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1. Introduction. Establishing the existence of minimal models is one of the first
steps toward the birational classification of smooth projective varieties. Moreover, starting
from dimension three, minimal models are known to be nonunique, leading to some natural
questions such as: does a variety admit a finite number of minimal models? And if yes, can
we fix some parameters to bound this number?

We have to be specific in defining what we mean with minimal models and how
we count their number. A marked minimal model of a variety X is a pair (Y , φ), where
φ : X ��� Y is a birational map and Y is a minimal model. The number of marked minimal
models, up to isomorphism, for a variety of general type is finite [1, 9]. When X is not of
general type, this is no longer true [18, Example 6.8]. It is, however, conjectured that the
number of minimal models up to isomorphism is always finite and the conjecture is known
in the case of threefolds of positive Kodaira dimension [8].

In [14], it is proved that it is possible to bound the number of marked minimal mod-
els of a smooth variety of general type in terms of the canonical volume. Moreover, in
dimension three, Cascini and Tasin [3] bounded the volume using the Betti numbers. This
result can be used to show that the number of marked minimal models of a threefold of
general type can be bounded using topological data [14, Corollary 3], solving a conjecture
of Cascini and Lazić [2].

In this note, we address a closely related, although different, question. In the frame-
work of the Minimal Model Program (MMP for short), starting from a smooth projective
threefold X , in order to find a minimal model of X , we need to perform contractions of
KX -negative extremal rays. There are two types of birational contractions, either the excep-
tional locus is a divisor, then we call the contraction divisorial, or the exceptional locus has
codimension greater than or equal to two, in this case, the target of the contraction is no
longer Q-factorial and in order to proceed in the program we need to perform a birational
surgery called flip, see Definition 2.5. We call a series of divisorial contractions and flips an
MMP-series. In the case of a smooth projective threefold X of positive Kodaira dimension
and Picard number equal to three, we bound in an effective way the possible MMP-series
for X . This is the first nontrivial case, see Lemma 3.1.
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THEOREM 1.1. Let X be a smooth projective threefold of positive Kodaira dimension
and of Picard number ρ(X )= 3, then the number of MMP-series for X is at most two.

Explicit examples of MMP-series for a threefold as in Theorem 1.1 can be found in
Mori’s classification of divisorial contractions for a smooth projective threefold, see [15,
Theorem 3.3, Corollary 3.4, Theorem 3.5]. The target of the first divisorial contraction
is Gorenstein, in all but one case where the contraction is the blow up over a terminal
quotient singularity of type 1

2 (1, 1, 1), see [7]. In this case, it is possible, after a flip, to
reach a minimal model with Picard number equal to two and difficulty equal to zero (see
Definition 2.3 for the definition of difficulty).

Theorem 1.1 reduces quickly to finding a bound for the number of possible flipping
curves passing through a terminal singularity, see [10, Definition 2.34]. Note that in the
case of a smooth surface S of positive Kodaira dimension, the minimal model is unique [10,
Definition 1.30] and, therefore, we cannot have two (−1)-curves E1 and E2 passing through
the same point. Indeed, they both should be contracted before reaching the minimal model
of S, but the contraction of C1 transforms C2 into a curve with nonnegative self-intersection
and so impossible to contract.

The difficulty in generalizing this result to higher Picard rank comes from the fact
that we cannot control the number of flipping curves contained in a divisor that is later
contracted in the MMP-series. In the non-general type case, there exists an example of
a threefold X where this number of curves is infinite, hence producing a new example
of a variety with nonnegative Kodaira dimension and an infinite number of KX -negative
extremal rays, see [13, Theorem 7.1]. In the general type case this cannot happen because
of the finiteness statement proved in [1], and there is still hope to bound the total number
of MMP-series using the topology of the variety. Also, with the current techniques, it does
not seem possible to relax the smoothness hypothesis in Theorem 1.1, see Remark 3.11. In
the case of Picard number equal two, instead, we can give an easy bound also in the case
of terminal threefolds, see Remark 3.3.

The paper is organized as follows: in Section 2, we collect some preliminary notions,
mainly about the MMP in dimension three. The reader in need of more details should refer
to [10]. In Section 3, we prove Theorem 1.1.

2. Preliminary results. All the varieties that we are going to consider are assumed
to be projective and defined over the field of the complex numbers.

We will always refer to an MMP-series as a series of divisorial contractions and flips
performed during a KX -negative MMP. In this context, a minimal model for a variety X is
just an output that admits no further MMP-series.

The varieties appearing in the steps of an MMP-series for a smooth threefold are pro-
jective Q-factorial varieties characterized by a type of mild singularities called terminal,
see [10, Definition 2.34].

2.1. The Picard number. Let X be a normal variety. Two Cartier divisors D1 and
D2 on X are numerically equivalent, D1 ≡ D2, if they have the same degree on every curve
on X , i.e. if D1 · C = D2 · C for each curve C in X . The quotient of the group of Cartier
divisors modulo this equivalence relation is denoted by N1(X ).

We can also define N1(X ) as the subspace of cohomology H2(X ,Z) spanned by
divisors. We write N1(X )Q := N1(X )⊗Z Q.
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DEFINITION 2.1. We define ρ(X ) := dimQ N1(X )Q and we call it the Picard number
of X .

We remark that ρ(X )≤ b2, the second Betti number of X that depends only on
topological information of X .

Similarly, two 1-cycles C1 and C2 are numerically equivalent if they have the same
intersection number with any Cartier divisor. We call N1(X ) the quotient group and we
write N1(X )Q := N1(X )⊗Z Q. We can also see N1(X ) as the subspace of homology
H2(X ,Z) spanned by algebraic curves. See for details [5, Section 1.4]. We denote by
NE(X ) the cone of N1(X )Q generated by effective 1-cycles and we call it the cone of
curves on X , see for instance [10, Section 1.3].

We will also use the following defintion.

DEFINITION 2.2. Let E be a subscheme contained in a projective variety X . We consider
the following natural map

ψ : NE(E)Q −→ NE(X )Q,

and we denote NE(E|X )Q :=ψ(NE(E)Q)⊆ NE(X )Q and ρ(E|X ) := dim NE(E|X )Q. Note
that kerψ might be nontrivial.

2.2. The difficulty. In dimension three, the existence and termination of flips were
proved by Mori and Shokurov. A key ingredient for the proof of termination is the so called
difficulty of X , introduced by Shokurov.

DEFINITION 2.3. [19, Definition 2.15], [10, Definition 6.20] Let X be a projective
normal Q-Gorenstein threefold. The difficulty of X is defined as follows

d(X ) := #{E prime divisor | a(E, X ) < 1, E is exceptional over X },

where a(E, X ) is the discrepancy of E with respect to X .

REMARK 2.4. Note that the difficulty always goes down under a flip, and if X is smooth,
then d(X )= 0 and we cannot have any flips. See [10, Lemma 3.38].

We also recall that minimal models are connected by a sequence of flops [11, Theorem
4.9].

We recall here the definition of a flip, since it is central in the proof of Theorem 1.1.

DEFINITION 2.5. [10, Definition 3.33] Let X be a normal scheme. A flipping con-
traction is a proper birational morphism f : X → Y to a normal scheme Y such that the
exceptional locus Exc(f ) has codimension at least two in X and −KX is f −ample. A
normal scheme X + together with a proper birational morphism f + : X + → Y is called a flip
of f if

� KX + is Q-Cartier.
� KX + is f +-ample.
� Exc(f +) has codimension at least two in X +.

By slight abuse of terminology, we also call the induced rational map φ : X ��� X + a
flip. A flip gives rise to the following commutative diagram.
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X

f
���

��
��

��
��

φ
����������� X ′

f +
����
��
��
��
��

Y

A curve C ∈ Exc(f ) is called a flipping curve and C+ ∈ Exc(f +) is called a flipped curve.

For the definitions of divisorial contraction and flop, we refer to [10, Proposition 2.5,
Definition 6.10]. We just recall that under a divisorial contraction f : X ��� X ′, the Picard
number drops by one, i.e. ρ(X ′)= ρ(X )− 1. If f is a flip instead, the Picard number does
not change, i.e. ρ(X ′)= ρ(X ).

3. Proof of Theorem 1.1. In this section, we prove Theorem 1.1. The strategy of the
proof is to first bound the number of steps of the MMP-series and then count how many are
the possible divisorial contractions to a point or to a curve and how many flips can appear
in an MMP-series.

Our starting point is a smooth projective threefold X of positive Kodaira dimension.
As we recalled in Remark 2.4, this means that the difficulty of X has to be zero and no
flips are possible. Then, the first operation of the MMP-series for X has to be a divisorial
contraction. If ρ(X )= 1, no contractions are possible.

LEMMA 3.1. Let X be a smooth projective threefold of nonnegative Kodaira dimension
such that ρ(X )= 2. Then there is only a unique MMP-series for X .

Proof. We remark that, X being smooth, the first operation in the MMP-series needs
to be a divisorial contraction φ′ : X → X ′. Since the Picard number has dropped by one,
ρ(X ′)= 1, and so X ′ admits neither flipping nor flopping contractions, and no flips nor
flops are possible. In particular, X ′ is minimal. If there were another divisorial contraction
φ′′ : X → X ′′, then two minimal models X ′ and X ′′ would be connected by a sequence
of flops [11, Theorem 4.9], a contradiction. We conclude that φ′ is the only MMP-series
for X .

REMARK 3.2. Let X ′ be a minimal model for X , then either X ′ is unique or we can
assume ρ(X ′)≥ 2. Indeed, if it were ρ(X ′)= 1, then X ′ would not admit any flopping
contractions and so no flops are possible. We then conclude that X ′ is the unique minimal
model of X since different minimal models are related via flops.

REMARK 3.3. If we relax the smoothness hypothesis and we assume that X has termi-
nal singularities and ρ(X )= 2, the difficulty of X might be bigger than zero. In particular,
we can assume that d(X )= k, where k is a natural number. If we consider a MMP-series
for X , at any step there can be either a divisorial contraction or a flip. If there is a divisorial
contraction, the target of the contraction will be a variety Y with ρ(Y )= 1 and so we reach
an end point, see Remark 3.2. Hence, we are left to count how many flips we can have at
any step: since the Picard number is two, at any step we have two extremal rays and so at
most two possible flips. We conclude that we have at most 2k possible MMP-series for X .

Let us proceed now with the bound for the number of steps. It is a calculation that
follows from the termination of flips in dimension three, see [4, Lemma 3.1].

LEMMA 3.4. Let X be a projective threefold with terminal singularities such that
ρ(X )≥ 3 and let X ′ be the outcome of an MMP-series for X . We suppose in addition
that ρ(X ′)≥ 2. Let l be the length of an MMP-series of X . Then l is at most 2(ρ(X )− 2).
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Proof. We denote by lD the total number of divisorial contractions and by lF the total
number of flips. Clearly, l = lD + lF .

Under a divisorial contraction, the Picard number drops by one. Hence, lD = ρ(X )−
ρ(X ′)≤ ρ(X )− 2. To conclude the proof, we claim that lF ≤ lD. Under a flip, the Picard
number is stable, and we need to consider the difficulty d(X ), see Definition 2.3. If X is
smooth, d(X )= 0 and no flips are possible, see Remark 2.4. Moreover, if Xi−1 → Xi is a
divisorial contraction, then

d(Xi)≤ d(Xi−1)+ 1,

see for instance [4, Lemma 3.1]. Otherwise, if Xi−1 ��� Xi is a flip, then

d(Xi)≤ d(Xi−1)− 1,

because flips strictly improve the singularities (see [10, Lemma 3.38, Definition
6.20, Lemma 6.21]). We conclude that d(X ′)≤ d(X )+ lD − lF . Thus, lF ≤ lD and
l ≤ 2(ρ(X )− 2).

We now proceed by counting how many choices we have for the series of divisorial
contractions.

LEMMA 3.5. Let X be a smooth projective threefold of nonnegative Kodaira dimension
and let φ′ : X ��� X ′ be an MMP-series for X . Then there are at most 2ρ(X )−2(ρ(X )− 2)!
choices for the series of divisorial contractions from X to X ′.

Proof. We recall that we denote by lD the total number of divisorial contractions in an
MMP-series for X . Let {E′

i}1≤i≤lD be the set of prime divisors on X which are exceptional
over X ′. Let φ′′ : X ��� X ′′ be an MMP-series for X , different from φ′.

CLAIM 3.6. The set {E′
i}1≤i≤lD is independent of the choice of φ′.

Proof of the Claim. Let E′′ be a prime divisor on X which is exceptional over X ′′.
Assume that E′′ �= Ei for every 1 ≤ i ≤ lD. Then E′′ is not exceptional over X ′, so in partic-
ular it is not contracted by φ′ and φ′(E′′) is a divisor in X ′. Since X ′ and X ′′ are minimal
models, we know that they are connected via a sequence of flops η, see [11, Theorem 4.9].
We have, therefore, the following diagram.

X

φ′′
����

���
���

���
���

φ′
�� X ′

η

��
�
�
�

X ′′

Since E′′ is exceptional over X ′′, we obtained that φ′(E′′) needs to be contracted by η, but
this is a contradiction because flops are isomorphisms in codimension one.

Then the series of divisorial contractions from X to X ′ just contracts {E′
i}1≤i≤lD one

by one at each time. Respecting the order of contractions of {E′
i}1≤1≤lD , there are at most

lD! ≤ (ρ(X )− 2)! choices.
Let E be a prime divisor contracted by an extremal divisorial contraction in the MMP-

series φ′ : X ��� X ′. We can conclude the proof thanks to Lemma 3.7 that shows that it is
possible to contract E in at most two ways.
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LEMMA 3.7. Let Y be a projective threefold with terminal singularities. Let E ⊆ Y be
a prime divisor that can be contracted by a KY -negative extremal contraction. Then there
are at most two ways to contract E.

Proof. Let R be a KY -negative extremal ray in the cone of curves NE(Y ) and let
gR : Y → Y ′ be the associated contraction. Let us assume that E is contracted by gR. If
gR contracts E to a point, then it means that all the equivalence classes of curves on E
are numerically proportional to each other in Y , i.e. ρ(E|Y )= 1, see Definition 2.2. If gR

contracts E to a curve C instead, we have the following diagram

NE(E|Y )Q� �

��

β
�� NE(C|Y ′)∼= NE(C)∼= Z� �

��

NE(Y )
α �� NE(Y ′)

where α has kernel of dimension one because it is an extremal contraction, therefore the
same holds for β and so ρ(E|Y )= 2 and there can be at most two extremal rays that
generate the contraction.

REMARK 3.8. The simplest example of a prime divisor E contracted to a curve in
two different ways is the case of Atiyah’s flop, see for instance [6, Example 1.16], where
E ∼= P1 × P1. See [16] and [17] and references therein for more examples and a partial
classification of contractions of a divisor to a curve on a terminal threefold.

3.1. Bounding the last flip. We now prove that if the last operation of the MMP is
a flip, it can then be obtained in a unique way. We refer to Definition 2.5 for the definition
and notation of a flip.

PROPOSITION 3.9. Let X be a projective threefold of positive Kodaira dimension with
terminal singularities. Let ψ : X ��� Xmin be a flip such that Xmin is a minimal model for X .
Then ψ is the only possible flip.

Proof. Assume by contradiction that there exists another flip ψ ′ different from ψ .
Hence, X fits into the following commutative diagram.

X ′

f ′+
���

��
��

��
��

� X

f
���

��
��

��
��

�

f ′
����
��
��
��
�

ψ
�����������ψ ′

��� � � � � � � � � Xmin

f +
����
��
��
��
��

Y ′ Y

Since ψ and ψ ′ are different flips, there exists at least a curve ξ ′ that is a flipping curve for
ψ ′ but not for ψ : i.e. ξ ′ ⊆ Exc(f ′) but ξ ′ �⊆ Exc(f ). In particular, ξ ′ belongs to the locus
where ψ is an isomorphism and ψ(ξ ′)⊆ Xmin.

Thanks to Abundance Theorem [12], there exists an integer m such that |mKXmin | is
base point free. Therefore, we can choose a general surface

S′ ∈ |mKXmin |,
in such a way that it does not contain ψ(ξ ′)⊆ Xmin. Notice that the hypothesis that X is of
positive Kodaira dimension is used here. Then, let S := (ψ ′−1)∗(S′) be the strict transform
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of S′. Since flips are isomorphisms in codimension one, S ∈ |mKX |. Since ξ ′ ⊆ Exc(f ′)
and −KX is f ′-ample, we have that KX · ξ ′ < 0, so in particular ξ ′ ⊆ S. Since ψ(ξ ′)
belongs to Xmin this implies that ψ|S(ξ ′) belongs to S′. By the definition of S′, we reach a
contradiction.

REMARK 3.10. We cannot hope to iterate the proof of Proposition 3.9 to bound the
number of MMP-series containing more that one flip. In order to do that we need to bound
the number of extremal rays in the last but one flip, and the information that we have about
the last flip coming from Proposition 3.9 do not give insights on the problem. For instance,
assume to be in the following situation

X

f1
���

��
��

��
��

ψ1 ����������� X1

f2
���

��
��

��
��

f +
1����

��
��
��
�

ψ2 ����������� Xmin

f2
+

��		
		
		
		
		

Y ′ Y

and assume that there are k distinct KX -negative extremal rays C1, . . . ,Ck on X . Let
ψ1 be the flip of C1, i.e. C1 ⊆ Exc(f1) and C2, . . . ,Ck �⊆ Exc(f1). We know, thanks to
Proposition 3.9, that ψ1(C2), . . . , ψ1(Ck) are all contained in the Exc(f2) and so they are,
in particular, all numerically equivalent, but we cannot use this fact to impose a bound on
the number k.

3.2. Proof of Theorem 1.1. Now we have all the ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. Let X be a smooth projective threefold of positive Kodaira
dimension, such that ρ(X )= 3. Let Xmin be a minimal model for X . We can assume that
ρ(Xmin)≥ 2, because otherwise Xmin is unique, see Remark 3.2. In this case, the graph of
the possible MMP-series for X is extremely simple: using Lemma 3.4 we have at most two
steps in the MMP-series, the first operation is a divisorial contraction followed by a flip.
Applying Lemma 3.5 we have that the first divisorial contraction can be obtained in at most
two ways and then we conclude that the last flip can be realized in a unique way thank to
Proposition 3.9. This concludes the proof.

REMARK 3.11. It is important to notice that, even though several of the preliminary
results also hold in the case of a terminal threefold, the proof of Theorem 1.1 holds
only for a smooth threefold. Indeed, even if we consider the simplest case possible of a
terminal threefold Y such that ρ(Y )= 3 and d(Y )= 1, we could have an MMP-series com-
posed by a flip, a divisorial contraction and a final flip and with the techniques contained
in this paper it is not possible to bound MMP-series containing more that one flip, see
Remark 3.10.
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Pures et Appliquées 102(3) (2014), 597–616.

3. P. Cascini and L. Tasin, On the Chern numbers of a smooth threefold, Trans. Am. Math.
Soc. 370(11) (2018), 7923–7958.

4. P. Cascini and D. Zhang, Effective ifnite generation for the adjoint rings, Annales de
l’Institut Fourier 64(1) (2014), 127–144.

5. O. Debarre, Higher-dimensional algebraic geometry, (Springer Science & Business Media,
2013).

6. C. Hacon and J. McKernan, Flips and flops, in Proceedings of the International Congress
of Mathematicians, Hyderabad, India (2010), 513–539.

7. Y. Kawamata, Divisorial contractions to 3-dimensional terminal quotient singularities, in
Higher-dimensional complex varieties (Trento, 1994), (1996), 241–246.

8. Y. Kawamata, On the cone of divisors of Calabi–Yau fiber spaces, Int. J. Math. 8(5) (1997),
127–144.

9. Y. Kawamata and K. Matsuki, The number of the minimal models for a 3-fold of general
type is finite, Math. Ann. 276(4) (1987), 595–598.

10. J. Kollár and S. Mori. Birational Geometry of algebraic varieties, vol. 134, (Cambridge
University Press, 1998).

11. J. Kollár, Flops, Nagoya Math. J. 113 (1989), 15–36.
12. J. Kollár, Flips and abundance for algebraic threefolds, Ásterisque 211 (1992).
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