items, yielding L = 256 response patterns. The number of items was
kept small to allow for ML estimation. Hence, we had a 3 (Estimation Method) × 3 (CMM) ×
3 (U ) × 2 (J ) experimental design with a total of 54 cells. Each cell in the experimental design
was replicated 1,000 times. For a small extra design (100 replications), we estimated CMMs with
10 (L = 1024) items to demonstrate the sharp increase in computation time.

Table 1 shows that for the smallest tables (J = 4 and J = 8), both ML and MAEL almost
always converged, whereas MEL often broke down for models “Hj” and “Mean”. For J = 10,
ML ran into memory problems for models “Hj” and “Mean”, whereas MEL almost always broke
down. For Model “Alpha”, convergence results were satisfactory for all three estimation methods.

The distribution of the computation time was positively skewed. Therefore, we reported the
median rather than the mean computation time. Naturally, MAEL and MEL were at least as fast
as ML: Ranging from just as fast to more than 200 times faster. As the number of items increased,
the computation time increased dramatically (Table 1, columns 4–6). This was especially true for
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ML estimation. For 4 and 8 items (L = 256), but the computation time was still reasonable in all
sample (never longer than 100s), but for 10 items (L = 1024) some runs took up to 30min for
Model “Alpha”.

The results show that even for moderately large tables, ML may run into memory problems.
Moreover, the results show that the first- and second-order estimation problems are omnipresent
so that MEL often breaks down. This leaves MAEL as the viable candidate for estimating CMMs
for large sparse contingency tables.

3.3. Study 2: Type I Error Rate

For MAEL estimation, we investigated the effect of the type of CMM, the number of items,
and sample size on the Type I error rate and the bias and standard deviation of model parameter
β. (Eq. 2). As in Study 1, Type of CMMs had three levels: “Model Alpha” (the criterion value
was set to 0.8), “Model Hj” (the criterion value was set to 0.3), and “Model Mean”. For “Model
Alpha” and “Model Hj” parameter β is fixed to β = 0.8 and β = 1J · 0.3, respectively. Hence,
bias and standard deviation of β were investigated only for Model “Mean”, where β equals the
overall mean item score. Moreover, we studied four levels of number of items: 4 (L = 16), 8
(L = 256), 20 (L = 1, 048, 576), and 40 (L ≈ 1.1 × 1012); and three levels of sample size
(N = 250, N = 500, and N = 1000). Hence, we had a 3 (CMM) ×4 (J ) ×3 (N ) experimental
design with a total of 36 cells. Each cell in the experimental design was replicated 10,000 times
for J = 4 and J = 8 items and 1000 times for J = 20 and J = 40 items. The empirical Type I
error rate over the replications was compared to the nominal Type I error rate of 0.05, the mean
value of β̂ − β over replications was used to estimate the bias, and the standard deviation of β̂

over replications was used as an estimate of the standard error of β̂.
Table 2 shows the Type I error rates for all cells in the design. In most cells, the Type I

error rates are close to the nominal Type I error rate. For models with many degrees of freedom
estimated using a relatively small sample size, the models are too liberal. For 40 items, models
“Hj” and “Mean” have 40 and 39 degrees of freedom, respectively. For N = 250, this results
in approximately 6 observations per degree of freedom. Hence, the poor performance is not so
much due to the large table as due to the increase in degrees of freedom. Results are satisfactory
if the sample size per degree of freedom exceeds 25 (see Fig. 1).

For Model “Mean”, the bias ofβ (not tabulated) was negligible in all cases, and the estimated
standard error (Table 3) behaved as expected; that is, if N doubles, the estimated standard error
decreased approximately by a factor

√
2.

4. Discussion

CMMs have potential for application to psychological data, but an important reason that this
potential has so far not been realized may be that up to now ML estimation of CMMs could only
be applied to contingency tables for a limited number of categorical variables (up to, say, 10–20
variables, depending on the number of categories per variable). The present paper shows that this
limitation can be resolved by the newly introduced maximum augmented empirical likelihood
(MAEL) estimation method, a procedure that considers all nonzero cells in the table (i.e., cells
with at least one observation) and some well-chosen zero cells in the table (i.e., cells with no
observations).MAEL can be thought of as lying in betweenmaximumempirical likelihood (MEL)
estimation, which considers only nonzero cells in the table and subsequently suffers from the first-
order and second-order estimation problems, and maximum likelihood (ML), which considers all
cells in the table and runs into memory problems if the table is large.

The asymptotic distribution of the ML estimators of marginal parameters is known (Lang
2005), and depends only on the covariance matrix of the sample marginal distributions. In contrast
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Table 2.
Type I error rate for MAEL estimation of three different CMMs, four different numbers of items (J ), and three different
sample sizes (N ), based on 1000 replications.

Model df N J

4 8 20 40

Alpha 1 250 0.048 0.060 0.056 0.060
500 0.053 0.063 0.056 0.043
1000 0.063 0.050 0.047 0.038

Hj J 250 0.052 0.055 0.095 0.351
500 0.057 0.053 0.051 0.106
1000 0.067 0.052 0.078 0.070

Mean J − 1 250 0.048 0.052 0.056 0.053
500 0.048 0.054 0.050 0.055
1000 0.046 0.049 0.055 0.050

Note: A 95% confidence interval for the Type I error rate equals [0.036;0.064]. Values outside the 95%
confidence interval are printed in boldface.
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Figure 1.
Type I error rates by the ratio of sample size and degrees of freedom in Study 2. Dashed lines are the limits of the 95%
confidence interval of the Type I error rate due to Monte Carlo error.

to MEL, due to the augmentation step MAEL allows this covariance matrix to be estimated.
Simulation study 2 shows this estimation is done sufficiently well in a number of practical settings,
in particular, the asymptotic distribution of the ML estimators also provide a good approximation
of the distribution of the MAEL estimators. The asymptotic distributions of ML and MAEL
estimators are identical.

MAEL estimation has advantages compared to alternative methods which can be used to
estimate CMMs for large contingency table, namely the weighted least squares method (Grizzle
et al., 1969, a.k.a. the GSK-method), generalized estimating equations (GEEs, e.g., Qaqish &
Liang, 1992), and composite likelihood (e.g., Varin et al., 2011). A comparison of GSK and GEE

Downloaded from https://www.cambridge.org/core. 30 Apr 2025 at 10:50:19, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


L. ANDRIES VAN DER ARK ET AL. 1243

Table 3.
Estimated standard error of CMM-parameter estimate β̂ for Model “Mean”, for four different numbers of items (J ), and
three different sample sizes(N ), based on 1000 (J = 20 and J = 40) and 10, 000 (J = 4 and J = 8) replications.

Model df N J

4 8 20 40

Mean J − 1 250 0.020 0.018 0.003 0.002
500 0.014 0.013 0.003 0.002
1000 0.010 0.009 0.002 0.001

with ML estimation is given in Rudas and Bergsma (2023). All these four methods can be used
to estimate CMMs for almost arbitrarily large contingency tables, but the only methods with
guaranteed optimal asymptotic efficiency are MAEL and GSK. Unlike MAEL, however, GSK is
sensitive to sparsity of the marginal distributions (Bergsma et al., 2013, see also the discussion of
Berkson, 1980).

Like GEE and GSK, MAEL estimation is computationally fast, and like ML but unlike GEE,
it is asymptotically efficient. Furthermore, MAEL is less sensitive to sparsity of the marginal
distributions than GSK. Thus, MAEL seems to be the preferred method for estimating CMMs.
Researchers should take heed that if the ratio of the sample size and degrees of freedom becomes
too small (say less than 25), the Type I error rates may be too liberal. This is not a feature of
MAEL per se, but for all models that are too complex for the number of observations. Composite
likelihood estimation is a possibly attractive alternative for estimating CMMs, which was not
considered in this study because the estimation procedures are not yet available for CMMs,
whereas MAEL fits nicely in the ML framework and software that is already available for CMMs.
In addition, composite likelihood is a quasi-likelihood method, and hence asymptotic efficiency
is lost, whereas ML, and henceMAEL andMEL, are asymptotically efficient (Aitchison & Silvey
1958, Lang, 2005).
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Appendix A: First- and Second-Order Estimation Problems

With X a random variable, MEL can be used to make inferences on a Euclidean parameter θ of
the distribution of X, where θ is defined by an estimating equation of the form

Eψ(X,θ) = 0 (24)
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for some function ψ. For example, if ψ(x,θ) = x − θ, then (24) implies that θ = EX. Denote
the population value of θ by θ0. Suppose we have observed x1, . . . , xN , which are i.i.d. and
distributed as X. The MEL estimator θ̂ of θ defined by (24) solves the constrained optimization
problem

max
θ,π

n∏

i=1

πi

subject to

πi ≥ 0,
∑

πi = 1,
∑

πiψ(xi ,θ) = 0 (25)

The first-order estimation problem occurs if (25) does not have a solution (This problem is also
known as the empty set problem, see Grendár & Judge, 2009). The best known example is the
case that θ = EX while the population mean lies outside the convex hull of {x1, . . . , xN } (Qin
& Lawless, 1994) .
Let F be the distribution function of X. Under some conditions on ψ and F , θ̂ has an asymptotic
multivariate normal distribution, in particular,

√
n(θ̂ − θ0) ∼ MVN(0,VF (θ0))

where

VF (θ) = �F (θ)−1WF (θ)�F (θ)−1

and

�F (θ) =
∫ (

dψ(x,θ)

dθT

)

dF(x) WF (θ) =
∫

ψ(x,θ)ψ(x,θ)T dF(x)

The second-order estimation problem occurs if there does not exist a distribution function G with
empirical support {x1, . . . , xN } such that VF (θ0) = VG(θ0).

Example 7. To illustrate the second-order estimation problem, consider a 2×2 contingency table
with cell probabilities πi j > 0 (i, j ∈ {0, 1}), and let θ be the log ratio of marginal odds; that is,

θ = log
π1+/π2+
π+1/π+2

(For details on how to define ψ such that this θ is the solution of (24), see Owen, 2001). If one
observed marginal count is zero, then θ = ±∞ under empirical likelihood; that is, the first-
order estimation problem occurs since −∞ < θ0 < ∞. If the two observed off-diagonal cell
counts are zero, then θ = 0 under empirical likelihood and as a consequence VG(θ) = 0 for any
distribution G with support the two diagonal cells. However, assuming no structural zeroes in the
table, VF (θ0) > 0, and therefore the second-order estimation problem occurs. In this case, the
first-order estimation problem occurs in addition to the second-order one if θ0 �= 0.
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A special case of the second-order estimation problem has been identified earlier by Bergsma et
al. (2012), who called it the zero-likelihood problem. It occurs if the empirical likelihood is zero
for all solutions of (25). In this case, for any distribution G with support {x1, . . . , xN }, VG(θ) is
a matrix of zeroes, unequal to VF (θ0); hence, the second-order estimation problem occurs.
Wepropose a solution for both estimationproblemsbyaugmentationof the support of the empirical
likelihood, resulting in an estimation procedure lying in a spectrum with ML at one extreme and
MEL at the other, which we call maximum augmented empirical likelihood (MAEL) estimation.

B Algorithm for Maximum Likelihood Estimation

Under some regularity conditions, themaximum likelihood estimates under model (5) are a saddle
point of the Lagrangian log-likelihood

L(m, μ,λ) = nT log(m) − μ(1Tm − N ) + λTg(m). (26)

where μ and λ are Lagrange multipliers. In Eq.26, nT log(m) is the unconstrained kernel of the
log-likelihood, and the Lagrangian terms are added to satisfy the multinomial sampling constraint∑

i mi = N (Eq. 14) and the model constraint (Eq. 13). Bergsma (1997, pp. 89–95) developed a
Fisher scoring algorithm to find the ML estimates of the constrained expected frequencies in m
(Eq. 5) or, equivalently, the constrained cell probabilities π. This algorithm is a modification of
Lagrangian algorithms by Aitchison and Silvey (1958) and Lang and Agresti (1994).
It can be shown that μ = 1, so Eq.26 can be simplified to

L(m,λ) = nT log(m) + λTBTg(ATm). (27)

The ML estimates of them and λ are obtained by means of an iterative procedure that determines
a saddle point of this Lagrangian.
We take the derivative of L(m,λ) with respect to logm rather thanm because they yield simpler
expressions. Note that ∂L(m,λ)/∂ logm = 0 iff ∂L(m,λ)/∂m = 0. Let G = G(m) be the
Jacobian of g(m) with respect to logm. Differentiating L(m,λ) with respect to log(m) yields

l(m,λ) = n − m + Gλ.

Under suitable regularity conditions, the ML estimator m̂ is a vector m for which there is a
Lagrange multiplier vector λ such that the simultaneous equations

l(m,λ) = 0

and

g(m) = 0

are satisfied. Then, the expected value of the derivative matrix of the vector (l(m,λ), g(m)) with
respect to (logm,λ) is

V(m) =
⎛

⎜
⎝

E

(
∂l(m,λ)

∂ logmT

)

E

(
∂g(m)

∂ logmT

)

E
(
∂l(m,λ)

∂λT

)
E

(
∂g(m)

∂λT

)

⎞

⎟
⎠ =

(−D(m) G
GT 0

)

.
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Let n+ be equal to the vector n with zeroes replaced by a small positive constant (say, 10−10),
and define the Fisher scoring starting values

(
logm(0)

λ(0)

)

=
(
logn+

0

)

and, for k = 0, 1, . . .,

(
logm(k+1)

λ(k+1))

)

=
(
logm(k)

λ(k))

)

− V(m(k))−1 ·
(
l(m(k),λ(k))

g(m(k))

)

.

Then, as k → ∞, m(k) should go to m̂. Tedious but straightforward matrix algebra yields the
simplified form

logm(k+1) = logm(k) + D(m(k))−1l(m(k),λ(k+1))

λ(k+1) = −(GTD(m(k))G)−1(GTD(m(k))−1(n − m(k)) + g(m(k)).

This algorithm does not always converge, and it can be helpful to introduce a step size step(k) ∈
〈0, 1] as follows:

logm(k+1) = logm(k) + step(k)D(m(k))−1l(m(k),λ(k+1)) (28)

Note that the update of λ is left unchanged.
The step size should be chosen so that the new estimate m(k+1) is better than the old estimate
m(k). A criterion for deciding this is obtained by defining the following quadratic formmeasuring
the distance from convergence:

δ(m(k)) = l(m(k),λ(k+1))D(m(k))−1l(m(k),λ(k+1)).

Convergence is reached at m if and only if δ(m) = 0 and therefore, if possible, the step size
should be chosen so that δ(m(k+1)) < δ(m(k)) for all k. This is possible if the tentative solution
is sufficiently close to the ML estimate. Otherwise, a recommendation which seems to work very
well in practice is to jump to another region by taking a step size equal to one.
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