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Due to gravitational self-compression, the pressure in planetary interiors can reach millions of
times the atmospheric pressure. Such high pressure has a significant influence on their rheology.
In the present paper, we focus on how pressure in the range of the Earth’s lower mantle may
influence the structure of a MgO {310}/[001] tilt boundary. The defected structure of the grain
boundary (GB) will be described through its dislocation, disclination, and generalized-disclination
(g-disclination) density fields. At first, the strain and rotation fields in the boundary area at
different pressures are derived from the discrete atomic positions simulated by first-principles
calculations. For each pressure, the discontinuities of displacement, rotation, and strain in the
boundary area are continuously rendered by dislocation, disclination, and g-disclination density
fields, respectively. These density fields measured at different pressures are compared to provide
understanding on how pressure does influence the GB structures in Earth materials.

I. INTRODUCTION

In the Earth’s mantle, with increasing depth, pressure
increases rapidly, reaching values as high as 136 GPa at
the base of the mantle.1 These ultrahigh pressures have
profound implications on the rheology of the Earth’s
constituents that can be quite different from that observed
at ordinary pressure. Therefore, it is of primary impor-
tance to investigate the mechanical behavior of the high-
pressure phases of the deep Earth to understand the
structure and dynamics of the Earth’s interior.

Below 670 km, the phase assemblages present in the
Earth’s transition zone decompose into a mixture of
silicates with the perovskite structure and magnesium
oxides (containing some iron). The high-pressure behav-
ior of periclase (MgO) is thus of major importance in the

rheology of the Earth’s interior. MgO is an ionic solid,
which is chemically and physically stable at high temper-
atures and pressures. It can keep its NaCl-type structure
up to 227 GPa confining pressure.2 This unique structural
stability makes MgO an ideal benchmark for investigat-
ing the behavior of solids at extreme pressure conditions.
The structure and elasticity of MgO at high pressure have
been widely studied by using first-principles calculations.
Indeed, pressure-induced variation of the elastic moduli
arises from changes in the structure and nature of atomic
bondings under pressure and from phase transforma-
tions.1 For instance, the individual elastic moduli of
MgO throughout Earth’s mantle pressure regime have
been obtained with density functional theory. It was found
that the pressure-induced elastic anisotropy is preserved
down to the Earth’s lowest mantle.3 The pressure-induced
phase transformation of MgO was compared with that of
other ionic and solids.4 The elastic moduli, the intrinsic
anharmonic parameters, and the B1–B2 transition pressure
of MgO were determined from ab initio calculations.
Simulation results show that MgO keeps its NaCl-type
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B1 structure at all pressures existing within the Earth, and
that the critical pressure at which MgO transforms into the
CsCl-type B2 structure is 509 GPa.5,6

In the Earth’s mantle, MgO is present in the form of
polycrystalline aggregates, which exhibit various grain
sizes and grain boundary (GB) misorientation angles.
GBs in MgO significantly influence polycrystal elasticity
and plasticity, and have attracted intensive research
interest among high-pressure experimentalists. Merkel
et al. used diamond anvil cell coupled with in situ
synchrotron x-ray diffraction measurements to investigate
the evolution of yield strength and deformation mecha-
nisms of MgO polycrystals at pressures up to 47 GPa.7

Marquardt et al. carried out Brillouin scattering experi-
ments on MgO nanocrystals to characterize their elastic
properties and GBs at high pressures.8 It was found that
at high pressures, the small grain sizes have profound
effects on the elastic properties. Van Orman et al.
performed high-pressure diffusion experiments in MgO
to investigate the rheological and chemical transport
properties within the lower mantle.9 Recent deformation
experiments performed under lower mantle conditions by
Girard et al.10 on bridgmanite and (Mg, Fe)O aggregates
have shown that the rheology contrast between the two
phases leads to phase separation and shear localization
within oxide-rich domains. Hence, the mechanical prop-
erties of GBs in MgO at high-pressure are expected to
contribute significantly to the rheology of the deep
mantle.

First-principles methods and molecular dynamics sim-
ulations are efficient modeling tools that allow studying
the physical properties of GBs in MgO at the atomic
scale11–14 under high pressures. The atomic and
electronic structures of three {n10}/[001] MgO tilt GBs
(n 5 2, 3, and 4) were investigated as a function of
pressure by using the density functional theory.14 Using
a similar method, the ability of MgO GBs to accommo-
date point defects and enhance diffusion rates was
explored. Results show that defects and impurities
(Ca, Al, and proton) segregate preferentially within the
boundary area and that the segregation susceptibility
considerably increases with pressure.15

Continuous modeling of the structure of GBs using
smooth first order/second order distortion fields and
crystal defect density fields at interatomic scale is
attractive because it provides the basis for a mechanical
description of the lattice defects. Attractiveness of con-
tinuous modeling at this scale derives further from its
ability to serve as a basis for coarse-grained representa-
tions of polycrystalline media. Within a recent elasto-
plastic framework proposed by Fressengeas et al.16 and
Acharya–Fressengeas,17 it was shown that dislocation,
disclination and generalized-disclination (g-disclination)
density fields were appropriate mathematical objects for
a consistent continuous description of the atomic defected

structures, energetics, and dynamics of GBs.18–20 For
instance, disclinations were found to decorate GBs in
minerals and were proposed as good candidates at pro-
viding plastic accommodation mechanisms in dislocation
slip-deprived rocks in the upper mantle.19 Here we focus
on how pressure influences the dislocation, disclination,
and g-disclination structures of a MgO {310}/[001] tilt
GB. At first, the discrete atomic positions simulated by
first-principles calculations are used to derive the strain
and rotation fields in the boundary area at different
pressures. Then, the dislocation, disclination and
g-disclination density fields are calculated to study the
influence of pressure on the defected structure of GBs, in
terms of discontinuities of elastic displacement, rotation,
and strain fields.

II. MODELING METHODS

A. MgO boundaries from first principles
calculations

The MgO GB studied here is a {310}/[001] (mis-
orientation h 5 36.8°) tilt boundary, which was con-
structed in a previous work.14 The initial configuration of
the GB before self-relaxation was created by the follow-
ing two steps. At first, two blocks of MgO single crystals
are cut along 310ð Þ and 3�10ð Þ surfaces, respectively, and
rotated about the [001] axis. Then, the two MgO cut
blocks are joined together and the initial unrelaxed GB is
formed. After the initial configuration of the GB was
generated, the structure was relaxed using the Vienna ab-
initio simulation package with local density approxima-
tion and projector-augmented-wave method.21 A plane
wave cutoff energy of 450 eV and Gamma-point Bril-
louin zone sampling were used. Both cell parameters and
atomic positions were optimized for the boundary super-
cell containing 560 atoms according to pressure in the
range 0–150 GPa. Doubling the supercell did not affect
the calculated boundary structure significantly.

The relaxed configurations of asymmetric MgO {310}/
[001] GBs at 0, 50, 100, and 150 GPa pressures are
shown in Figs. 1(a), 1(b), 1(c), and 1(d), respectively.
Atoms are represented by black dots, and the atomic
structural units composing the boundaries are delineated
by blue lines. As can be seen in Fig. 1(a), the GB
structure at 0 GPa is made of hexagon-like atomic
structural units, which are similar to those at 50 GPa
[see Fig. 1(b)]. However, as far as the pressure reaches
100 or 150 GPa, the hexagon-like structural units evolve
toward more triangular and thin shapes [Fig. 1(c)].

B. From atomic to continuous description of GB
structures

The atomic structures of the relaxed and unrelaxed
configurations obtained from first-principles calculations
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are now used to derive the continuous dislocation/
disclination/g-disclination fields characterizing the lattice
incompatibility in the defected area of the GB. The
following steps are performed:

(i) Local values of the transformation gradient tensor at
each atomic position are computed by using the atomic
positions in the reference and deformed configurations.
As it is less energetic, the reference configuration is taken
as the relaxed GB structure and the current configuration
is the initial unrelaxed GB structure.

(ii) Elastic strain, rotation, curvature tensor fields and
then dislocation, disclination, and g-disclination density
field values are calculated at each atomic position by
following the methods recently introduced20 (see also the
Appendix).

(iii) Linear interpolation is used to generate spatial field
distributions in between atoms from local values at
atoms. In the linear interpolation of fields, the mesh size
is 0.5 angstrom.

This method has been applied to a 18.9° and a 60.8°
symmetrical tilt boundary in copper and forsterite, re-
spectively,20,22 and its accuracy/reliability was checked
by comparison with recent similar techniques.23,24

III. RESULTS AND DISCUSSION

A. Elastic fields

Strain is a measure of the deformation of the body with
respect to a reference configuration. The e22 strain fields
of the MgO boundary at 0, 50, 100, and 150 GPa
pressures are displayed in Figs. 1(a), 1(b), 1(c), and 1(d),
respectively. The strains e11 and e12 are shown in the

Supplementary Materials. The e22 component (strain
normal to the GB plane) is larger than the others and is
chosen to characterize the influence of pressure. As plotted
in Fig. 1(a), the strain field e22 at 0 GPa is located along
the boundary with alternate signs across the GB interface.
The extreme values of the contractions and extensions
form dipoles, and they are located in areas in between the
structural units and are extremely close to the interface.
Figure 1(b) shows the strain e22 of the boundary at
50 GPa. The shape of dipoles in Fig. 1(b) is quite close
to that at 0 GPa, but the magnitude of strains is about 0.15,
which is only 60% of that at 0 GPa. The e22 strain fields at
100 and 150 GPa are displayed in Figs. 1(c) and 1(d),
respectively. The extreme values of the contractions and
extensions of e22 at 100 or 150 GPa are also located along
the interface with alternate signs across the boundary.
However, as compared with the e22 strain fields at 0 and 50
GPa, strain quadrupoles, rather than dipoles, are seen.

The elastic tilt rotation field x of the boundaries at 0,
50, 100, and 150 GPa are plotted in Figs. 2(a), 2(b), 2(c),
and 2(d), respectively (rotation around the axis perpen-
dicular to the figures). For the four pressures studied, tilt
rotation dipoles are observed and are located within a 6 Å
thick layer along the interface. It is observed that the
shapes of rotation fields at 0 and 50 GPa are very similar.
Just like the strain field shown in Fig. 1, x has relatively
smaller values at 50 GPa than at 0 GPa. However, at 100
and 150 GPa, the dipolar structure of the rotation fields
significantly differs: At 100 or 150 GPa, the dipole arms
are arranged along a straight line subparallel to the
boundary plane. At 0 and 50 GPa, they are inclined with
respect to the GB plane, and subsequent dipoles tend to
form a zigzag pattern.

B. Dislocation and disclination density fields

The discontinuities of the displacement and rotation
fields in the GB interface area can be described by using
Volterra’s model defects, i.e., dislocations and disclina-
tions, respectively. By using the elasto-plastic model of
dislocation and disclination fields,16 the disclination
density h33 and dislocation density (a13, a23) fields are
used to characterize the discontinuity of tilt elastic
rotation and of the in-plane displacements (displacements
in the plane of the figures). The calculated defect
densities are displayed in Fig. 3 for the four pressures
studied. The defect topology reflected by the wedge
disclination density h33 is an elastic rotation discontinuity
around the axis perpendicular to the figure, supported by
a defect line aligned with that same axis. The edge
dislocation densities (a13, a23), respectively, render
horizontal and vertical Burgers vectors, supported by
the same defect line parallel to the GB tilt axis (axis
perpendicular to the figure plane). In this figure, the
disclination density is color-coded and the dislocation

FIG. 1. Close-up showing the tilt strain e22 fields on top of the relaxed
atomic structure of the simulated {310}/[001] MgO tilt boundary under
pressures (a) 0, (b) 50, (c) 100, and (d) 150 GPa.
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densities are represented by the associated in-plane
components of the Burgers vector field per unit surface
(arrows). It can be seen that the disclination and dislo-
cation distributions are confined to a thin 6 Å layer along
the interface.

The disclination dipole structures (shape and strength) are
very similar at 0 GPa [Fig. 3(a)] and at 50 GPa [Fig. 3(b)].
In both cases, the disclination dipoles are subsequently

arranged in a zigzag manner, just like the rotation fields.
It is indeed seen that the disclination dipoles accommo-
date the strong rotation variations (jumps) along the GB
interface. However, the disclination density field at
100 GPa is radically different from that at 50 GPa.
In Fig. 3(c), the disclination dipoles at 100 GPa are
arranged along a straight line parallel to the GB plane,
the positive (resp. negative) pole being at the left (resp.
right) end of the structural units. The maximum local
magnitude of disclination densities at 100 GPa is
0.18 rad/Å2, almost two times larger than that at
50 GPa. Similarly, the local dislocation density values
(a13, a23) are larger at 100 GPa than at 50 GPa. The
disclination dipoles at 150 GPa are plotted in Fig. 3(d).
The shape and strength of disclination dipoles slightly
differs from 100 GPa to 150 GPa, except that the position
of disclination dipoles at 150 GPa is more symmetrical
with respect to the boundary plane, while dipoles at
100 GPa are a little offset downward.

The Burgers vector components associated with the
(a13, a23) dislocation density distribution are now
computed, together with the Frank vector component
associated with the wedge disclination density field h33.
The Frank vector V is defined as the angular closure
defect, which can be obtained by integrating the elastic
curvature tensor along a closed circuit C, and equiva-
lently by:

V ¼
Z
S
h � ndS ; ð1Þ

where S is the surface of unit normal n delimited by C. In
the present MgO case, the Frank vector resulting from the
distribution of the disclination density h33 over a surface
S in the plane (e1, e2) is

V ¼
Z
S
h � e3 dS ¼ X3e3 ¼

Z
S
h33 dSe3 : ð2Þ

As the pressure increases from 0 to 50 GPa, the 001h i
Frank vector component decreases from 1.02 to 0.63
radian (58° to 36°). However, the 001h i Frank vector
component increases up to 0.96 radian (55°) at 100 GPa,
and reaches to 1.10 radian (63°) at 150 GPa. This
variation trend is consistent with the evolution of
disclination spatial distributions for the four pressures
(Fig. 3).

The Burgers vector is now defined as

b ¼
Z

ðat � ðht � rÞt � ndS : ð3Þ

In the above, r is the position vector and the disclina-
tion densities have a nonlocal impact on the Burgers
vector. In the plane (e1, e2), Eq. (3) reduces to

FIG. 3. Disclination density field h33 and Burgers vector fields for
pressures (a) 0, (b) 50, (c) 100, and (d) 150 GPa. The arrows represent
the local Burgers vector, whose components are the edge dislocation
densities (a13 and a23) per unit surface.

FIG. 2. Close-up showing the tilt rotation x field on top of the relaxed
atomic structure of the simulated {310}/[001] MgO tilt boundary under
pressures (a) 0, (b) 50, (c) 100, and (d) 150 GPa.
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b ¼
Z
S

a13 � h33x2ð ÞdSe1 þ
Z
S

a23 þ h33x1ð ÞdSe2
¼ b1e1 þ b2e2 : ð4Þ

We find that the magnitude of the in-plane Burgers vector
(in the plane of the figures) changes from b 5 0.83 Å
at 0 GPa to b 5 0.39 Å at 50 GPa, then it increases to
b 5 1.27 Å at 100 GPa, and finally equals b 5 1.15 Å at
150 GPa. Again, the relationship between the magnitude
of the Burgers vector and pressure is consistent with the
variation of the dislocation density fields with pressure.

C. G-disclination density fields

As evidenced above, the boundaries exhibit disconti-
nuities of the elastic displacement and rotation fields in
the GB interface area, which can be described by
a distribution of dislocation and disclination densities.
However, it is also observed that the GB exhibits
discontinuities of the elastic strain tensor. As recently
discussed,17 the discontinuity of the elastic distortion
(rotation plus strain) can be smoothly described by
g-disclination densities. The g-disclination densities com-
plement standard disclinations by rendering the discon-
tinuity of strain in addition to the discontinuity of
rotation.

The strain e22 (see Fig. 1) shows a more discontinuous
spatial distribution than other strain components, (see
Supplementary Materials). The g-disclination density
field n223, which reflects the discontinuity of strain

e22 supported by a defect line parallel to the GB tilt axis,
is plotted in Fig. 4 for the four pressures investigated.
Similarly to the disclination field, all the g-disclination
density fields show a positive (resp. negative) pole at the
left (resp. right) end of the structural units. However, the
g-disclination densities n223 at 100 or 150 GPa are much
higher in magnitude than in the two other cases, implying
discontinuities of strain e22.

IV. CONCLUSIONS

By using an atomistic-to-continuum crossover method,
we provide a continuous description of the defect density
fields within a MgO {310}/[001] tilt GB at different
pressures. The elastic fields such as strain and rotation
fields at each pressure are calculated in the boundary area
from discrete atomic positions. Then dislocation, discli-
nation and g-disclination density fields are calculated and
used to describe discontinuities in the fields of displace-
ment, rotation, and strain in the GB area at each pressure.
Results show that as the pressure increases from 0 to
50 GPa, the intensities of all elastic fields (displacement,
rotation, and strain) and the intensity of all defect density
fields decrease while then, they increase when the
pressure reaches 100 GPa. We show here that pressure
has a strong effect on the defected structure of GBs, and
the evolution does not follow a simple tendency of
compacting structures with increasing pressure. Indeed,
the defect structure of the boundary is significantly
modified, which has potential implications on its elastic
energy level and mobility under stress, with consequen-
ces in particular on the plasticity of polycrystalline
aggregates. Further work is in progress to quantify these
effects.
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APPENDIX

In this appendix, the kinematics of the elasto-plastic
incompatibility associated with crystal defect fields is
briefly recalled. Since compatible plastic processes are
not envisioned in the present paper, compatibility is about
elastic deformation measures only.

A.1. Displacement gradient

A fixed Cartesian coordinate system is assumed to
describe the changes in the shape, size, and orientation of
a simply connected continuous crystalline body contain-
ing defects. For each point, the Lagrange and Euler
coordinates X and x label the positions of a material
element in the reference and deformed state, respectively.
x is a function of X, and the transformation gradient of x
(X) is defined as the second order tensor

F ¼ grad x or Fij ¼ xi;j : ðA1Þ

The total displacement field u 5 x � X describes the
changes in position of matter. This field is assumed to be
single valued and continuous, possibly between atoms
and below interatomic distances. Thus, matter is assumed
to be able to transmit stresses and couple stresses at this
scale. The displacement gradient, also referred to as the
distortion tensor, is

grad u ¼ grad x� I ¼ F� I or ui; j ¼ xi; j � dij ;

ðA2Þ

where I is the second order identity tensor and dij is
Kronecker delta,
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dij ¼ 1; if i ¼ j;
0; otherwise:

�
ðA3Þ

A.2. Strain, rotation, and curvature tensors

Strain is a measure of the deformation of the body with
respect to a reference configuration. The strain tensor e is
the symmetric part of the distortion grad u,

e ¼ 1
2

grad uþ grad uT
� �

or eij ¼ 1
2

ui; j þ uj;i
� �

;

ðA4Þ
The rotation tensor x is the skew-symmetric part of the

distortion grad u,

x ¼ 1
2

grad u� grad uT
� �

or xij ¼ 1
2

ui;j � uj;i
� �

;

ðA5Þ

and the associated rotation vector ~x reads

~x ¼ � 1
2
x : X ¼ 1

2
curl u or xi ¼ 1

2
eijkuk;j ; ðA6Þ

where eijk is the alternating Levi-Civita tensor,

eijk ¼
þ1; if i; j; k are an even permutation of 1; 2; 3;
�1; if i; j; k are an odd permutation of 1; 2; 3;
0; if any of i; j; k are the same:

8<
:

ðA7Þ

From the rotation vector ~x, the curvature tensor j can
be defined as

j ¼ grad ~x or jij ¼ xi;j : ðA8Þ

A.3. Disclination, dislocation, and g-disclination
density tensors

In the absence of plasticity, the curvature tensor j
can be identified with its compatible elastic component
j==e . However, the elastic curvature tensor also com-
prises an incompatible part j?e , which counter-balances
the incompatible plastic curvature j?p arising from the
presence of crystal defects because continuity of the body
is maintained. As a result, the elastic curvature tensor
je ¼ j?e þ j==e may not be curl-free, even if the total
curvature tensor j is compatible. This rotational incom-
patibility is conveniently described by the continuous
disclination density tensor

h ¼ curlje or hij ¼ ejklj
e
il;k ðA9Þ

deriving from the incompatible part j?e of the elastic
curvature. The same line of reasoning applies to the
elastic strain tensor, which results in defining Nye’s
dislocation density tensor a from the incompatible elastic
strain field and curvature field through

a ¼ curl eeð Þ þ tr jeð ÞI� jte or aij ¼ ejkle
e
il;k þ jeiidij � jeji :

ðA10Þ

In the finite strain assumption, the dislocation density
tensor a is obtained from the elastic transformation tensor
Fe through the relation

a ¼ �curl F�1
e : ðA11Þ

To describe the strain discontinuity, the third-order
tensor n is defined as

n ¼ curlGsym
e or nijk ¼ eklmG

e;sym
ijm;l ; ðA12Þ

where Ge;sym
ijm ¼ 1

2

�
uei;j þ uej;i

�
;m

¼ eeij;m is a component of

the symmetric part of the elastic second distortion
tensor.
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