
THE FACTORIZATION OF LOCALLY FINITE GRAPHS 
W. T. TUTTE 

1. Introduction. A graph G consists of a set V(G) of objects called nodes 
and a set M (G) of objects called links, V(G) and M (G) having no members in 
common. With each link A there is associated just two nodes said to be the 
ends of A, or to be incident with A, or to be joined by A. The sets V(G) and 
M(G) may be finite or infinite. There may be nodes with which no link is 
incident. Such nodes are said to be isolated. 

If V(G) and M(G) are finite, the graph G is said to be finite. 
The order of a graph G is the cardinal of V(G). The degree of a node a of G 

is the cardinal of the set of links of G with which a is incident. The graph G 
is said to be locally finite if the degree of each node of G is finite. If all the nodes 
of G have the same finite degree a we may say that G is a regular graph of the 
crth degree. 

Let x and y be any two nodes of a graph G. We say that they are connected 
in G if there exists a finite sequence 

(1) P = (6l, Bl , 62, £2 , • • • , &r, Br, 6r+l) 

satisfying the following conditions, 

(i) 61= x\ &r+i= 3>. 

(ii) The members of P are alternately nodes and links of G. 

(iii) Consecutive members of P are incident. 
If x and y are any nodes of a graph G, we define the relation x ^ y to mean 

that either x = j or else # and y are connected in G. It is easily verified that 
the relation is an equivalence relation. It therefore partitions G into a set 
{Ga} of graphs such that Ga is connected, each node or link of G belongs to 
some Ga, and no two of the Ga have any node or link in common. We shall 
call the Ga the components of G. 

A subgraph of a graph G is a graph G' such that V(G') = F(G) and M(G')ÇZ 
M (G), a link of G' having the same ends in G' as in G. A factor of G is a regular 
subgraph of G of the first degree. If G has no factor it is prime. Clearly all 
finite graphs of odd order are prime. 

Let S be any finite subset of V{G). Then we denote the number of members 
of 5 by f(S). We denote by G s the graph obtained from G by suppressing the 
members of 5 and all links of G having one or both ends in 5. Let h(S) be the 
cardinal of the set of components of Gs, and let hu(S) be the cardinal of the set 
of those components of Gs which are finite and of odd order. Clearly, if G is 
locally finite and is connected, then h(S) and hu(S) are finite. 

The object of this paper is to prove the following Theorem. 
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THEOREM A. A locally finite graph G is prime if and only if there is a finite 
subset S of V(G) such that hu(S) > / (£ ) . 

A proof of this Theorem for the case in which G is finite has already been 
given. (W. T. Tutte, "The Factorization of Linear Graphs," J. London Math. 
Soc, vol. 22 (1947), 107-111). We refer to this paper below as Paper I. In the 
present paper we assume the truth of the Theorem for finite graphs and show 
how to extend it to the case in which G is infinite (but locally finite). 

2. Preliminary results. We shall say that a graph G is constricted if there 
exists a finite subset 5 of V(G) such that hu(S) > f(S). 

THEOREM I. A constricted graph has no factor. 

Let G be any graph such that V(G) has a finite subset S such that hu(S) > 
AS). 

Suppose there exists a factor F of G. Then if C is any finite component of 
odd order of Gs it is clear that F must contain a link having one end in C and 
the other in S. Hence the cardinal of the set of links of F having ends in 5 is 
greater than the number of members of S. Hence some node of 5 must be 
incident with more than one link of F, which is absurd. 

THEOREM II. The truth of Theorem A for connected locally finite graphs im
plies its truth for all locally finite graphs. 

Let G be any locally finite graph, and let {Ga\ be the set of its components. 
Let us assume that Theorem A has already been proved for connected locally 
finite graphs. 

If G is prime, some component Ga of G must be prime. For if each Ga had a 
factor Fa we could clearly obtain a factor of G by combining the factors Fa. 

But if Ga is prime there is a finite subset 5 of V(Ga) such that f(S) < hu(S) 
in G. For Ga is connected and so we can apply Theorem A to it. But the 
components of Gs are simply the components of (Ga)s together with the com
ponents other than Ga of G. Hence the inequality f(S) < hu(S) is true also in G. 

Hence if G is prime, it is constricted. But by Theorem I, if G is constricted, 
it is prime. Thus Theorem A is true for G. 

We conclude from Theorems I and II that, in order to prove Theorem A, 
it now suffices to prove that any connected locally finite infinite graph which 
is not constricted has a factor. 

3. Distance and ^-factors. Let G be any connected locally finite graph, 
and let a be any node of G. 

Suppose that b is any other node of G. Then because G is connected there 
exists a finite sequence P of the form (1) such that b\— a and &r+i = b. The 
least value of r for which such a sequence P exists will be called the distance 
d(a, b) from a to b. We write d{ay a) = 0. 

We define Vn(G; a) to be the set of all nodes b of G such that d{a, b)< n. 
We define Mn(G; a) to be the set of all links A of G such that both ends of A 
are in Vn(G; a). It is clear from these definitions that if a link A of G has one 
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end in Vn(G; a), then AeMn+i(G\ a). It is also evident, from the fact that G 
is locally finite, that Vn(G\ a) and Mn(G; a) are finite for each non-negative 
integer n. 

We define a false factor of G as a subgraph X of G which satisfies the fol
lowing conditions. 

(i) M(X) is finite. 
(ii) There is no node of G whose degree in X exceeds 1. If X is a false 

factor of G, we denote by W(X) the set of all nodes of X which are incident 
with links of X. 

If a is a node and X a false factor of G, we say that X is an n-factor of G with 
respect to a if 

(2) FW+1(G; a)3 W(X)^> Vn(G; a), 

n being any non-negative integer. 

THEOREM III . Let G be any connected locally finite infinite graph which is 
not constricted, and let a be any node of G. Let n be any non-negative integer. Then 
there exists an n-f actor of G with respect to a. 

Let Q denote the set Fn+i(G; a) — Vn{G\ a). 
We define a graph H as follows. The nodes of H are the members of Fw+i 

(G; a). We take each member of Mn+i(G; a) as a link of H, assigning it the same 
ends in H as in G. In addition we join each pair of members of Q by a new link. 

We next define a graph K. If the order of H is even, K = H. If the order of 
H is odd we construct K from H by adjoining to H a new node q and then 
joining q to each member of Q by a new link. By this construction the order 
m(K) of K is always even. We write Qf = Q or QKJ {q\ according as the order of 
H is even or odd. 

Suppose that K is constricted. Then there is a subset 5, (possibly the null 
subset), of V(K) such that 
(3) hu(S) > f(S) in K. 

But it is clear that 

(4) m{K) EE hu(S) + f(S) (mod 2). 

Consequently, since m(K) is even, we must have 

(5) hu(S) > f(S) + 2. 

At most one of the components of Ks contains a node of Qf. For any two 
nodes of Qf will be joined by a link of K. Two such nodes cannot therefore 
be in different components of Ks. Write T = 5 or S — {q} according as the 
order of H is even or odd. (If qêS, S — {q} = S). Then it is clear that any 
component of Ks which contains no node of Q' is also a component of Gj . 
Hence, using (5), we deduce tha/t the inequality hu(T) > f(T) holds in G. This 
is contrary to our hypothesis that G is not constricted. We conclude that K is 
not constricted. 

Since Theorem A holds for finite graphs it follows that K has a factor F\. 
Let X be the subgraph of G defined by 
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(6) M{X) = M(F{) H Mn+1(G; a). 
Each node of G is incident with at most one member of M(Fi). Hence X is 
a false factor of G. Now each link of K incident with any node ceVn(G; a) is 
a link of Mn+i(G; a) incident with c in G. Hence c is incident in G with a 
member of M{X). Thus 

(7) W{X) 2 Fn(G; a). 
Also each node of G incident with a member of Mn+i{G; a) is a member of 
Fn + i(G; a). Hence 

(8) F n + 1 ( G ; a ) 3 TF(X). 

From (7) and (8) it follows that X is an w-factor of G with respect to a. 

4. Proof of Theorem A. In this Section, G is any connected, locally finite, 
infinite graph, which is not constricted, and a is any node of G. 

Let m and n be integers satisfying m > n > 0, and let Xm be any m-factor 
of G with respect to a. We denote by C(Xm\ n) the subgraph of G obtained 
from Xm by suppressing all links of Xm not in Mn+i(G; a). It is clear that if 
I > n, then 

(9) C(C(Xi'ym);n) = C(Xr, w). 
It is also evident that C(Xm; w) is an n-iactor of G with respect to a. 

Suppose that the ra-factor Xm and the n-factor Xn of G with respect to a are 
related by the equation 

Xn — C{Xm', n). 
Then we say that Xm is an extension of Xn to m. It may happen for a given 
w-factor Xw of G with respect to a, that there exists an integer m > n such 
that Xn has no extension to m. In that case it follows by (9) that Xn has no 
extension to any integer I > m. There is thus a maximum integer r(Xn) > n 
such that Xn has an extension to r{Xn). We call r(Xn) the range of Xn. The 
only other possibility is that the given w-factor Xn may have extensions to all 
integers m > n. We then say that Xn has infinite range. 

THEOREM IV. There exists a 0-factor of G with respect to a which has infinite 
range. 

If Xo is any 0-factor of G with respect to a, it follows from (2) that M(X0)Q 
Mi(G; a). As Mi(G; a) is finite, it follows that the set of 0-factors of G with 
respect to a is finite. 

Suppose that no one of them has infinite range. Then there exists an integer 
n greater than the range of any 0-factor of G with respect to a. By Theorem 
III there exists an n-i actor Xn of G with respect to a. Then C(Xn; 0) is a 
0-factor of G with respect to a whose range is not less than n. This contra
diction establishes the Theorem. 

THEOREM V. Let n he any non-negative integer, ana let Xn be an n-factor of 
G with respect to a having infinite range. Then there exists an (n + 1) -factor 
X n + i of G with respect to a which has infinite range and which satisfies Xn — 
C(Xn+1; n). 
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Let Z be the set of {n +1)-factors of G with respect to a which are extensions 
to (n + 1) of Xn. If X is any member of Z it follows from (2) that M(X)Q 
ilfn+i(G; a). As Mn+i(G; a) is finite it follows that Z is finite. 

Suppose that no member of Z has infinite range. Then there is an integer 
m > n + 1 which exceeds the range of each member of Z. Since Xn has 
infinite range there exists an m-factor Xm of G with respect to a such that 
C{Xm\ n) = Xn. Then C(Xm; n + 1) is an (n + 1)-factor of G with respect to 
a. By (9) it is a member of Z. Hence it can have no extension to m. This is 
absurd, since Xm is such an extension. The Theorem follows. 

THEOREM VI. There exists an infinite sequence (F0 , Fi, F2, F3, . . .) having 
the following properties. 

(i) For each non-negative integer n, Yn is an n-factor of G with respect to a 
having infinite range. 

(ii) For each non-negative integer n, C(F n + i ; n) = Yn. 

The terms F r are defined successively as follows. F0 is defined to be a 
0-factor of G with respect to a having infinite range. Such a F0 exists, by 
Theorem IV. For r > 0, F r + i is defined to be an extension to (r + 1) of F r 

having infinite range. If Yr is fixed, such a F r + i exists, by Theorem V. The 
sequence of Yr defined in this way satisfies (i) and (ii). 

Let us consider some particular infinite sequence (F0 , Fi, F2, . . .) satis
fying conditions (i) and (ii) of Theorem VI. Using (9) we can show, by an 
obvious induction, that if m and n are integers satisfying m > n > 0, then 
C(Ym);n)= Yn. 

Let F be the subgraph of G defined by 
CO 

(10) M(F) = U M(Yr). 
r = 0 

Let b be any node of G. Write d(a, b) = n. Then b*Vn(G; a) C W( Fn), by (2). 
Hence b is incident in G with some link of F. Suppose that b is incident with 
two distinct links Ai and A2 of F. Then by (10) there exist integers 5 and 
t, > 0, such that AieM(Y8) and A2eM(Yt). Then ^!eM(Fw) and A*M(YU), 
where u is any integer greater than 5 and t. For C( FM ; s) = F s and C{ Yu ; /) = 
F*. But then the degree of b in the false factor Yu of 67 exceeds 1. This contra
dicts the definition of a false factor of G. 

From these considerations we conclude that each node of G has degree 1 
in F. That is, F is a factor of G. 

It now follows, from Theorem I, that Theorem A holds for all connected, 
locally finite, infinite graphs. Since, by Paper I, it holds for all finite graphs, 
we see that it holds for all connected locally finite graphs. Hence by Theorem 
II it holds for all locally finite graphs. 

5. Regular graphs. If G is a connected locally finite graph we define an 
isthmoid of G as a finite subset S of V(G) such that h(S)>l. We then say that 
f(S) is the rank of the isthmoid. 
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We find that Theorem V of Paper I, and its Corollary, can be generalized 
as follows. 

THEOREM VII. Let G be any connected locally finite graph which is regular 
and of degree a > 0, and which is either infinite or else of even order. Suppose 
further that G has no isthmoid of rank < a — 1. Then G has a factor. 

COROLLARY. Let A be any link of G. Then G has a factor which contains A. 
Here we shall only consider the case in which G is infinite, the finite case 

having been dealt with in Paper I. It will be found that the argument of 
Paper I remains valid in the infinite case as far as the Theorem is concerned, 
if we replace the appeal to Theorem IV of Paper I by an appeal to Theorem A. 
The proof of the Corollary in Paper I is not valid for the infinite case. We may 
replace it by the following argument (which is not valid for the finite case). 

Let x and y be the ends of A. Suppose that the Corollary fails for some 
graph G. Then G[x, V) is prime. Hence, by Theorem A, there exists a finite 
subset 5 of V(G) — {xy y} such that hu(S) > f(S) in G [X, „]. 

Let S' be the set formed by adjoining x and y to S. Hereafter functions of 5 
will refer to G\X} yj and functions of S' to G. Clearly 

(11) f(S') = f(S) + 2 

and 

(12) hu(S') = hu(S). 

Now if C is a finite component of Gs> of odd order, the number of links of G 
having one end in C and the other in Sf is at least a. (Paper I, proof of Theorem 
V). Apart from any such components G$f has at least one infinite component 
Coo. For G is infinite and connected, and each node of S' is of finite degree. 
The number of links of G having one end in Coo and the other in S' is at least 
(7 — 1, since G has no isthmoid of rank less than a — 1. 

Let k be the number of links of G having just one end in S'. Using the above 
considerations and the fact that A has both ends in Sf we find 

(cr - 1) + <r.hu{S') < k ^ a.f(S') - 2. 

Hence, since a > 0, 

(13) f(S') > hu(S') + 1 + I/o-, 

whence 

(14) /(S') > hu(S') + 2, 

since/(5') and hu(S') are integers. 
It follows from (11), (12) and (14) t h a t / ( 5 ) > hu(S). This contradicts the 

definition of S. The Corollary follows. 

University of Toronto 
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