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Abstract We construct a Legendrian version of envelope theory. A tangential family is a one-parameter
family of rays emanating tangentially from a regular plane curve. The Legendrian graph of the family is
the union of the Legendrian lifts of the family curves in the projectivized cotangent bundle PT ∗

R
2. We

study the singularities of Legendrian graphs and their stability under small tangential deformations. We
also find normal forms of their projections into the plane. This allows us to interpret the beak-to-beak
perestroika as the apparent contour of a deformation of the double Whitney umbrella singularity A±

1 .
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1. Introduction

A tangential family is a one-parameter family of rays (i.e. regular plane curves) eman-
ating tangentially from a regular plane curve. Tangential families and their envelopes
(or caustics) are natural objects in differential geometry: for instance, every curve in a
Riemannian surface defines the tangential family of its tangent geodesics. The theory
of tangential families is related to the study developed by Thom and Arnol’d for plane
envelopes (see [1, 2, 16]). In [7] and [8] we studied stable and simple singularities of
tangential family germs with respect to deformations among tangential family germs
and A-equivalence.

In this paper we construct a Legendrian version of tangential family theory. The envel-
ope of a tangential family is viewed as the apparent contour of the surface, called a
Legendrian graph, formed by the union of the Legendrian lifts of the family curves in the
projectivized cotangent bundle of the plane.

We classify the Legendrian graph singularities that are stable under small tangential
deformations of the generating tangential families. We prove that, in addition to a reg-
ular Legendrian graph, there exists just one more local stable singularity, the double
Whitney umbrella A±

1 . Furthermore, we find normal forms of typical projections of Leg-
endrian graphs into the plane. This allows us to interpret the beak-to-beak perestroika

29

https://doi.org/10.1017/S0013091504000999 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000999


30 G. Capitanio

as the apparent contour of a non-tangential deformation of the double Whitney umbrella
singularity in the projectivization of the cotangent bundle T ∗

R
2.

Our results are related to several theories, concerning maps from the plane to the space
[14,17], projections of manifolds with boundaries [5,12], singular Lagrangian varieties
and their Lagrangian mappings [10], and the theory of Clairaut-type equations [13,15].

2. Legendrian graphs and their singularities

Unless otherwise specified, all the objects considered below are supposed to be of class C∞;
by plane curve we mean a smooth map R → R

2. This curve is said to be regular at every
point at which its first derivative is not zero.

In this section we recall basic facts about tangential families and we define their Leg-
endrian graphs in the projectivized cotangent bundle PT ∗

R
2. We study the typical sin-

gularities of these graphs up to A-equivalence. This classification considers neither the
fibre nor the contact structure of PT ∗

R
2. A classification of Legendrian graphs taking

into account the fibre bundle structure is the object of § 3.
Let f : R

2 → R
2 be a mapping of the source (fibred) plane R

2 = R×R, equipped with
the coordinates ξ and t, to another plane. We set fξ(t) := f(ξ, t).

Definition. The family of curves {fξ : ξ ∈ R} is a tangential family if ξ �→ f(ξ, 0) is
a regular curve, called a support, and for every ξ ∈ R, the curve fξ is everywhere regular
and tangent to the support at f(ξ, 0).

In particular, the partial derivatives ∂ξf(ξ, 0) and ∂tf(ξ, 0) are parallel non-zero vectors
for every ξ ∈ R.

The graph of such a family is the surface Φ := {(ξ, fξ(t)) : ξ, t ∈ R} ⊂ R
3. The envelope

is the apparent contour of Φ under the projection π : R
3 → R

2, π(ξ, P ) := P (i.e. the
critical value set of π|Φ); the criminant set is the critical set of π|Φ. By the very definition,
the support of a tangential family belongs to its envelope.

Let p be a non-negative integer. A p-parameter deformation F : R
2 × R

p → R
2 of a

tangential family f is tangential if Fλ := F (·; λ) is a tangential family for every λ. Note
that the supports of the deformed families form a smooth deformation of the support of
the initial family.

Below we will consider tangential family germs. Note that graphs of tangential family
germs are germs of embedded surfaces. We will denote by s and t the variables of the
source plane R

2 when this space is not equipped with the fibration R × R, leaving the
variable ξ for the distinguished parameter of a tangential family germ in the fibred case.

Remark. A tangential family germ may be A-equivalent to a map germ which is
not a tangential family germ. However, A-equivalence preserves the major feature of the
families of curves, namely, their envelopes. In [7] we proved that there are exactly two
tangential family singularities which are A-stable under small tangential deformations.
These singularities, denoted by I and II, are represented, respectively, by the tangential
family germs (ξ + t, t2) and (ξ + t, ξt2), whose envelopes are respectively smooth (embed-
ded) and have an order 2 self-tangency. It is easy to see that these two tangential family
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Figure 1. Double Whitney umbrellas.

germs are stable under small tangential deformations. Indeed, the first germ (being a
fold) is A-stable. On the other hand, the critical value set of the second germ experiences
a beak-to-beak perestroika under any A-miniversal deformation of the germ. Such a per-
estroika cannot be produced by tangential deformations, so the normal form is stable
among tangential family germs. Moreover, one checks that every stable tangential family
germ is A-equivalent to one of the above two normal forms.

Consider the projectivized cotangent bundle PT ∗
R

2, endowed with the standard con-
tact structure and the standard Legendre fibration πL : PT ∗

R
2 → R

2.

Definition. The Legendrian graph of a tangential family is the surface in PT ∗
R

2

formed by the Legendrian lifts of the family curves.

We remark that the envelope of a tangential family is the πL-apparent contour of its
Legendrian graph.

We say that a Legendrian graph germ is of first type (respectively, second type) if it is
generated by a tangential family germ having a singularity I (respectively, II).

Let us recall that a surface germ has a singularity of type A±
n (respectively, Hn) if it

is diffeomorphic to the surface locally parametrized by the map germ (s, t2, t3 ± sn+1t)
(respectively, by (s, st + t3n−1, t3)); these singularities are simple. The singularities A+

n

and A−
n coincide if and only if n is even. The singularities A±

1 , shown in Figure 1, are
called double Whitney umbrellas.

Theorem 2.1. The Legendrian graph germs of first type are embedded, while those
of second type have generically a double Whitney umbrella singularity A±

1 . The other
second-type Legendrian graph germs have A±

n or Hn singularities for n � 2 or n = ∞.

In the statement, ‘generically’ means that the second-type Legendrian graph germs for
which the claim does not hold form a (non-connected) codimension 1 submanifold in the
manifold formed by the second-type Legendrian graph germs.

Remark. The singularities of map germs from R
2 to R

3, usually denoted by B±
n ,

C±
n , F4 (see [4, 14]), appear as singularities of Legendrian graph germs generated by

non-typical tangential family germs (i.e. which are of neither first nor second type). For
example, the Legendrian graphs of S-type tangential family germs have B±

n singularities.
Simple tangential family germs are classified in [8].

A Legendrian graph is stable if, for every small enough tangential deformation of the
tangential family generating it, the initial and the deformed graphs are diffeomorphic. A
similar definition holds for germs.
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Theorem 2.2. The double Whitney umbrellas A±
1 are, in addition to smooth graphs,

the only stable Legendrian graph singularities.

The double Whitney umbrellas are not stable as map germs (R2, 0) → (R3, 0). Indeed,
it is a celebrated result of Whitney that the only stable singularity of such a map germ
(besides the map germs, whose images have transversal intersections of two or three
regular sheets) is a Whitney umbrella (see [14,17]).

A Legendrian graph singularity L is said to be adjacent to a Legendrian graph singu-
larity K (L → K), if every Legendrian graph in L can be deformed into a Legendrian
graph in K by an arbitrary small tangential deformation. If L → K → K ′, the class L

is also adjacent to K ′. In this case we omit the arrow L → K ′. The adjacencies of the
typical Legendrian graph singularities are as follows (E means embedding):

E A±
1

�� A2�� A±
3

�� · · ·�� A±
∞

��

H2

����������
H3�� · · ·�� H±

∞
��

3. Normal forms of Legendrian graph projections

In this section we study how Legendrian graphs project into the envelopes of their gen-
erating tangential families. In other words, we find normal forms of typical Legendrian
graphs with respect to an equivalence relation preserving the fibre structure of PT ∗

R
2.

Definition. The projections of two Legendrian graphs Λ1 and Λ2 by πL are said to
be equivalent if there exists a commutative diagram

Λ1

��

i1 �� PT ∗
R

2

��

πL ��
R

2

��
Λ2

i2 �� PT ∗
R

2
πL ��

R
2

in which the vertical arrows are diffeomorphisms and i1, i2 are inclusions.

Such an equivalence is provided by a pair (φ, ψ), formed by a diffeomorphism φ between
the two Legendrian graphs and a diffeomorphism ψ : PT 2

R
2 → PT 2

R
2 fibred over the

base R
2 (this diffeomorphism is not presumed to be a contactomorphism). A similar

definition holds for germs.
Let A∗ be the subgroup of A := Diff(R2, 0) × Diff(R3, 0), formed by the pairs (φ, ψ)

such that ψ is fibred with respect to π. This subgroup inherits the standard action of A
on the maximal ideal (ms,t)3: (φ, ψ) · f := ψ ◦ f ◦ φ−1. Projections of Legendrian graphs
are locally equivalent if and only if their local parametrizations are A∗-equivalent.

Theorem 3.1. The projection germs of the typical Legendrian graphs are generically
equivalent to the projection germs of the surfaces parametrized by the map germs f in
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Table 1. Normal forms of projections of Legendrian graphs.

type singularity normal form restrictions

I fold (s, t2, t) ∅
II A±

1 (s, t3 + st2 + as2t, t2 + bt3) a �= −1, 0, a < 1
3

A1
+A1

−

Figure 2. Typical Legendrian graph local projections.

the 3-space {x, y, z} by a pencil of lines parallel to the z-axis, where f is one of the
normal forms listed in Table 1.

Moreover, a Legendrian graph germ of second type, parametrized by the above normal
form, has a singularity A+

1 (respectively, A−
1 ) if and only if 0 < a < 1

3 (respectively,
−1 �= a < 0).

Typical Legendrian graph germs are those having only stable singularities. In Theo-
rem 3.1, ‘generically’ means that the second-type Legendrian graph germs for which the
claim does not hold form a non-connected codimension 1 submanifold in the manifold of
all the second-type Legendrian graph germs.

Typical local projections of Legendrian graphs are depicted in Figure 2.

Corollary. The fold is the only A∗-stable and the only A∗-simple singularity of Legen-
drian graph local projections (with respect to tangential deformations of their generating
tangential family germs).

Let Fa,b be the A±
1 -normal form in Theorem 3.1 and z its third coordinate t2 + bt3.

Theorem 3.2. The map germ Fa,b+(µ1z, λt+µ2z, 0) is an A∗-miniversal deformation
of the normal form Fa,b, provided that b �= 0.

Remark. The above deformation is not the simplest one, but it has the property
that the parameters µ1, µ2 govern the direction of the projection, leaving unchanged
the Legendrian graph, while the parameter λ deforms the graph, without changing the
projection. In particular, the deformation restricted to µ1 = µ2 = 0 provides an A-
miniversal deformation of Fa,b.

The second-order self-tangency of the envelope of a second-type tangential family germ
is not stable under non-tangential deformations (see [7,16]). Under such a deformation,
the envelope experiences a beak-to-beak perestroika, which may be interpreted as the

https://doi.org/10.1017/S0013091504000999 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000999


34 G. Capitanio

A1
+

A1
−A0 A0

A0 A0

Figure 3. Legendrian beak-to-beak perestroikas.

apparent contour in the plane of the perestroika of the Legendrian graph, as shown in
Figure 3. We call it Legendrian beak-to-beak perestroika. Actually, there are two such
perestroikas, according to the sign of A±

1 . Figure 3 was obtained while investigating the
critical sets of the A-miniversal deformation Fa,b + (0, λt, 0) of the projection normal
form Fa,b, which leaves the direction of the projection unchanged.

4. Proof of Theorems 2.1 and 2.2

We start constructing explicit parametrizations of Legendrian graph germs.

Lemma 4.1. Every local parametrization of a Legendrian graph is A∗-equivalent to
a map germ of the form

(s, k0t
2 + (α − k1)t3 + k1st

2 + δ(3), 2k0t + (3α − 2k1)t2 + 2k1st + δ(2)), (4.1)

where δ(n) denotes any function of s, t with zero n-jet at the origin. Moreover, the
Legendrian graph germ is of first type (respectively, of second type) if and only if k0 �= 0
(respectively, k0 = 0 and k1 �= 0, α).

Proof. Consider a tangential family germ at the origin. Up to a coordinate change,
preserving the A∗-singularity of the graph, we may assume that the family support is
locally the x-axis. For every x small enough, denote by K(x) the curvature at (x, 0) of the
corresponding family curve. Now, for x → 0, let k0+k1x+o(x) and k0x

2+αx3+o(x3) be
the expansions of 1

2K(x) and of the function whose graph (near the origin) is the curve
associated with (0, 0).

Then, one easily verifies that the Legendrian graph of such a tangential family is
parametrized by (ξ + t, u(ξ, t)+ δ(3), ∂tu(ξ, t)+ δ(2)), where u(ξ, t) := k0t

2 +αt3 +k1ξt
2.

This germ can be brought to the required form by setting s = ξ + t.
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Finally, we proved in [7] that a tangential family germ is of first type (respectively, of
second type) if and only if k0 �= 0 (respectively, k0 = 0 and k1 �= 0, α). �

We can now prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. If k0 �= 0, then the 1-jet of (4.1) is A-equivalent to (s, 0, t),
which is A-sufficient. Therefore, Legendrian graph germs of first type are embedded.

We now consider second-type Legendrian graph germs (so from now on k0 = 0). First,
assume that k1 is different from the four values 0, α, 3

2α and 3α. Then (4.1) is A-equivalent
to (s, t3 ± ts2, t2), where ‘±’ is the sign of (k1 − 3α)(α− k1)/k2

1. Indeed, the 3-jet of (4.1)
is A-equivalent to (s, t3 ± s2t, t2), which is A-sufficient (see [14, Theorem 1:2]).

Hence, the Legendrian graph germs of second type have an A±
1 singularity whenever

k1 �= 3
2α, 3α. Let us denote by ÎI the manifold formed by all the second-type Legendrian

graph local parametrizations. The remaining second-type graphs belong to the union of
the two submanifolds of ÎI, defined by 2k1 = 3α and 3α = k1 (dropping the intersection
α = k1 = 0, whose elements are not of second type). It remains to consider the germs
belonging to these two submanifolds.

If 3α = 2k1 �= 0, the 3-jet of (4.1) is A-equivalent to (s, t3, st). Then, Mond’s classifica-
tion [14, § 4.2.1] implies that the map germs (4.1), except those belonging to an infinite
codimension submanifold of ÎI, are A-equivalent to (s, t3, st + t3n−1) for some n � 2. On
the other hand, when k1 = 3α �= 0, the 2-jet of (4.1) is A-equivalent to (s, 0, t2); Mond’s
classification [14, § 4.1] implies that the map germs of the form (4.1), except those belong-
ing to an infinite codimension submanifold of ÎI, are A-equivalent to (s, t3 ± sn+1t, t2)
for n � 2. �

Proof of Theorem 2.2. We first show that A±
1 singularities are stable. It is well

known that (s, t3 ± st2 + λt, t2) is a miniversal deformation of A±
1 (the singularity being

of codimension 1 (see [14])). No tangential deformation can be equivalent to it, since
it induces a beak-to-beak perestroika on the corresponding envelope. Therefore, every
tangential deformation of the singularity is trivial, due to the envelope stability.

On the other hand, the non-typical Legendrian graphs of second type are not stable,
due to the adjacencies A±

n+1 → A±
n , A∞ → A±

n , H±
n+1 → H±

n and H∞ → H±
n (these

adjacencies are obtained by small tangential deformations).
Finally, as proven in [7], a tangential family germ neither of first nor second type can

be deformed into a second-type tangential family germ via an arbitrary small tangential
deformation. Hence, its Legendrian graph singularity is adjacent to A±

1 . �

5. Proof of Theorems 3.1 and 3.2

In this section we prove Theorems 3.1 and 3.2 (for details about computations we refer
to [6]). In order to follow the usual scheme for this reduction, we recall that a finite
determinacy theorem for A∗-equivalence relation has been proven by Goryunov in [11];
this result follows also from Damon’s theory about nice geometric subgroups of A (see,
for example, [9]).
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A map germ f ∈ (ms,t)3 defines, by f∗g := g ◦f , a homomorphism from the ring Ex,y,z

of the function germs in the target to the ring Es,t of the function germs in the source.
Hence, every Es,t-module has the structure of Ex,y,z-module via this homomorphism. We
define the extended tangent space of f as usual by

TeA∗(f) := 〈∂sf, ∂tf〉Es,t + f∗(Ex,y) × f∗(Ex,y) × f∗(Ex,y,z).

Note that TeA∗(f) is an Ex,y-module, being in general neither an Es,t-module nor
an Ex,y,z-module. The reduced tangent space TrA∗(f) of f is, by definition, the Ex,y-
submodule of TeA∗(f) defined by g+ + M∗, where g+ is the space of all the vector field
germs having positive order (see [3] for definitions) and M∗ is the following Ex,y-module:

f∗(m2
x,y ⊕ 〈y〉R) × f∗(m2

x,y ⊕ 〈x〉R) × f∗(m2
x,y,z ⊕ 〈x, y〉R).

The main tool in the proof of Theorems 3.1 and 3.2 is the following easily determined
fact.

Lemma 5.1. Let f ∈ (ms,t)3 be a map germ and let R be a triple of homogeneous
polynomials of degree p, q and r, such that R ∈ TrA∗(f) + (mp+1

s,t × m
q+1
s,t × m

r+1
s,t ). Then

the (p, q, r)-jets of f and f + R are A∗-equivalent.

We can now start the proof of Theorem 3.1.

Proof of Theorem 3.1. First we consider Legendrian graphs of first-type tangential
family germs (k0 �= 0). Then the 2-jet of (4.1) is A∗-equivalent to (s, t2, t), which is
A∗-sufficient, since its reduced tangent space contains m2

s,t × m3
s,t × m2

s,t (Lemma 5.1).
Now we consider Legendrian graphs of second-type tangential family germs (k0 = 0).

In this case, every map germ (4.1) is A∗-equivalent to (s, t3 + st2 +as2t+ δ(3), t2 + δ(2)),
where a := (α − k1)(k1 − 3α)/k2

1. We remark that a < 1
3 ; indeed, we have 1 − 3a =

(3α − 2k1)2/k2
1 > 0, since 3α �= 2k1. Actually, a further computation shows that its

(2, 4, 3)-jet is A∗-equivalent to Fa,b, for a suitable b ∈ R (Fa,b is the normal form defined
in § 3). Hence, the statement follows from Lemma 5.1 and the next inclusion, which holds
for a �= −1, 0, 1

3 :
m

3
s,t × m

5
s,t × m

4
s,t ⊂ TrA∗(Fa,b). (5.1)

When the Legendrian graph has an A±
1 singularity, the conditions a �= 0, 1

3 are automat-
ically fulfilled. On the other hand, a �= −1 is a new condition, equivalent to α = 0, giving
rise to the submanifold for which Theorem 3.1 does not hold. �

Proof of Theorem 3.2. Since 〈s, t3 + st2 + as2t〉Eξ,t
= 〈s, t3〉Es,t and

〈s, t3 + st2 + as2t, t2 + bt3〉Eξ,t
= 〈s, t2〉Es,t ,

the well-known preparation theorem of Mather and Malgrange (see, for example, [3])
implies that Es,t is generated by {t, t2} as an Ex,y-module and by t as an Ex,y,z-module.
Hence, we have

E3
s,t = F ∗

a,b(Ex,y) ·

⎧⎪⎨
⎪⎩

⎛
⎜⎝

t

0
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
t

0

⎞
⎟⎠ ,

⎛
⎜⎝

t2

0
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
t2

0

⎞
⎟⎠

⎫⎪⎬
⎪⎭

+ F ∗
a,b(Ex,y,z) ·

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0
0
t

⎞
⎟⎠

⎫⎪⎬
⎪⎭

.
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Setting (as in § 3) z = t2 + bt3, for b �= 0 we obtain the equality

E3
s,t = TeA∗(Fa,b) ⊕ R ·

⎧⎪⎨
⎪⎩

⎛
⎜⎝

0
t

0

⎞
⎟⎠ ,

⎛
⎜⎝

z

0
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
z

0

⎞
⎟⎠

⎫⎪⎬
⎪⎭

.

This proves the theorem. �
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