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Abstract

The global prevalence of Fe deficiency is high and a common corrective strategy is oral Fe supplementation, which may affect the

commensal gut microbiota and gastrointestinal health. The aim of the present study was to investigate the impact of different dietary

Fe concentrations on the gut microbiota and gut health of rats inoculated with human faecal microbiota. Rats (8 weeks old, n 40) were

divided into five (n 8 each) groups and fed diets differing only in Fe concentration during an Fe-depletion period (12 weeks) and an

Fe-repletion period (4 weeks) as follows: (1) Fe-sufficient diet throughout the study period; (2) Fe-sufficient diet followed by 70 mg

Fe/kg diet; (3) Fe-depleted diet throughout the study period; (4) Fe-depleted diet followed by 35 mg Fe/kg diet; (5) Fe-depleted diet

followed by 70 mg Fe/kg diet. Faecal and caecal samples were analysed for gut microbiota composition (quantitative PCR and pyrosequen-

cing) and bacterial metabolites (HPLC), and intestinal tissue samples were investigated histologically. Fe depletion did not significantly alter

dominant populations of the gut microbiota and did not induce Fe-deficiency anaemia in the studied rats. Provision of the 35 mg Fe/kg diet

after feeding an Fe-deficient diet significantly increased the abundance of dominant bacterial groups such as Bacteroides spp. and

Clostridium cluster IV members compared with that of an Fe-deficient diet. Fe supplementation increased gut microbial butyrate concen-

tration 6-fold compared with Fe depletion and did not affect histological colitis scores. The present results suggest that Fe supplementation

enhances the concentration of beneficial gut microbiota metabolites and thus may contribute to gut health.
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Research carried out in the past few years has highlighted the

importance of the gut microbiota to intestinal health and host

health in general(1,2). The gut microbiota plays a crucial role in

the development and maintenance of the immune system(3),

colonisation resistance to environmental bacteria, such as

pathogens(4), extraction of energy from indigestible food com-

ponents and production of metabolites that influence gut

health(5). SCFA have been widely investigated due to their

ability to influence several aspects of host health. Many mem-

bers of the gut microbiota produce acetate and propionate.

Acetate is either reused by other bacteria for butyrate for-

mation or absorbed by the host and can be used as an

energy source, while propionate is involved in gluconeo-

genesis(6,7). The most investigated end metabolite of the gut

microbiota is probably butyrate due to its importance to

mucosal health. Butyrate is mainly produced by the members

of Clostridium clusters IV and XIVa, such as Faecalibacterium

prausnitzii, Eubacterium hallii and Roseburia spp.,(8,9) and is

absorbed by the mucosa where it can act as an energy source

for colonocytes(10). Moreover, butyrate has anti-inflammatory

effects, is able to promote apoptosis in cancer cells and has

been shown to inhibit virulence in enteropathogens(11,12).

Gut microbiota composition and metabolic activity not

only affect the host but are also strongly modified by host

and environmental factors. Diet composition, such as fibre

content, has been shown to have a strong impact on the

gut microbiota(13,14). Recent studies have elucidated the

differences in gut microbial consortium in populations living

in developed and developing countries possibly due to

the effects of diet or high prevalence of malnutrition in

developing countries, which can strongly influence the gut

microbiota(3,15–20). One of the most common nutritional

deficiencies is Fe deficiency, affecting more than two billion

people worldwide, especially in developing countries(21,22).
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Abbreviations: qPCR, quantitative PCR; SRB, sulphate-reducing bacteria.
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Fe deficiency affects cognitive and motor development in

children and increases the maternal/perinatal mortality

rate(23). It also has an impact on gut microbiota composition

and metabolic activity. In a recent rat study, we have shown

a decrease in the abundance of Roseburia spp./Eubacterium

rectale and Bacteroides spp. along with a large decrease

in the concentrations of caecal butyrate and propionate in

highly Fe-deficient young rats(24). Earlier studies in mice

have also demonstrated that low gut luminal Fe concentrations

have an impact on gut microbiota composition leading to a

decrease in the abundance of Desulfovibrio spp. and an

increase in that of Turicibacter spp.(25) while elevating the

counts of lactobacilli(26). Using an in vitro colonic fermen-

tation model mimicking the proximal colon of a child, we

have also confirmed strong dysbiosis of the gut microbiota

under very-low-Fe conditions(27).

Usual strategies for Fe-deficiency anaemia correction are

Fe supplementation and Fe fortification of foods; FeSO4 is

often used, which is highly bioavailable(28). However, absorp-

tion of Fe is usually low (5–20 %) and takes place mainly in

the duodenum, while the main fraction of Fe reaches the

colon, where it might affect the gut microbiota(21). Indeed,

gut microbiota composition in Fe-deficient rats supplemented

with Fe has been found to be partially recovered and gut

microbiota metabolic activity to be strongly promoted(24).

Animal studies in rats and pigs have also reported dysbiosis

of the gut microbiota due to Fe supplementation(26,29),

recently confirmed in human studies. School children in

Côte d’Ivoire have been found to have higher numbers

of Enterobacteriaceae and decreased numbers of lacto-

bacilli in faeces after Fe supplementation for 6 months and

increased concentrations of calprotectin, a marker for gut

inflammation (30). Infants given an Fe-supplemented diet for

3 months have been found to have higher relative abundances

of Bacteroides spp. and lower abundances of lactobacilli(31).

An unanswered question raised by these studies is whether

dietary Fe alone is a modulation factor for the gut microbiota

and intestinal inflammation or whether Fe status and suscepti-

bility to gut inflammation could also play a role in the

observed changes in gut microbiota composition. Both

changes in host Fe homeostasis and gut inflammation can

alter the gut microbiota composition(32–34). Our previous

study using Sprague–Dawley rats with a rodent microbiota

has investigated the changes in gut microbiota composition

due to Fe supplementation in a highly Fe-deficient host(24).

As the rodent microbiota differs from the human

microbiota(35–37), in the present study, we used gnotobiotic

rats associated with child microbiota, which represent an

excellent model to study host–microbiota interactions in a

well-controlled environment without confounding factors

such as variations in diet or host genetic background(38–40).

A child was selected as the faecal donor due to the high preva-

lence of Fe deficiency and need for Fe supplementation in this

age group(22,41). The human microbiota-associated rats were

fed diets differing in Fe concentration and source according

to the standard Fe depletion–repletion study used to assess

Fe bioavailability(42). Changes in faecal microbiota compo-

sition were analysed during the study period, and caecal

microbiota composition and metabolic activity, as well as

gut inflammation, were assessed after killing the rats at the

end of the study.

Materials and methods

Rats and diets

A total of forty germ-free female Fischer 344 rats were bred

at the INRA facilities of Clermont-Ferrand-Theix, France.

They were kept in sterile isolators with positive pressure

over the entire trial period as described previously(40,43).

Rats were fed an irradiated standard diet for germ-free rodents

(SAFE) and given free access to sterilised water. Rats were

maintained pairwise in standard Macrolon cages under a

12 h light–12 h dark cycle under constant temperature and

humidity. At 5 weeks of age, rats were inoculated with a

human faecal microbiota slurry obtained from a healthy volun-

teer (age 6 years) not treated with antibiotics 3 months before

faecal sample collection. The faecal sample was processed

within 6 h of defecation and maintained under anaerobic

conditions. After 1000-fold dilution with an anaerobic mineral

solution, 1 ml of faecal slurry was orally inoculated into germ-

free rats. The microbiota was allowed to establish for 3 weeks

while the rats were being fed a control diet with normal Fe

concentrations equivalent to a standardised American Institute

of Nutrition (AIN)-93G purified diet(44) before starting the

different feeding regimens.

All diets were produced by Dyets Inc. and based on a

standard AIN-93G diet differing only in Fe concentration

(Table S1, available online). The study set-up (Fig. 1) was

designed according to the classical Fe depletion–repletion

assay of Forbes et al.(42) and comprised five different groups

of rats. A ‘control’ group of rats (n 8) was fed a regular AIN-

93G diet containing a mean of 37·6 (SEM 0·9) mg Fe/kg diet

from ferric citrate over the entire trial period of 16 weeks,

while a ‘Fe-deficient’ group of rats (n 8) was fed an Fe-deficient

diet containing 2·9 (SEM 0·2) mg Fe/kg diet. A further two groups

of rats, ‘35 ppm Fe’ group (n 8) and ‘70 ppm Fe’ group (n 8),

were first fed a Fe-deficient diet for 12 weeks and were then

supplemented with either a 35 ppm Fe diet containing 32·2

(SEM 1·0) mg Fe/kg diet from FeSO4 or a 70 ppm Fe diet contain-

ing 66·1 (SEM 7·8) mg Fe/kg diet from FeSO4 and ferric citrate to

mimic Fe supplementation with two different Fe sources and

concentrations for 4 weeks. A fifth group of rats, ‘Fe-excess’

group (n 8), was first fed the control diet and was then sup-

plemented with the 70 ppm Fe diet to mimic the impact of Fe

supplementation on the gut microbiota not previously affected

by a low-Fe diet and to investigate the effects of excess Fe on the

gut microbiota. Once a week, body weight of each rat was

measured and diet intake was assessed cage-wise (two rats). Fe

concentration in the diets was assessed by atomic absorption

spectrometry (SpectrAA-240K with GTA-120 Graphite Tube Ato-

mizer, Varion Techtron) shortly before use. All procedures were

carried out according to the European Directives on

the protection of animals used for scientific purposes, 2010/63/

EU, and the laboratory procedures were approved by the local

ethics committee (CEMEAA 02).

A. Dostal et al.2136

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S000711451400021X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S000711451400021X


Sample collection

Faecal samples and blood samples of all rats were collected at

baseline (week 3), after the first feeding period at midpoint

(week 15) and at endpoint (week 19). Faecal samples were

frozen at 2808C until gut microbiota composition analysis

by quantitative PCR (qPCR). Fe concentration in the faecal

samples of the 35 ppm Fe-supplemented group, Fe-deficient

group and control group at endpoint (week 19) was assessed

by atomic absorption spectrometry (SpectrAA-240K with GTA-

120 Graphite Tube Atomizer, Varion Techtron). Blood samples

were collected by the tail vein clip method(45) and analysed

immediately for Hb concentrations using a Hemocue 201 instru-

ment (HemoCue). After killing the rats by CO2 inhalation, blood

was collected again by cardiac puncture and centrifuged

immediately, and serum was kept at 2808C until ferritin

measurements. Serum ferritin concentrations were assessed in

duplicate using a rat ferritin ELISA kit according to the manu-

facturer’s instructions (Immunology Consultants Laboratory, Inc.).

Sections of the ileum, caecum and colon were removed,

rinsed in PBS and immersed in 4 % paraformaldehyde, and

stored at 48C until histological analyses. Caecal contents were

also collected and frozen immediately at 2808C for caecal

microbiota metabolic activity and composition analyses.

Histological analyses of ileal, caecal and
colonic tissue samples

All histological analyses were carried out by the Histology

Analysis Platform of the Nantes Atlantic National College of

Veterinary Medicine, Food Science and Engineering (Oniris,

Nantes, France). After sectioning, ileal, caecal and colonic

tissue samples were stained with haematoxylin–eosin–

safranin and analysed microscopically using a Nikon Eclipse

5DI microscope connected to a Nikon DS-42-RI1 camera

(200£ or 400£ magnification) (Nikon Instruments). Tissue

samples were analysed for infiltration of immune cells,

damage in crypt architecture, hyperaemia and mucosal ero-

sion and were given a histological colitis score according to

the severity of these parameters(46). The veterinary pathologist

examining the tissue samples was blinded to treatment.

Faecal and caecal microbiota composition analysis using
quantitative PCR

Total genomic DNA from faecal samples and caecal content

samples was extracted using the FastDNA SPIN Kit for Soil

(MP Biomedicals). For the enumeration of total 16S rRNA

gene copies and nine bacterial groups prevalent in the gut

microbiota, namely Firmicutes, Bacteroides spp., Clostridium

cluster IV, F. prausnitzii, E. hallii, Enterobacteriaceae,

Lactobacillus/Leuconostoc/Pediococcus spp., Roseburia spp./

E. rectale, and sulphate-reducing bacteria (SRB), primers target-

ing the 16S rRNA gene or a functional gene were used for qPCR

carried out with an ABI PRISM 7500-PCR sequence detection

system using 2£ SYBR Green PCR Master Mix (Life

Technologies), as described previously(27,47). In short, PCR

comprising 0·2mM of each primer in 25ml volume were carried

out in duplicate for each sample. In every run, a standard curve

with serially diluted 16S rRNA gene or functional gene concen-

trations of a representative strain for each bacterial target group

was included. SRB were enumerated with the same protocol

using the primers dsrA_F336 (50-CTG CGA ATA TGC CTG

CTA CA-30) and dsrA_R533 (50-TGG TCG ARC TTG ATG TCG

TC-30) targeting the dissimilatory sulphite reductase subunit

A(48), and E. hallii 16S rRNA gene copies were evaluated

using the primers EhalF (50-GCGTAGGTGGCAGTGCAA-30)

and EhalR (50-GCACCGRAGCCTATACGG-30)(49).

Pyrosequencing analysis

Pyrosequencing analysis was carried out using caecal

samples of the control group, Fe-deficient group and
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35 ppm Fe
n 8

70 ppm Fe
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Fe excess
n 8

Baseline
(week 3)

3 weeks 12 weeks

Control diet

Control diet

Fe-deficient diet
(2·9 mg Fe/kg)

Control diet

Fe-deficient diet
(2·9 mg Fe/kg)

35 ppm Fe diet
(35 mg Fe/kg from ferrous

sulphate)

70 ppm Fe diet
(70 mg Fe/kg from ferrous
sulphate and ferric citrate)

70 ppm Fe diet
(70 mg Fe/kg from ferrous
sulphate and ferric citrate)

Fe-deficient diet
(2·9 mg Fe/kg)

Fe-deficient diet
(2·9 mg Fe/kg)

4 weeks

Midpoint
(week 15)

Endpoint
(week 19)

Fig. 1. Study set-up with different iron feeding regimens according to a classical iron depletion–repletion study design. Germ-free Fischer 344 rats (n 40) were

divided into five groups and inoculated with the same microbiota from a human volunteer. After 3 weeks of initial colonisation for gut microbiota establishment,

diets differing only in iron concentration were fed to rats as outlined in the figure.
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35 ppm Fe-supplemented group for three rat pairs in each

group. Caecal content samples of the two rats housed in

the same cage were pooled, and DNA was extracted using

the FastDNA SPIN Kit for Soil (MP Biomedicals), resulting in

three genomic DNA samples per analysed group of rats

(total of nine genomic DNA samples). Pyrosequencing anal-

ysis was carried out by DNAVision (Charleroi, Belgium)

using a 454 Life Sciences Genome Sequencer FLX instrument

(Roche Applied Science), following previously described pro-

cedures(27). Resulting reads from the hypervariable gene

region V5–V6 of the 16S rRNA gene were assigned to samples

according to their multiplex identifier tag, checked for the

presence of primer sequences and fragment length .200 bp.

All reads not fulfilling these criteria were discarded, resulting

in an average number of sequences of 5345 (SD 1929) per

sample used in taxonomic assignment. Sequences were

assigned on family and genus level using the Mothur(50) and

Greengenes 16S reference database(51). Moreover, sequences

that did not align where 95 % of the other sequences aligned

were discarded. Chimera candidates were identified using

the UCHIME implementation in Mothur(52). Relative abun-

dances of unassigned reads or reads assigned on family or

genus level were calculated from the total number of reads

matching the quality control criteria.

Metabolite analysis

Caecal content samples were centrifuged (10 000g) and super-

natants were diluted with MilliQ water before analysis by

HPLC as described previously(53). Fermentative metabolites

(lactate, formate, acetate, propionate, butyrate, isovalerate,

isobutyrate and valerate) and SCFA (acetate, propionate and

butyrate) in each sample were analysed in duplicate.

Statistical analysis

Statistical analysis was carried out using JMP 8.0 and SPSS 18.0

(IBM SPSS, Inc.). All data were tested for normal distribution

using the Shapiro–Wilk test and are expressed as means

with their standard errors. Hb, ferritin, weight gain and gut

microbiota concentrations for each metabolite and caecal

qPCR data for each bacterial target were compared between

the groups of rats using one-way ANOVA with a post hoc

Bonferroni test. Diet consumption was compared using non-

parametric Kruskal–Wallis test. qPCR data on faecal micro-

biota composition were analysed over time for every bacterial

target within each rat group using one-way repeated-measures

ANOVA with Greenhouse–Geisser correction and post hoc

Bonferroni test. qPCR data were log10-transformed before

statistical analysis. Histological colitis scores and pyrosequen-

cing data were compared pairwise using the non-parametric

Mann–Whitney U test. P values ,0·05 were considered

significantly different.

Results

Iron status, faecal iron concentrations, weight gain and
diet consumption

Fe status of rats fed different Fe diets was assessed by blood

Hb concentration measurements at midpoint (week 15) and

at endpoint (week 19), while ferritin concentration was

measured at endpoint (Table 1). Although rats were fed a

highly Fe-deficient diet (2·9 mg Fe/kg diet) for up to 16 weeks

after an initial colonisation period during which they were fed

a standard diet, Hb and ferritin concentrations at endpoint

(week 19) were not significantly different between the

groups of rats. However, lighter caecal content colour and

liver colour were observed in the majority of rats in the Fe-

deficient group (Fig. S1, available online). Weight gain was

similar between all groups of rats during the first feeding

period (weeks 3–15). During the second feeding period

(weeks 15–19), rats in the control group exhibited the highest

weight gain, which was significantly higher than that in rats in

the 70 ppm Fe-supplemented group and Fe-excess group

possibly because the control group had the lowest weight at

week 15 and therefore more growth potential during the

second feeding period. Interestingly, diet consumption was

similar between the groups of rats during the first and

second feeding periods.

Table 1. Hb and ferritin concentrations, weight gain and dietary intake in rats fed a diet differing only in iron concentration at midpoint (week 15) and
endpoint (week 19) (n 7–8, each group)

(Mean values with their standard errors)

Hb week 15*
(g/l)

Hb week 19*
(g/l)

Ferritin
week 19*

(mg/l)

Weight gain
weeks 3–15*

(g)

Weight gain
weeks 15–19*

(g)

Diet consumed
weeks 3–15†

(g)

Diet consumed
weeks 15–19†

(g)

Groups Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Control 168·9a 4·5 153·4 4·4 3·3 0·6 38·4 2·5 15·1a 1·8 716·1 11·9 262·1 5·0
Deficient 154·8a,b 4·5 147·9 2·5 1·9 0·8 37·1 2·2 9·7a,b 1·6 751·3 16·1 254·2 6·4
35 ppm Fe 150·9b 2·5 148·6 3·3 2·5 0·6 40·0 2·6 10·2a,b 1·3 747·9 12·5 273·6 3·9
70 ppm Fe 151·6b 3·1 146·9 2·5 1·7 0·4 36·6 4·2 8·7b 0·9 770·2 24·2 255·3 8·7
Fe excess 150·7b 3·8 147·1 1·6 4·4 1·4 41·0 1·3 8·9b 1·0 747·7 13·1 254·6 5·0
P 0·007 0·549 0·073 0·761 0·010 0·380 0·535

a,b Mean values within a column with unlike superscript letters were significantly different (P,0·05).
* Differences among groups were tested by ANOVA and post hoc Bonferroni test.
† Differences among groups were tested by non-parametric Kruskal–Wallis test.
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At endpoint, Fe concentration in the faecal samples of rats

in the Fe-deficient group (20 (SEM 3) mg Fe/kg) was signi-

ficantly lower than that in the faecal samples of rats in the

35 ppm Fe-supplemented group (185 (SEM 14) mg Fe/kg,

P,0·001) and control group (184 (SEM 7) mg Fe/kg, P,0·001).

Effect of different iron concentrations in the diet on
histological colitis scores

Ileum, caecum and colon of rats were collected after killing

them, preserved in paraformaldehyde, and investigated by

light microscopy for infiltration of immune cells, damage in

crypt architecture, hyperaemia and mucosal erosion to evalu-

ate histological colitis scores (Fig. 2(a)–(c)). In general, no

severe colitis was detected in the ileum, caecum or colon

of all rat groups, and the highest average score was 4·3

(SEM 0·4) (ileum, 35 ppm Fe-supplemented group) of a maxi-

mum possible score of 11, indicating very light colitis. Rats

fed an Fe-deficient diet had the lowest ileum histological

colitis scores (score of 0·8 (SEM 0·3)), which were significantly

lower than those of the control rats (3·5 (SEM 0·4), P¼0·001)

and 35 ppm Fe-supplemented rats (4·3 (SEM 0·4), P¼0·0009)

(Fig. 2(a)). Caecum histological colitis scores were similar

between all groups of rats and rats in the 35 ppm Fe-

supplemented group had the highest scores (2·9 (SEM 0·5))

(Fig. 2(b)). Supplementation with 35 ppm Fe after feeding

an Fe-deficient diet (35 ppm Fe-supplemented group)

significantly increased the caecum histological colitis scores

compared with those of rats in the Fe-deficient group.

Surprisingly, when a diet with 70 ppm Fe was fed after feeding

an Fe-deficient diet (70 ppm Fe-supplemented group), no

increase in histological colitis scores was observed. The

opposite observation was made in the colon, wherein the

70 ppm Fe-supplemented group had higher histological colitis

scores (4·0 (SEM 0·4)) than the Fe-deficient group (Fig. 2(c)).

Moreover, differences in histological colitis scores between

the different parts of the intestine (ileum–caecum–colon)

were observed with a lower histological colitis score being

observed for the caecum in the control and 70 ppm Fe-

supplemented groups and an increase in histological colitis

scores from the ileum to the colon being observed in the

Fe-deficient group. By contrast, a significant decrease in

histological colitis scores from the ileum to the colon was

observed in rats in the 35 ppm Fe-supplemented group,

while no changes were observed in those in the Fe-

excess group.

Caecal and faecal microbiota composition in rats fed diets
differing in iron concentration

Caecal contents of all rats were collected after killing them

and the extracted DNA was investigated by qPCR to enumer-

ate different bacterial groups present in the gut microbiota

(Fig. 3) and by 454-pyrosequencing (Fig. 4(a)–(c)) to assess

gut microbiota diversity and composition. qPCR did not

reveal changes in the log number of total 16S rRNA gene

copies or Firmicutes 16S rRNA gene copies/g caecum between

the different groups of rats fed different Fe diets. The bacterial

community in all rats was dominated by Firmicutes, including

Clostridium cluster IV, followed by Bacteroides spp. (Fig. 3).

This finding was confirmed by 454-pyrosequencing in rats

in the control group, Fe-deficient group and 35 ppm

Fe-supplemented group, where the phylum Firmicutes

(54·5–82·6 %, data not shown) dominated, followed by
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Fig. 2. Histological colitis scores of (a) ileum, (b) caecum and (c) colon of

rats fed diets differing in iron concentration. Colitis scores were obtained by

light microscopy after haematoxylin/eosin/safranin staining and investigation

of infiltration of immune cells, damage in crypt architecture, hyperaemia and

mucosal erosions. Each dot represents one rat. Horizontal bars are means,

with their standard errors. * Mean value was significantly different from that of

the control group (P,0·05; non-parametric Mann–Whitney U test). † Mean

value was significantly different from that of the iron-deficient group (P,0·05;

non-parametric Mann–Whitney U test).
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Bacteroidetes (14·3–42·0 %, data not shown). On the

taxonomic family level, these rats had the highest relative

abundance (34·1–43·8 %) of Lachnospiraceae (Firmicutes)

(Fig. 4(a)).

The levels of dominant bacterial groups (Firmicutes,

Bacteroides spp. and Clostridium cluster IV) in caecum were

similar in rats in the control and Fe-deficient groups. However,

the levels of E. hallii and Enterobacteriaceae were significantly

lower in rats fed an Fe-deficient diet (8·59 (SEM 0·17) and 7·89

(SEM 0·11), respectively; mean log 16S rRNA gene copies/g

caecum) than in the control rats (9·22 (SEM 0·08) and 8·61

(SEM 0·16), respectively) (Fig. 3). Moreover, a significantly

lower abundance of Bilophila spp. (0·36 (SEM 0·11)%) and

Coprococcus spp. (0·74 (SEM 0·07)%) was observed in rats

in the Fe-deficient group than in those in the control group

(Bilophila spp., 0·87 (SEM 0·19)%; Coprococcus spp. 2·11 (SEM

0·58)%) by 454-pyrosequencing (Fig. 4(c)). Bacteroides spp.,

Clostridium cluster IV, F. prausnitzii, E. hallii and SRB were

significantly increased in the caecum of rats in the 35ppm Fe-

supplemented group than in that of rats in the Fe-deficient

group; however, bacterial concentrations did not increase to

higher levels compared with those in the control group

(Fig. 3). The 454-pyrosequencing analysis revealed a signifi-

cantly higher relative abundance of Lachnospiraceae (43·81

(SEM 2·79)%, Fe-deficient group: 34·14 (SEM 1·97)%), Rumino-

coccaceae (12·15 (SEM 1·30)%, Fe-deficient group: 8·25 (SEM

0·38)%) and Veillonellaceae (0·46 (SEM 0·05)%, Fe-deficient

group: 0·29 (SEM 0·02)%) in the 35ppm Fe-supplemented

group than in the Fe-deficient group (Fig. 4(a)). On the

genus level, the abundance of Coprococcus spp. (2·21 (SEM

0·43)%, Fe-deficient group: 0·74 (SEM 0·07)%) and Bilophila

spp. (0·77 (SEM 0·05)%, Fe-deficient group: 0·36 (SEM 0·11)%)

was significantly increased, while that of Enterococcus spp.

(0·05 (SEM 0·03)%, Fe-deficient group: 1·24 (SEM 1·03)%)

and Turicibacter spp. (0·23 (SEM 0·14)%, Fe-deficient group:

1·41 (SEM 0·38)%) was significantly decreased in the 35ppm

Fe-supplemented group than in the Fe-deficient group

(Fig. 4(b) and (c)). Bacterial populations in rats in the 70ppm

Fe-supplemented group and the Fe-excess group did not

differ when compared with those in rats in the Fe-deficient

group or control group, respectively (Fig. 3).

Faecal samples collected at baseline (week 3), midpoint

(week 15) and endpoint (week 19) shortly before killing

were analysed for microbial composition using qPCR to

enumerate prevalent bacterial groups (Table S2, available

online). During the entire trial period of 16 weeks, the

faecal microbiota was very stable, with changes in the log

numbers of 16S rRNA gene copies of dominant bacterial

groups per g faeces being less than 1 log, and no direct

correlations between dietary Fe concentrations and faecal

microbiota composition could be extracted.

Effect of different iron diets on caecal microbiota
metabolic activity

Fermentative metabolites and SCFA concentrations measured

by HPLC (Fig. 5) were not different between rats in the

Fe-deficient group and those in the control group. However,

supplementation with Fe at the 35 and 70 ppm levels

affected the caecal microbiota metabolic profile profoundly.

Fermentative metabolites and acetate and propionate concen-

trations were all significantly increased in rats in the 35 ppm

Fe-supplemented group (83·2 (SEM 10·1), 33·7 (SEM 2·3) and

15·3 (SEM 0·9) mM, respectively) and the 70 ppm Fe-

supplemented group (62·0 (SEM 2·6), 33·1 (SEM 1·6) and

14·5 (SEM 0·9) mM, respectively) than in those in the

Fe-deficient group (39·6 (SEM 1·6), 23·7 (SEM 1·2) and

9·5 (SEM 0·5) mM, respectively). Moreover, butyrate concen-

tration was significantly increased in the 35 ppm

Fe-supplemented group (29·5 (SEM 7·5) mM) compared with
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the Fe-deficient group (4·8 (SEM 0·8) mM). Propionate and

butyrate concentrations in the 35 ppm Fe-supplemented

group were even higher than those in the control group. On

the other hand, supplementation with 70 ppm Fe led to no sig-

nificant increase in butyrate concentration compared with that

in rats in the Fe-deficient group. Propionate (15·4 (SEM

0·7) mM) and butyrate (16·7 (SEM 3·9) mM) concentrations

were significantly increased in the Fe-excess group compared

with the control group (11·7 (SEM 0·8) and 3·3 (SEM 0·6) mM,

respectively).

Discussion

The results of the present study carried out using human gut

microbiota-associated rats provide a new insight into the

highly complex interactions between the host, the gut micro-

biota and Fe. Colonisation of rats with human gut microbiota

was successful, and dominant bacterial groups were present

at similar levels in rats at baseline and in the donor microbiota

as described previously(36,40). The use of one faecal donor also

led to highly similar microbiotas in all rats, whereas in humans

variability in microbiota composition between individuals is

high and may potentially mask smaller effects(54). Feeding

regimens were set up according to the classical Fe

depletion–repletion study(42) in which Fe depletion is started

in very young rats (usually 3 weeks old), which have small

body Fe stores and high Fe needs for growth, leading to

severe Fe-deficiency anaemia(28,42).

Surprisingly, in the present study, the 12- and 16-week

depletion periods were insufficient to induce Fe-deficiency

anaemia. This may be because the rats were 8 weeks of age

when the intervention was started (instead of the usual

3 weeks) and had time to build up adequate Fe stores. Drawing

on these stores allowed them to maintain Hb concentrations

during the depletion period. However, rats in the Fe-deficient

group had caecal contents of a lighter colour, suggesting a

mild degree of Fe depletion (Fig. S1, available online). In

addition, Fischer 344 rats are known to be more resistant to

Fe deficiency than the Sprague–Dawley rats usually used in a

Hb depletion–repletion study(55). At endpoint, faecal Fe con-

centrations in rats were higher than dietary Fe concentrations,

which may be explained by a concentration effect of Fe in

the gut lumen during water and nutrient absorption and a poss-

ible Fe loss in the host by sloughed enterocytes.

Dietary Fe supplementation has been shown to be

associated with increased inflammatory reactions of the gut

mucosa possibly generated by the production of reactive

oxygen species in the presence of elevated luminal Fe
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concentration, which has been observed in inflammatory

bowel disease patients and rat models(56–58), while other

studies suggest an involvement of gut bacterial composition

changes due to Fe concentrations(25,59). Werner et al.(25)

found that a low-Fe diet completely inhibited gut inflam-

mation in a mouse colitis model, while Fe supplementation

in wild-type mice had no effect on colitis scores. In agreement,

the present study showed lower histological colitis scores of

ileum and colon in rats fed an Fe-deficient diet while Fe sup-

plementation with 35 ppm Fe but not with 70 ppm Fe caused

light colitis in ileum and caecum. Therefore, no clear inflam-

mation pattern related to Fe concentrations could be detected

in the investigated rats. Fe supplementation in school children

in Côte d’Ivoire has been found to clearly increase calprotectin

concentrations, but in an environment with a high risk of

pathogen exposure(30). We speculate that Fe supplementation

in the range of physiological levels may not lead to mucosal

inflammation unless other influencing factors are present

such as a high contamination with pathogens or an inflamma-

tory pre-set of the host.

Faecal microbiota composition in all rats was very stable

over time. Because rats had normal Fe status, we speculated

that especially under an Fe-deficient diet regimen, bacteria

in the colon could sequester Fe from sloughed enterocytes.

Therefore, caecal contents were analysed, in which Fe might

have a more direct impact on the microbiota. There was no

difference in gut microbiota metabolic activity in caecum

between rats in the Fe-deficient group and those in the control

group. However, we found that low luminal Fe concentrations

slightly affected the gut microbiota composition and

decreased the relative abundances of Bilophila spp., E. hallii

and Coprococcus spp. most probably due to Fe-dependent

enzymes such as hydrogenases in their metabolic

pathways(9,60,61).

The findings of the present study are in contrast to previous

findings in highly Fe-deficient rats and also to the results of an

in vitro colonic fermentation experiment(24,27). In both exper-

iments, very-low-Fe conditions had caused major dysbiosis of

the gut microbiota and especially decreased butyrate and pro-

pionate production. Moreover, it has been shown that changes

in host Fe metabolism in mice and humans have effects on

the gut microbiota without changing dietary Fe concen-

trations(32,62). However, in the present study, hosts were not

Fe deficient and it is possible that host Fe plays an important

role in the maintenance of the composition and metabolic

function of the gut microbiota as part of the symbiosis

between the microbiota and the host. Indeed, during low-Fe

diet feeding, faecal Fe concentrations were 20 mg Fe/kg

faeces, which could be provided by unabsorbed dietary Fe

and by sloughed enterocytes from the host. These faecal Fe

concentrations are probably adequate to maintain the gut

microbiota as has been shown in our previous in vitro

studies(27).

Fe supplementation with 35 mg Fe/kg diet from FeSO4

(35 ppm Fe-supplemented group) had a strong effect on

both the caecal microbiota composition and metabolic

activity, especially increasing the abundance of Bacteroides

spp. and butyrate producers such as Clostridium cluster IV

members, e.g. F. prausnitzii, and Coprococcus spp. Moreover,

a decrease in the relative abundances of Turicibacter spp. and
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Enterococcus spp., both of which are opportunistic patho-

gens(63,64), was observed during feeding of the 35 ppm Fe

diet than during feeding of a Fe-deficient diet. Enterococci

most probably had a growth advantage under low-Fe con-

ditions due to their restricted need for Fe and lost this

advantage during Fe supplementation. Similar observations

were made in mice in which feeding a diet containing Fe

led to an increase in the abundance of Bacteroides spp. and

to a decrease in that of Turicibacter spp. compared with

feeding a Fe-free diet(25).

The concentrations of acetate, propionate and especially

butyrate were significantly increased due to Fe supplemen-

tation compared with those in rats in the Fe-deficient group.

In a previous study, Fe supplementation has been found to

lead to a significant increase in butyrate and propionate

concentrations in highly Fe-deficient rats(24). Moreover,

Fe-deficient conditions in the same rat study and also in a

colonic in vitro fermentation study led to a decrease in buty-

rate and propionate production(27). These observations

suggest that Fe is a crucial element for butyrate and propio-

nate production in strict anaerobic gut bacteria. Indeed, in

the butyrate production pathway, oxidoreductases and

hydrogenases are involved(8,14,65), which are often Fe depen-

dent, and under conditions of optimal bioavailable Fe concen-

trations, the conversion of dietary or host carbons into end

metabolites such as butyrate by gut bacteria may be enhanced.

Studies in bioreactors with mixed strict-anaerobe cultures have

shown that increasing Fe concentrations lead to a higher H2

and butyrate yield per carbon source(29,66,67). Indeed, when

calculating the total carbon output from bacterial fermentation

in the form of SCFA, the diet with 35 mg Fe/kg diet from FeSO4

(35 ppm Fe-supplemented group) led to more than double the

carbon output than the control diet or a Fe-deficient diet,

mainly due to the promotion of butyrate production, although

diet consumption was similar in these groups of rats. SCFA can

provide up to an additional 10 % of daily dietary energy to the

host from indigestible compounds, such as fibres(68). This pro-

motion of carbon output due to Fe supplementation could

increase the energy source of plant-based diets, which are

mainly consumed in developing countries, and therefore

might contribute to weight gain in malnourished individuals.

A significant increase in caecal butyrate and propionate con-

centrations along with a decrease in the abundance of possible

opportunistic pathogens due to 35ppm Fe supplementation

could lead to beneficial effects on host gut health. Propionate

produced by several Bacteroides spp. has been shown to be

involved in the regulation of satiety(69). Butyrate is the main

energy source for colonocytes, and it can inhibit NF-kB acti-

vation and therefore decrease inflammatory responses(70,71).

Moreover, butyrate has anti-carcinogenic effects through the

promotion of apoptosis and inhibition of proliferation(72).

Interestingly, no correlation between increased butyrate con-

centrations and decreased colitis scores was observed in the

present study, but the anti-inflammatory effects of butyrate

might be much more visible in mucosa with an inflammatory

pre-set. Moreover, the abundance of H2-utilising and potentially

toxic H2S-producing SRB was increased with Fe supplemen-

tation in the present study possibly due to the promotion of

the production of H2, a by-product of the butyrate production

pathway(65). SRB have been identified as possible contributors

of different digestive pathologies such as inflammatory bowel

syndrome and inflammatory bowel disease(40,73–76), and H2S

has been shown to affect metabolic functions in colonocytes

and to cause DNA damage(74,76). However, other studies have

suggested a protective role of H2S in the epithelial layer

during inflammation and identified H2S as an important

mediator for intracellular processes(77,78). Therefore, it remains

difficult to directly associate an increase in SRB counts and

H2S production with negative effects on the gut mucosa, and

no negative modulation of the gut mucosa could be detected

in the present study.

In conclusion, the present study carried out using human

gut microbiota-associated rats investigated the effects of diet-

ary Fe concentrations on the gut microbiota. Our data suggest

that an Fe-deficient diet alone may have no major effects on

dominant bacterial populations or gut microbiota metabolic

activity in a host, which is not Fe deficient based on blood

parameters as observed in the study. By contrast, Fe sup-

plementation with 35 mg Fe/kg diet from FeSO4 promoted

dominant bacterial groups and slightly increased SRB, while

the abundance of potential opportunistic pathogens was

decreased. Moreover, Fe supplementation strongly increased

the metabolic activity of the gut microbiota. Histological colitis

scores remained very low despite Fe supplementation, indicat-

ing that Fe alone does not lead to gut inflammation. Thus,

we suggest that Fe supplementation might confer additional

health benefits on the host by stimulating the gut microbiota

without an inflammatory gut mucosa and in a relatively

pathogen-free environment.
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