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Analysis of self-heating in electrosprays
operating in the cone-jet mode
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The electrohydrodynamic processes taking place in a cone jet cause ohmic and viscous
dissipation, and ultimately self-heating of the liquid. Despite this, previous analyses
have modelled cone jets as isothermal systems. To investigate the validity of this
assumption, this work applies the leaky-dielectric model to cone jets, while also requiring
conservation of energy to reproduce the variation of temperature caused by dissipation and
temperature-dependent liquid properties. The main goals are to determine whether there
exist electrospraying conditions for which the isothermal assumption is inaccurate, and
quantify the temperature field under such conditions. The work confirms that self-heating
and thermal effects are important in liquids with sufficiently high conductivities, which
is a significant limit because these electrical conductivities are needed to produce jets
and droplets with radii of tens of nanometres or smaller. The numerical solution provides
accurate expressions for evaluating the dissipation and the temperature increase in cone
jets, and confirms that thermal effects cause the apparent breakdown of the traditional
scaling law for the current of cone jets of highly conducting liquids.

Key words: aerosols/atomization, electrohydrodynamic effects

1. Introduction

Electrospraying is an atomization technique based on the use of electrostatic stresses
to break a liquid into charged droplets. Electrosprays can be operated in several
regimes (Cloupeau & Prunet-Foch 1989), among which the cone-jet mode has received
significant attention due to its ability to produce droplets with narrow and controllable
size distributions (Cloupeau & Prunet-Foch 1990; De La Mora & Loscertales 1994;
Rosell-Llompart & De La Mora 1994; Chen, Pui & Kaufman 1995; Gañán-Calvo, Davila
& Barrero 1997). A cone jet features a conical meniscus (Taylor 1964) with a long and
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steady jet emerging from its tip. The inherent Rayleigh instability of the jet leads to the
formation of charged droplets. The electrospray current I and the average diameter of the
droplets D depend on various physical properties of the liquid (surface tension γ , electrical
conductivity K, density ρ, viscosity μ and dielectric constant ε), as well as the flow rate
Q. These dependencies can be approximated by scaling laws derived from approximate
balances and experimental data (De La Mora & Loscertales 1994; Gañán-Calvo et al.
2018),

I = α(γ KQ)1/2, (1.1)

D = β

(
ε0ρQ3

γ K

)1/6

, (1.2)

where α and β are coefficients of order one, and ε0 is the vacuum permittivity. The
electrical conductivity is the only physical property in these scaling laws that can vary by
many orders of magnitude (its value is typically fixed by dissolving the required amount
of a salt), and therefore, this property plays an essential role in electrospraying. Since
the minimum flow rate at which a cone jet can operate approximately scales with K−2/3

(Gañán-Calvo, Rebollo-Muñoz & Montanero 2013; Gamero-Castaño & Magnani 2019a),
the diameters of the smallest primary droplets and jets scale with K−1/2. Thus, liquids
with high electrical conductivities are used to generate small droplets. For reference,
conductivities near 1 S m−1 are needed to produce droplets with diameters of 10–30
nanometres.

Numerical solutions of first-principles models describe in detail the physics of cone jets.
Although these models and other studies of electrospraying phenomena assume isothermal
conditions (Taylor 1966; Guerrero et al. 2007; Collins et al. 2008; Herrada et al. 2012;
Collins et al. 2013; Gañán-Calvo et al. 2018; Ponce-Torres et al. 2018; Gamero-Castaño
& Magnani 2019b), energy analysis of droplets electrosprayed in vacuum indicates that
a significant portion of the work done by the electric field on the fluid is dissipated
(Gamero-Castaño 2010). Furthermore, Gamero-Castaño (2019), by extrapolating the
solution of an isothermal calculation, has proposed that the temperature increase along
the cone jet caused by dissipation is approximately given by

�T ∼= 1
πc

(
γ K
ε0ρ

)2/3

, (1.3)

where c is the specific heat capacity. This result indicates that typical liquids such
as tributyl phosphate, propylene carbonate, ethylene glycol or formamide, experience
temperature increases of a few degrees Celsius at conductivities near 0.05 S m−1, while
more substantial increases are expected at the electrical conductivities required for the
generation of nanodroplets. A significant temperature increase impacts the operation of
cone jets in multiple ways: e.g. by modifying the values of physical properties (especially
the electrical conductivity and the viscosity), by increasing ion emission from the surface
of the cone jet (Gallud & Lozano 2022; Magnani & Gamero-Castaño 2023) and by
enhancing liquid evaporation. It also leads to the misinterpretation of experimental
data based on isothermal scaling laws (Gamero-Castaño 2019; Perez-Lorenzo 2022).
Consequently, it is important to consider energy dissipation and the associated self-heating
to accurately capture the behaviour of cone jets, especially when operating in the
nanometric regime.
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Figure 1. Model domain. The radius of the spherical region is set at one thousand length units to reduce
dependencies on the particular placement of far-field boundary conditions.

In this paper we describe an extension of the leaky-dielectric model (Melcher &
Taylor 1969; Saville 1997) for cone jets that retains the self-heating of the liquid
caused by both ohmic and viscous dissipation. To this effect, the model incorporates
the equation of conservation of energy together with temperature-dependent functions
for the viscosity and the electrical conductivity, which exhibit exponential behaviours in
most liquids (Stokes & Mills 1966; Fogelson & Likhachev 2001; Okoturo & VanderNoot
2004; Leys et al. 2008). The numerical solution yields expressions for the dissipation
and the temperature increase in the liquid, and the model is validated with existing
measurements of the current and flow rate of solutions of ethylene glycol, propylene
carbonate and tributyl phosphate, as well as the ionic liquid 1-ethyl-3-methylimidazolium
bis((trifluoromethyl)sulfonyl)imide (EMI-Im).

2. Model and solving scheme

The model domain, sketched in figure 1, is a spherical region centred on the cone-to-jet
transition region. It includes the liquid phase (zones Σ1, Σ2 and Σ3) and the surrounding
vacuum (Σ4), separated by the interface R(x). A large domain radius makes the
dependency of the solution on this parameter negligible. The Taylor cone potential (Taylor
1964) is imposed as a far-field boundary condition. This amounts to modelling the cone
jet supported by a semi-infinite Taylor cone, yielding a universal solution independent
of the particular geometry of electrodes present in any experimental configuration. We
extend the leaky-dielectric model (Melcher & Taylor 1969; Saville 1997) to include the
self-heating of the liquid induced by energy dissipation. The steady-state model solves
for the position of the surface R(x), the velocity v, pressure p and temperature T in
the liquid (with temperature-dependent viscosity and electrical conductivity), the surface
charge σ and the electric potential inside the liquid Φi and in the surrounding vacuum
Φo. We use lc = [ε0ρQ3/(γ K0)]1/6, vc = Q/(πlc2), pc = γ /lc, Ic = (γ K0Q)1/2 and Tc =
[γ K0/(ε0ρ)]2/3/(πc) as the independent set of characteristic scales (length, velocity,
pressure, current and temperature, respectively) for defining dimensionless variables.
The derived scales for the electric field, electric potential, surface charge and power are
Ec = Ic/(πlc2K0), Φc = lcEc, σc = Ic/(2πlcvc) and Pc = ΦcIc, respectively. Here K0 and
μ0 are the electrical conductivity and viscosity at the inlet temperature T0. Note that
the characteristic length lc is representative of the average diameter of the electrospray
droplets and the base of the jet, (1.2). Henceforth, we designate dimensional variables with
a tilde while dimensionless variables are uncapped. The model includes the equations of
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conservation of mass, momentum, energy and charge in the liquid,

∇ · v = 0, (2.1)

v · ∇v = −π2∇p√
ΠQ

+ π[μ∇2v + (∇v + ∇vT) · ∇μ]
μ0Re

√
ΠQ

, (2.2)

v · ∇T = ∇2T
Pe

+ μ(∇v + ∇vT) : ∇v

μ0Re
√

ΠQ
+ K∇Φi

2

K0
√

ΠQ
, (2.3)

∇ ·
(

KEi

K0

)
= 0 → K∇2Φi + ∇Φi · ∇K = 0, (2.4)

with temperature-dependent electrical conductivity and viscosity given by

K(T) = YK eBK/(T̃−TK),

μ(T) = Yμ eBμ/(T̃−Tμ),

}
(2.5)

where YK , BK , TK , Yμ, Bμ and Tμ are liquid-specific constants (see table 2). Equation (2.4)
results from the standard leaky-dielectric assumptions of negligible volumetric charge and
the use of Ohm’s law to express the current density, J = KE, together with the irrotational
nature of the electric field (∇ × E = 0 → E = −∇Φ). Note also the inclusion in (2.3) of
the viscous and ohmic dissipation densities,

P̃′′′
μ = μ(∇ṽ + ∇ṽT) : ∇ṽ,

P̃′′′
Ω = KẼ · Ẽ.

}
(2.6)

In the surrounding vacuum the electric potential fulfils Laplace’s equation,

∇2Φo = 0, (2.7)

while on the surface of the cone-jet conservation of charge, the balance of stresses in
the tangential and normal directions, the surface kinematic condition and the standard
condition for the jump of the electric field in the interface between dielectric media must
be fulfilled,

d
dx

(Rσvs) = 2K
K0

REi
n

√
1 + R′2, (2.8)

t · (∇v + ∇vT)n = Re
2

Etσ, (2.9)

∇ · n − p + 2μ

πμ0Re
n · ∇vn = Eo

n
2 − εEi

n
2 − Et

2(ε − 1)

2π2
√

ΠQ
, (2.10)

v · n = 0, (2.11)

Eo
n − εEi

n = π
√

ΠQ

2
σ. (2.12)

Here n and t are the unit vectors normal and tangential to the surface, while En and Et are
the normal and tangential components of the electric field. The system of (2.1)–(2.12)
contains four dimensionless numbers, namely the dimensionless flow rate ΠQ, the
Reynolds number Re, the Péclet number Pe and the dielectric constant ε. Table 1 compiles
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lc =
(

ε0ρQ3

γ K0

)1/6
vc = 1

π

(
γ K0
ε0ρ

)1/3
pc =

(
γ 7K0
ε0ρQ3

)1/6

Ic = (γ K0Q)1/2 Tc = 1
πc

(
γ K0
ε0ρ

)2/3
Ec = 1

π

(
γ 5

ε02ρ2K0Q3

)1/6

Φc = 1
π

(
γ 4

ε0ρK0
2

)1/6
σc = 1

2

(
ε0ργ 2K0

2)1/6 Pc = 1
π

(
γ 7K0Q3

ε0ρ

)1/6

ΠQ = ρK0Q
ε0γ

Re = 1
μ0

(
ε0ργ 2

K0

)1/3
Pe = c

πk

(
ρ5γ K0Q3

ε0

)1/6

Table 1. Characteristic scales and dimensionless numbers used in the model: length lc, velocity vc, pressure
pc, current Ic, temperature Tc, electric field Ec, electric potential Φc, surface charge σc, power Pc, dimensionless
flow rate ΠQ, Reynolds number Re and Péclet number Pe. The dielectric constant is omitted.

Liquid YK (kg (ms)−1) BK (K) TK (K) Yμ (kg (ms)−1) Bμ (K) Tμ (K)

PC solution 0.0330/Re3 −1037 139 2.50 × 10−5 1038 139
EG solution 0.00288/Re3 −528 138 9.25 × 10−5 529 138
TPB solution 0.0294/Re3 −6522 −241 1.90 × 10−7 6522 −241
EMI-Im 62.5 −557 166.02 2.14 × 10−4 692 160

Table 2. Coefficients in the temperature-dependent equations (2.5) for the liquids modelled in this paper. The
pre-exponential factor of the electrical conductivities of the propylene carbonate (PC), ethylene glycol (EG)
and tributyl phosphate (TBP) solutions depend on the solute concentration, and are proportional to Re−3 (we
assume an inlet temperature T0 = 25 ◦C).

the definitions of all characteristic scales and dimensionless numbers in the model. Table 2
lists the constants in (2.5) needed to evaluate the electrical conductivity and viscosity of
the liquids simulated in this paper.

The cone jet is divided into three regions (see figure 1) to reduce computational cost:
upstream, in region Σ1, the radius of the meniscus is large and the problem can be regarded
hydrostatic and isothermal (Gamero-Castaño & Magnani 2019b); in the central region
Σ2 the full electrohydrodynamic model is solved using the stream function Ψ and the
vorticity Ω formulation to decouple the calculation of the velocity and pressure fields
(Higuera 2003; Gamero-Castaño & Magnani 2019b); in region Σ3 we take advantage
of the slenderness of the jet, R′ � 1 and R′′ � 1, to solve analytically the differential
equations for Ψ , Ω , Φi and T using Poincaré’s perturbation method (Paulsen 2013): a
function of interest f (x) is expressed as a series using R(x) as the expansion parameter,
f = ∑

j fjR j; this definition is inserted in the differential equation for f ; and each factor
fj is computed separately by isolating the terms of order R j in the equation. This method
yields

Ψjet = η2

2
+ η4 − η2

8

(
μ0Re
2μ

R3Etσ − 2R′2 − RR′′
)

,

Ωjet = η

⎡
⎢⎢⎣

R′′
(

4 + μ0Re
2μ

R3Etσ − 2R′2 − RR′′
)

2R2(1 + R′2)
− μ0Re

2μ
Etσ

⎤
⎥⎥⎦,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.13)

980 A40-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

59
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.59


M. Magnani and M. Gamero-Castaño

Φi,jet = Φs + RR′(η2 − 1)

2
Et, (2.14)

Tjet = f0 + 1√
ΠQ

∫ x

x23

(
12μ

μ0Re
R′2

R4 + K
K0

R2Et
2
)

dx

+
∞∑

n=1

gnJ0(ηj1,n) exp

[
− j1,n

2

Pe
(x − x23)

]
, (2.15)

where η is one of two coordinates in an orthogonal system perpendicular to the surface, and
ranging between 0 at the axis and 1 at the surface (Gamero-Castaño & Magnani (2019b),
see also Appendix B). Here Φs is the electric potential on the surface, J0 and J1 are the
Bessel functions of the first kind of orders zero and one, j1,n is the nth zero of J1, and

f0 = 2
∫ 1

0
ηT(x23, η) dη,

gn = 2

J0( j1,n)
2

∫ 1

0
ηJ0(ηj1,n)(T(x23, η) − f0) dη.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.16)

Appendix A describes in detail the approximated jet solution.
We use the Taylor potential (Taylor 1964) as a far-field boundary condition

ΦT(x, r) = − 2π
√

sin 2θT

K
(

1 + cos θT

2

)ΠQ
1/4(x2 + r2)1/4

[
2E

(
1
2

− x

2
√

x2 + r2

)

− K
(

1
2

− x

2
√

x2 + r2

)]
, (2.17)

where K and E are the complete elliptic integrals of the first and second kind, and θT ≈
49.29◦ is the Taylor angle. This expression is numerically more accurate and easier to
compute than the usual formula based on Legendre’s polynomials.

The boundary condition for the velocity field at the inlet of region Σ2 is a refined version
of the Neumann boundary conditions ∂Ψ/∂n = 0, ∂Ω/∂n = 0: these simple constraints
introduce a small jump on the surface stress across Σ1 and Σ2 that hinders the convergence
of the numerical solution. To eliminate this problem, we use instead the field equations for
the stream function and the vorticity simplified for the case R � 1,

∂2Ψ

∂n2 − r′r′′

(1 + r′2)3/2

∂Ψ

∂n
= rΩ,

∂2Ω

∂n2 +
(

2
r

− r′′

1 + r′2

)
r′√

1 + r′2
∂Ω

∂n
= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.18)

as boundary conditions, where r′ and r′′ are derivatives along the inlet boundary of Σ2.
Additional boundary conditions include T = T0 at the inlet boundary of Σ2 and zero

heat flux at the surface of the cone jet.
In region Σ2 all differential equations are solved using second-order central

differences in an orthogonal grid, described in Appendix B (Srinivas & Fletcher 2002;
Gamero-Castaño & Magnani 2019b). The electric potential in regions Σ1 and Σ4 is
computed using the boundary element method (Brebbia & Dominguez 1994; Brebbia,
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R(x), Ψ, Ω

Save

results

Figure 2. Iterative scheme for solving the model.

Telles & Wrobel 2012; Bakr 2013). All dependent variables in region Σ3 are computed
using the analytic solutions (2.13)–(2.15). Figure 2 illustrates the iterative procedure for
solving the system of equations. At the start of each iteration the four regions of the domain
are discretized. Next, the model equations, separated into groups, are solved sequentially
with inputs from partial solutions computed previously: first we compute the temperature
field and the viscosity and electrical conductivity by solving (2.3), (2.5) and (2.15); next we
compute the electric potential and the surface charge by solving (2.4), (2.7), (2.8), (2.12)
and (2.14); next the stream function and the vorticity are obtained by solving (2.1), (2.2),
(2.9), (2.11) and (2.13). These three blocks are recomputed until the difference between
two consecutive steps is sufficiently small (we use as criterion a residual smaller than
10−5). At this point, the shape of the surface is adjusted by minimizing the residual of the
balance of normal stresses (2.10). This process is repeated until the residual of (2.10) is
smaller than a desired value, typically 10−5.

3. Numerical solutions and discussion

We have computed numerical solutions for operational states, i.e. for sets of values of
the dielectric constant, dimensionless flow rate, Reynolds number and Péclet number,
previously characterized in experiments (Gamero-Castaño 2019). In particular we have
computed solutions for dielectric constants of 8.25, 37.6 and 65.9, which correspond
to the liquids tributyl phosphate, ethylene glycol and propylene carbonate, respectively.
Figure 3 illustrates a typical solution, in this case calculated for ΠQ = 100, Re = 0.19,
Pe = 14.87 and ε = 65.9. The surface R(x) exhibits a sharp transition between the conical
region and the jet, as shown by the narrowness of its second derivative R′′(x); we use
the position of the maximum of R′′, x0, as the origin of the axial coordinate to plot the
solution. The conduction current through the bulk of the liquid, Ib = 2

∫ R
0 r(K/K0)Ex dr,

is dominant upstream and transforms into convected surface charge, Is = Rσvs, along the
jet. Both transport mechanisms become equal at x − x0 = 7.30. The tangential and normal
components of the electric field on the surface, shown in figure 3(b), exhibit maxima near
this current crossover point. Here Ei

n is always much smaller than Eo
n, which is indicative

of the strong screening of the electric field by the surface charge. Figure 3(c) shows the
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Figure 3. Example of the model solution for ΠQ = 100, Re = 0.19, Pe = 14.87 and ε = 65.9: (a) position
of the surface, its second derivative, bulk conduction current and surface current; (b) tangential and normal
components of the electric field on the surface; (c) ohmic and viscous dissipation linear densities, fluid velocity
and temperature increase along the axis; (d) two-dimensional map of the temperature increase. The origin of
the axial coordinate is set at the maximum of R′′(x), x0, for display purposes.

dissipation linear densities,

P′
Ω(x) = 2

∫ R(x)

0
rP′′′

Ω(x, r) dr, (3.1)

P′
μ(x) = 2

Re

∫ R(x)

0
rP′′′

μ (x, r) dr. (3.2)
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Figure 4. Total ohmic dissipation: (a) values as a function of ΠQ, Re and ε; (b) fitting of the data to a power
law.

The ohmic dissipation peaks slightly upstream of the current crossover point. Here P′
Ω is

nearly equal to the product IbEt, especially in the slender jet, and therefore, it peaks near
the maximum of the tangential electric field since at this point the bulk conduction current
is still dominant; P′

Ω decreases beyond its maximum primarily driven by the conversion
of conduction current into surface current. Viscous dissipation is less intense, it has a
narrower distribution and peaks slightly upstream, near x0; here the flow undergoes a
significant increase in velocity and a change in direction, aligning with the axis as the
liquid accelerates into a jet. The viscous dissipation drops rapidly downstream of its
maximum due to the slow variation of the jet’s radius and the uniformity of the velocity
profile. Figure 3(c) also shows the temperature increase along the axis. The temperature
rises rapidly within −5 < x − x0 < 20 due to concentration of dissipation in this region.
Figure 3(d) shows a two-dimensional map of the temperature increase. Because most of the
dissipation occurs in the slender jet, the dissipation densities are nearly uniform along the
radial coordinate. This, combined with the adiabatic boundary condition on the surface,
yield a temperature field that is nearly constant in the radial direction. Furthermore, axial
diffusion is small due to the large value of the Péclet number, which is always larger
than 10.

Figure 4(a) shows the total ohmic dissipation,

PΩ =
∫ ∞

−∞
P′

Ω(x) dx, (3.3)

as a function of the dimensionless flow rate and the Reynolds number, and for three
different values of the dielectric constant. The integral is evaluated using the axial
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coordinate at which the surface current is 95 % of the total current as the upper limit
of integration. The ohmic dissipation increases with the dimensionless flow rate and the
dielectric constant and decreases with increasing Reynolds number. The dimensionless
flow rate is the stronger dependency. Figure 4(b) shows a fit to a power law that only
retains the flow rate and Reynolds dependencies (we have simulated too few dielectric
constants). The total ohmic dissipation is well approximated by

PΩ ≈ 7.74ΠQ
0.39

Re0.11 . (3.4)

The exponent acting on ΠQ is similar to that found by Gamero-Castaño (2019) in an
isothermal calculation, and can be justified with a one-dimensional estimation of the ohmic
dissipation,

PΩ ≈
∫ ∞

−∞
K
K0

R2Et
2dx. (3.5)

Since the geometry of the transition region remains virtually unchanged at varying ΠQ,
Re and ε, the ohmic dissipation primarily scales with Et

2. The maximum value of the
tangential electric field, which is located near the current crossover point, is constant, but
otherwise Et scales as ΠQ

1/4 in most of the region where conduction current becomes
surface current (Gamero-Castaño 2019). Thus, the exponent acting on ΠQ in the ohmic
dissipation law must be smaller than 1/2, but close to this value. Equation (3.4) quantifies
the dependency of the ohmic dissipation on the Reynolds number for the first time. The
Reynolds number has a much smaller effect on the cone-jet solution than the dimensionless
flow rate, this weaker dependency has not been analysed, and therefore, we cannot justify
the exponent acting on Re.

Figure 5(a) shows the total viscous dissipation,

Pμ =
∫ ∞

−∞
P′

μ(x) dx (3.6)

for different values of the dimensionless flow rate, the Reynolds number and the dielectric
constant. The dimensionless viscous dissipation is proportional to the inverse of the
Reynolds number and decreases at increasing flow rate. The dependency on the dielectric
constant is weak, and it is likely that the stronger effect mentioned by Gamero-Castaño
(2019) is due to differences in the dimensionless flow rate investigated in this previous
study. Figure 5(b) shows the data to be well fitted by

Pμ ≈ 12.8 + 4.53/Re

ΠQ
0.23 . (3.7)

The one-dimensional estimation of the viscous dissipation yields

P̃μ ≈
∫

2μ
dũ
dx̃

2
dṼ → Pμ ≈ 8

Re

∫ ∞

−∞
μR′2

μ0R4 dx, (3.8)

where we approximate the velocity by the ratio between flow rate and the cross-section
of the cone jet. The viscous dissipation is proportional to the viscosity and, therefore,
inversely proportional to the Reynolds number. The dependence on the dimensionless flow
rate is better illustrated by integrating (3.8) by parts, which yields

Pμ ≈ 8
3Re

∫ ∞

−∞
μR′′ + μ′R′

μ0R3 dx. (3.9)

The total viscous dissipation is mostly given by the integral of μR′′/R3; the integral of
μ′R′/R3 is a small and negative contribution (zero at constant temperature). As shown in
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Figure 5. Total viscous dissipation: (a) values as a function of ΠQ, Re and ε; (b) fitting function
approximating the data.

figure 3(a), R′′ is a sharply peaked function only significant in the cone-to-jet transition.
Thus, the shape of R′′ together with (3.9) explain the narrow distribution of the linear
viscous dissipation in figure 3(c). As the flow rate increases, the shape of the transition
from cone to jet becomes less sharp, i.e. the second derivative R′′ becomes smaller, and
the viscous dissipation decreases at increasing flow rate as (3.7) reflects.

The temperature increase along the cone jet is approximated by

cṁ�T̃est ≈ P̃Ω + P̃μ,

�Test ≈ 7.74
Re0.11ΠQ

0.11 + 12.8 + 4.53/Re

ΠQ
0.73 ,

⎫⎪⎬
⎪⎭ (3.10)

where (3.4) and (3.7) are used to express the ohmic and viscous dissipations. Figure 6(a)
shows a contour plot of (3.10). Solid circles indicate simulated states and provide a sense
of the range of dimensionless flow rates and Reynolds numbers investigated, as well as a
qualitative validation of (3.10). Figure 6(a) also includes two curves: the locus of states
in which ohmic and viscous dissipations are equal, ΠQ = (1.65Re0.11 + 0.58Re−0.89)1.62,
ohmic dissipation being larger than viscous dissipation to the right of this curve; and the
minimum flow rate at which a cone jet is stable, which is approximately given by ΠQ =
1/Re for liquids with moderate and large electrical conductivities such as those considered
in this study (Gañán-Calvo et al. 2013; Gamero-Castaño & Magnani 2019a). Cone jets
are stable to the right of this curve. It is apparent that ohmic dissipation is dominant in
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Figure 6. (a) Contour plot of the estimated dimensionless temperature increase as a function of ΠQ and
Re, (3.10). The plot displays simulated states as solid circles; (b) error between the estimated and computed
temperature increase, (�Test − �T)/�T , for propylene carbonate and ethylene glycol solutions.

most experimental situations and only near the minimum flow rate viscous dissipation
becomes a comparable contributor to the total dissipation. This observation comes with
the caveat that ΠQ = 1/Re approximates the minimum flow rate in electrosprays in
which the base of the cone is much larger than the dimensions of the jet. However,
it is known that the minimum flow rate can be lowered by working with emitters of
reduced dimensions (De La Mora & Loscertales 1994; Wilm & Mann 1994; Scheideler
& Chen 2014; Ponce-Torres et al. 2018), and in such cases viscous dissipation becomes
the dominant term in the total dissipation. Figure 6(b) illustrates the accuracy of (3.10) for
estimating the temperature increase, by plotting the relative error between the estimated
and calculated temperatures, (�Test − �T)/�T . Equation (3.10) provides a good estimate
over three orders of magnitudes of the temperature increase.

The analysis of the dimensional temperature is also important, for example, to determine
when the thermal and fluid-dynamic problems are coupled. For a given liquid, i.e. for
fixed physical properties, (3.10) indicates that the temperature increase augments with
decreasing flow rate. Thus, the maximum temperature increase occurs at the minimum
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flow rate and, using ΠQ,min = 1/Re, it is given by

�T̃max ≈ (7.74 + 12.8Re0.73 + 4.53Re−0.27)
1
πc

(
γ K
ε0ρ

)2/3

. (3.11)

Here �T̃max is solely a function of the physical properties of the liquid and, since the
electrical conductivity is the only property with a range of several orders of magnitude,
a corollary of (3.11) is that only liquids with sufficiently high electrical conductivity
undergo significant self-heating. Table 3 illustrates this by listing the estimated maximum
temperature increase of ten liquids together with their physical properties. The table also
includes the characteristic length of the cone jet at the minimum flow rate to correlate
self-heating with the radii of the jet and droplets. The temperature increase for the
propylene carbonate solutions is significant for K = 0.022 S m−1, and reaches 27.3 ◦C for
K = 0.176 S m−1; the characteristic length associated with the latter is 10.2 nm. All ionic
liquids, with conductivities near 1 S m−1, exhibit maximum temperature increases near or
exceeding 100 ◦C, and characteristic lengths near 10 nm. Although the criterion ΠQ,min =
1/Re slightly underestimates the minimum flow rates of propylene carbonate solutions
(Gamero-Castaño & Magnani 2019a) and EMI-Im (Gamero-Castaño & Cisquella-Serra
2021), an electrical conductivity near or above 0.01 S m−1 can be used as a rule of thumb
for expecting significant self-heating. For example, the maximum temperature increases
of propylene carbonate and ethylene glycol solutions with K = 0.01 S m−1 are 4.4 ◦C and
3.0 ◦C, respectively.

Figure 7 illustrates the importance of self-heating in the cone jet of a liquid with a high
electrical conductivity such as EMI-Im. The dimensionless flow rate in this calculation
has a value of 400, which is slightly smaller than the minimum flow rate reported
by Gamero-Castaño & Cisquella-Serra (2021). The dielectric constant of EMI-Im is
12.8. Figures 7(a) and 7(b) show profiles of the currents and of the dissipation linear
densities computed with both the present model and ignoring self-heating (i.e. isothermal
model, we assume a constant temperature). The total current obtained with the isothermal
model is 131.0 nA. When considering self-heating, the current is 62.4 % higher, 212.7 nA.
Furthermore, the latter compares well with the value of 203 nA for ΠQ = 400 from the
fitting of experimental data reported by Gamero-Castaño & Cisquella-Serra (2021). When
self-heating is accounted for, the ohmic and viscous dissipations are respectively much
larger and much smaller than in the isothermal calculation. This is an obvious effect of the
temperature increase along the cone jet and the associated enhancement of the electrical
conductivity and the reduction of the viscosity, together with the proportionality between
ohmic dissipation and electrical conductivity, (3.5), and between viscous dissipation and
viscosity, (3.8). Figure 7(c) shows the variation of the temperature, electrical conductivity
and viscosity along the axis computed with the present model, and the ratio R/R0 between
the radii of the surfaces for the present and the isothermal models. The total temperature
increase along this section of the cone jet is 93.3 ◦C, the electrical conductivity increases
by a factor of 5.7 and the viscosity is reduced by a factor of 7.6. The very significant
changes in these two key physical properties show that an isothermal description of these
cone jets would be grossly incorrect. The strong variation of the electrical conductivity and
the scaling law (1.1) readily explain the enhanced value of the total current with respect
to the isothermal solution, 212.7 nA vs 131.0 nA. The ratio R/R0 is 1 upstream, increases
up to a maximum value of 1.087 at x − x0 = 45.6 and decreases downstream to a value
of 0.9. The larger current and the smaller jet radius in the presence of self-heating follow
the electrical conductivity trend in the scaling laws (1.1) and (1.2). The dependencies are
quantitatively weaker, but this is to be expected from the gradual increase of the electrical
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Figure 7. Numerical solution for EMI-Im, ΠQ = 400, Re = 8.51 × 10−3, Pe = 13.6, ε = 12.8. The red curves
correspond to the isothermal solution while the blue curves consider self-heating: (a) bulk and surface current;
(b) ohmic and viscous dissipation linear density; (c) temperature increase, electrical conductivity and viscosity
along the axis for the self-heating case, and the ratio between the radii of the surfaces for the self-heating (R)
and isothermal (R0) cases; (d) 2-D map of the temperature increase in the cone jet (self-heating case).

conductivity along the transition region. Finally, the contour plot in figure 7(d) shows the
lack of radial variation of the temperature in the slender jet. Although not explored in
this paper, the ability to compute the temperature field along the cone jet is key to study
ion-field evaporation, an emission mechanism that strongly depends on temperature and
that plays a main role in the electrosprays of highly conducting liquids, including EMI-Im
(Gamero-Castaño & Cisquella-Serra 2021).

980 A40-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

59
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.59


M. Magnani and M. Gamero-Castaño

0

10

20

30

2 4 6 8 10 12

2 4 6 8 10 12

0

10

20

30

Re = 0.57
Re = 0.44

Re = 0.27

Re = 0.13

Re = 0.095

Re = 4.51
Re = 1.67

Re = 0.80

Re = 0.38

Re = 0.19

ΠQ
1/2

Ĩ/
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Figure 8. Current versus flow rate, comparison between measurements (solid circles) and model results
(open squares and triangles) for ethylene glycol solutions (a) and propylene carbonate solutions (b).

The significant increase of temperature in liquids with high electrical conductivity
explains their abnormal current versus flow rate behaviour. Figure 8 compares
experimental values (Gamero-Castaño 2019) with the numerical solution, for electrosprays
of propylene carbonate and ethylene glycol with several electrical conductivities (or,
equivalently, Reynolds numbers). The experimental data for each conductivity exhibits
the well-known Ĩ ∝ Q̃1/2 law. When plotted in dimensionless form, Ĩ/

√
ε0γ 2/ρ vs ΠQ,

all points for a given liquid are expected to lie on a single straight line regardless of the
electrical conductivity. Although the solutions with the largest Reynolds numbers behave
as expected, the data for the smaller Reynolds numbers have a vertical offset that increases
with decreasing Re. Gamero-Castaño (2019) explained this anomaly as an effect of energy
dissipation and the consequent self-heating of the liquid, expected to increase at decreasing
Re: when the temperature in the transition region increases significantly, using the emitter
temperature to evaluate ΠQ underestimates its value, shifting leftward the experimental
data (ΠQ is proportional to the electrical conductivity, which increases with temperature).
The numerical results in figure 8 confirm this explanation. The numerical solution matches
well the experimental data, reproducing the vertical offset of the current versus flow rate
curves at low Re. The vertical offset starts to be significant at a Reynolds number of
approximately 0.3, for which the computed temperature increase is approximately 2 ◦C.
The liquid solutions used in the experiments were obtained by adding increasing quantities
of EMI-Im to propylene carbonate and ethylene glycol, in order to increase the electrical
conductivity. The uncertainty in the values of the physical properties of these mixtures,
which increases at decreasing Re, are likely responsible for the differences between
numerical and experimental results. Note that the comparison between the numerical
solution and the experimental value in the case of EMI-Im is excellent, 212.7 nA vs 203 nA
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for ΠQ = 400, even though self-heating is significantly more intense in EMI-Im than in
any state shown in figure 8. Unlike the propylene carbonate and ethylene glycol solutions,
EMI-Im is a pure liquid with accurate K(T) and μ(T) functions (Kazakov et al. 2022).

4. Conclusions

Ohmic and viscous dissipations in cone jets increase the temperature of the liquid, linking
electrohydrodynamic and thermal phenomena. In this paper we self-consistently study
this coupling for the first time, using an extension of the leaky-dielectric model that
includes conservation of energy and temperature-dependent functions for the viscosity
and the electrical conductivity. We find that the temperature increase is a function of
the physical properties of the liquid and its flow rate, (3.10); for a given liquid, the
maximum temperature increase only depends on the physical properties, (3.11), with
the electrical conductivity playing a key role (the maximum temperature scales with
K2/3); and temperature increases of a few centigrade degrees occur in liquids with
electrical conductivities as low as 0.01 S m−1. Therefore, when modelling cone jets or
analysing experimental data, it is important to account for self-heating when the electrical
conductivity is of the order or larger than 0.01 S m−1, which includes the conductivity
values needed to produce droplets and jets with diameters of tens of nanometres or smaller.

Viscous dissipation concentrates in the transition from cone to jet. The generation of
ohmic dissipation starts in this region and continues in a longer section of the jet where
bulk conduction current transforms into surface current. In the operational range of cone
jets where self-heating is significant the ohmic term is the main contributor to the total
dissipation, and only near the minimum flow rate, i.e. near the condition ΠQ = 1/Re,
ohmic and viscous dissipations are comparable. Because of the distribution of dissipation,
the temperature increases in the section of the jet where charge is injected from the
bulk of the liquid onto the surface. The physical properties of the liquid, especially the
viscosity and the electrical conductivity, are functions of the temperature, and their values
change along this section where the total current and the diameter of the jet are fixed.
Therefore, the traditional scaling laws for cone jets, which assume constant values of the
physical properties, become increasingly inaccurate as self-heating intensifies. An example
of this effect is the unexpected vertical offset of the dimensionless current versus flow rate
function observed in liquids with high electrical conductivities. This work shows that this
vertical offset is an artifact of employing the traditional scaling laws in cone jets in which
self-heating induces significant temperature variations.
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Appendix A. Regular perturbation solution for the jet region

The jet solution in region Σ3 is obtained by applying Poincaré’s perturbation method
(Paulsen 2013) to the equation set (2.1)–(2.12). The quantities of interest (stream function,
vorticity, electric potential and temperature) are expressed as a series using R(x) as the
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expansion parameter:

Ψ =
∞∑

j=0

R jΨj = Ψ0 + RΨ1 + R2Ψ2 + · · · ,

Ω =
∞∑

j=0

R jΩj = Ω0 + RΩ1 + R2Ω2 + · · · ,

Φi =
∞∑

j=0

R jΦi,j = Φi,0 + RΦi,1 + R2Φi,2 + · · · ,

T =
∞∑

j=0

R jTj = T0 + RT1 + R2T2 + · · · .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

Equations (2.1), (2.2), (2.4) and (2.3) are written in terms of Ψ and Ω and in the orthogonal
coordinates ξ , η (see Appendix B) as

η(1 + η2R′2)
R2

∂2Ψ

∂η2 + η

xξ
2(1 + η2R′2)

∂2Ψ

∂ξ2 + η2(2R′2 − RR′′) − 1
R2

∂Ψ

∂η

−
[

2η3R′R′′

xξ (1 + η2R′2)2 + ηxξξ

xξ
3(1 + η2R′2)

]
∂Ψ

∂ξ
= −η2RΩ, (A2)

η2(1 + η2R′2)
R2

∂2Ω

∂η2 + η2

xξ
2(1 + η2R′2)

∂2Ω

∂ξ2 + η3(2R′2 − RR′′) + η

R2
∂Ω

∂η

+ η2

xξ (1 + η2R′2)

[
2R′

R
− 2η2R′R′′

1 + η2R′2 − xξξ

xξ
2

]
∂Ω

∂ξ
− Ω

R2

= μ0Re
√

ΠQ

πμR2

[
η

xξ

(
∂Ψ

∂η

∂Ω

∂ξ
− ∂Ψ

∂ξ

∂Ω

∂η

)
+

(
1

xξ (1 + η2R′2)
∂Ψ

∂ξ
− ηR′

R
∂Ψ

∂η

)
Ω

]

− 1
μηR

[(
∂2Ψ

∂x2 − ∂2Ψ

∂r2 + 1
ηR

∂Ψ

∂r

) (
∂2μ

∂r2 − ∂2μ

∂x2

)
+

(
2
ηR

∂Ψ

∂x
− 4

∂2Ψ

∂x∂r

)
∂2μ

∂x∂r

+ ∂Ω

∂x
∂μ

∂x
+ ∂Ω

∂r
∂μ

∂r

]
, (A3)

1 + η2R′2

R2
∂2Φi

∂η2 + 1
xξ

2(1 + η2R′2)
∂2Φi

∂ξ2 +
[

1
η

+ η(2R′2 − RR′′)+ 1 + η2R′2

K
∂K
∂η

]
1

R2
∂Φi

∂η

+ 1
xξ (1 + η2R′2)

[
2R′

R
− 2η2R′R′′

1 + η2R′2 − xξξ

xξ
2 + 1

xξ K
∂K
∂ξ

]
∂Φi

∂ξ
= 0, (A4)

1 + η2R′2

R2
∂2T
∂η2 + 1

xξ
2(1 + η2R′2)

∂2T
∂ξ2 +

[
1 + η2(2R′2 − RR′′) + Pe

xξ

∂Ψ

∂ξ

]
1

ηR2
∂T
∂η

+
[

1
1 + η2R′2

(
2R′

R
− 2η2R′R′′

1 + η2R′2 − xξξ

xξ
2

)
− Pe

ηR2
∂Ψ

∂η

]
1
xξ

∂T
∂ξ

= μPe
μ0Re

√
ΠQη2R2

[
2

∂2Ψ

∂x∂r

2

+
(

∂2Ψ

∂r2 − ∂2Ψ

∂x2 − 1
ηR

∂Ψ

∂r

)2
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+ 2
(

1
ηR

∂Ψ

∂x
− ∂2Ψ

∂x∂r

)2

+ 2
η2R2

∂Ψ

∂x

2
]

+ KPe
K0

√
ΠQ

(
1

xξ
2(1 + η2R′2)

∂Φi

∂ξ

2
+ 1 + η2R′2

R2
∂Φi

∂η

2
)

. (A5)

To apply the perturbation method, we first identify all the terms in these equations that
are small in the jet region. Downstream of the liquid surface is slender (R′ � 1, R′′ � 1)
and the fluid velocity is well aligned with the axial coordinate (vη ∝ ∂Ψ /∂ξ � 1). Also,
since ξ and x are nearly parallel, R, R′, R′′ are considered a function of ξ only. These
observations are summarized as the jet hypotheses:

R′2 ∼= 0,
∂Ψ

∂ξ
∼= 0,

∂2Ψ

∂ξ2
∼= 0,

R ∼= R(ξ), R′ ∼= R′(ξ), R′′ ∼= R′′(ξ),

xξ
∼= xξ (ξ), xξξ

∼= xξξ (ξ).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A6)

By applying (A6) to (A2)–(A5) we eliminate all the higher-order terms and obtain

η
∂2Ψ

∂η2 + [η2(2R′2 − RR′′) − 1]
∂Ψ

∂η
= −η2R3Ω, (A7)

η2 ∂2Ω

∂η2 − μ0Re
√

ΠQ

πμ

∂Ψ

∂η

η

xξ

∂Ω

∂ξ
+ η

∂Ω

∂η
− Ω = 0, (A8)

∂2Φi

∂η2 +
(

1
η

− ηRR′′
)

∂Φi

∂η
+ 2RR′

xξ

∂Φi

∂ξ
= 0, (A9)

∂2T
∂η2 + 1

η

∂T
∂η

− Pe
xξ

∂T
∂ξ

= − 12Peμ
μ0Re

√
ΠQ

R′2

R4 − PeK
K0

√
ΠQ

(REt)
2. (A10)

These equations are still too complex to be solved analytically. In order to obtain a solution
we substitute Ψ , Ω , Φi and T for their expansions (A1), and separate terms according to
their order Ri.

For the vorticity, we obtain the equation

η2 ∂2Ω0

∂η2 + η
∂Ω0

∂η
− Ω0 = 0 (A11)

for the zeroth-order term. Higher-order terms are still too complex to be solved analytically.
The solution of (A11), using (2.9) and the symmetry condition Ω(x, 0) = 0 as boundary
conditions, is

Ω0 = 2R′′

R2(1 + R′2)
∂Ψ

∂η

∣∣∣∣
η=1

− μ0Re
2μ

Etσ. (A12)
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We apply the vorticity solution (A12)–(A7), to obtain the following equation set for the
stream function:

η
∂2Ψ0

∂η2 − ∂Ψ0

∂η
= 0,

η
∂2Ψ1

∂η2 − ∂Ψ1

∂η
= η2

(
R′′ − 2R′2

R

)
∂Ψ0

∂η
− η3

(
2R′′ ∂Ψ0

∂η

∣∣∣∣
η=1

− μ0Re
2μ

R2Etσ

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A13)

In this case we solve analytically for the first two terms of the Ψ expansion. The boundary
conditions in this case are

Ψ0(ξ, 0) = 0, Ψ0(ξ, 1) = 1/2,

Ψ1(ξ, 0) = 0, Ψ1(ξ, 1) = 0,

}
(A14)

where the value of Ψ on the surface is obtained from the dimensionless flow rate. The
solution of these equations is then

Ψ0 = η2

2
,

Ψ1 = η4 − η2

8

(
μ0Re
2μ

R2Etσ − R′′ − 2R′2

R

)
.

⎫⎪⎪⎬
⎪⎪⎭ (A15)

For the electric potential, we apply the same procedure. Equation (A9) is expanded as

η
∂2Φi,0

∂η2 + ∂Φi,0

∂η
= 0,

∂2Φi,1

∂η2 + 1
η

∂Φi,1

∂η
= ηR′′ ∂Φi,0

∂η
− 2R′

xξ

∂Φi,0

∂ξ
= 2R′Et,

⎫⎪⎪⎬
⎪⎪⎭ (A16)

with boundary conditions

Φi,0(ξ, 0) = 0, Φi,0(ξ, 1) = Φs,
Φi,1(ξ, 0) = 0, Φi,1(ξ, 1) = 0.

}
(A17)

The final result is

Φi,0 = Φs,

Φi,1 = RR′(η2 − 1)

2
Et.

⎫⎬
⎭ (A18)

Obtaining a solution for the jet temperature is more complicated. In this case the ∂/∂ξ

term cannot be eliminated from the zeroth-order equation, but the differential equation can
be solved using separation of variables. Since in this case we only solve for T0, we use T
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in the equations for simplicity. The temperature is assumed to be of the form

T(ξ, η) = f (ξ) + g(ξ)h(η). (A19)

Leading to the equation

1
xξ

df
dξ

+ h
xξ

dg
dξ

− g
Pe

(
1
η

dh
dη

+ d2h
dη2

)
= 1√

ΠQ

[
12μR′2

μ0ReR4 + K
K0

(REt)
2
]
. (A20)

The solution for f , g and h is then

f (ξ) = f0 + 1√
ΠQ

∫ x

x23

[
12μR′2

μ0ReR4 + K
K0

(REt)
2
]

dx,

g(ξ) = g0 exp
[
−C2

Pe
(x − x23)

]
,

h(η) = h0J0(Cη) + h1Y0(Cη),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A21)

where J0() and Y0() are the Bessel functions of order zero of the first and second kind and
C is a constant to be found. As boundary conditions, we have

∂T
∂η

(ξ, 0) = 0,
∂T
∂η

(ξ, 1) = 0. (A22a,b)

From these conditions we obtain h0 = 1, h1 = 0 and C = j1,nε
1/2, where j1,n is the nth

zero of the Bessel functions of the first kind of order one. These definitions result in

Tjet = f0 + 1√
ΠQ

∫ x

x23

(
12μ

μ0Re
R′2

R4 + K
K0

R2Et
2
)

dx

+
∞∑

n=1

gnJ0(ηj1,n) exp

[
− j1,n

2

Pe
(x − x23)

]
. (A23)

Finally, the constants f0 and gn are obtained by matching the temperature and its derivative
at the base of the jet (x = x23):

f0 = 2
∫ 1

0
ηT(x23, η) dη,

gn = 2

J0( j1,n)
2

∫ 1

0
ηJ0(ηj1,n) (T(x23, η) − f0) dη.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A24)

Appendix B. Coordinate system orthogonal to the surface of the cone jet

In region Σ2 the equation set is solved using finite differences in an orthogonal grid with
coordinates ξ , η (see figure 9). Region Σ2 is bounded by the symmetry axis and by the
liquid surface, allowing us to define an orthogonal frame of reference using a variation of
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Figure 9. Example of the orthogonal grid defined in region Σ2. The inset zooms on the base of the jet.

the method given by Srinivas & Fletcher (2002). Starting from equation

dξ

dη
= −

∂x
∂ξ

∂x
∂η

+ ∂r
∂ξ

∂r
∂η

∂x
∂ξ

2
+ ∂r

∂η

2 , (B1)

we first redefine x, r as
x = x(ξ, η),

r = ηR(x),

}
(B2)

where ξ and η are the two orthogonal variables, and x() is a generic function of ξ, η. The
coordinate η is equal to 0 at the symmetry axis and 1 at the surface, while ξ goes from 0
on the upstream boundary x12 to 1 at the downstream boundary x23. By applying (B2) into
(B1), we obtain

dξ

dη
= −xξ

xη + ηRR′ + η2xηR′2

xξ
2(R + ηxηR′)2 . (B3)

We enforce the orthogonality of the ξ, η coordinates by requiring dξ/dη = 0. This leads
to

∂x
∂η

= −ηRR′

1 + η2R′2 . (B4)

This equation is integrated from η = 1 to η = 0, using the initial condition the distribution
of points on the surface R(x), to obtain the x coordinate of all the points in the orthogonal
grid. To obtain the r coordinate, we use the definition of r in (B2) together with the
computed x coordinates.

All the equations used in the model are converted from x, r to ξ , η coordinates by using

∂

∂x
= 1

xξ (1 + η2R′2)
∂

∂ξ
− ηR′

R
∂

∂η
, (B5)
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∂

∂r
= ηR′

xξ (1 + η2R′2)
∂

∂ξ
+ 1

R
∂

∂η
, (B6)

∂2

∂x2 = 1
[xξ (1 + η2R′2)]2

∂2

∂ξ2 +
(

ηR′

R

)2
∂2

∂η2 − 2ηR′

Rxξ (1 + η2R′2)
∂2

∂ξ∂η

+ 1
xξ (1 + η2R′2)2

[
η2R′

(
R′2 − RR′′

R
− 2R′′

1 + η2R′2

)
− xξξ

xξ
2

]
∂

∂ξ

+ η(2R′2 − RR′′)
R2

∂

∂η
, (B7)

∂2

∂r2 = η2R′2

[xξ (1 + η2R′2)]2
∂2

∂ξ2 + 1
R2

∂2

∂η2 + 2ηR′

Rxξ (1 + η2R′2)
∂2

∂ξ∂η

+ R′

xξ (1 + η2R′2)2

[
1
R

+ η2R′′ 1 − η2R′2

1 + η2R′2 − ηR′xξξ

xξ
2

]
∂

∂ξ
, (B8)

∂2

∂x∂r
= ηR′

[xξ (1 + η2R′2)]2
∂2

∂ξ2 − ηR′

R2
∂2

∂η2 + 1 − η2R′2

Rxξ (1 + η2R′2)
∂2

∂ξ∂η

+ η

xξ (1 + η2R′2)2

[
R′′ 1 − η2R′2

1 + η2R′2 − R′2

R
− R′xξξ

xξ
2

]
∂

∂ξ
− R′

R2
∂

∂ξ
, (B9)
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