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Abstract

We develop in this work a general version of paracontrolled calculus that allows to treat analytically
within this paradigm a whole class of singular partial differential equations with the same efficiency
as regularity structures. This work deals with the analytic side of the story and offers a toolkit for the
study of such equations, under the form of a number of continuity results for some operators, while
emphasizing the simple and systematic mechanics of computations within paracontrolled calculus,
via the introduction of two model operations E and F. We illustrate the efficiency of this elementary
approach on the example of the generalized parabolic Anderson model equation

(∂t + L)u = f (u)ζ,

on a 3-dimensional closed manifold, and the generalized KPZ equation

(∂t + L)u = f (u)ζ + g(u)(∂u)2,

driven by a (1+ 1)-dimensional space/time white noise.

2010 Mathematics Subject Classification: 60H15 (primary); 35R60, 35R01 (secondary)

Contents

1 Paracontrolled calculus 2

2 High order paracontrolled expansion 11

3 A toolkit for paracontrolled calculus 15

c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:ismael.bailleul@univ-rennes1.fr
mailto:frederic.bernicot@univ-nantes.fr
https://doi.org/10.1017/fms.2019.44


I. Bailleul and F. Bernicot 2

4 Nonlinear singular PDEs 55

Appendix A. Details on the parabolic setting 65

Appendix B. Paracontrolled expansion formula 77

Appendix C. Examples of Tits–Weyl models 80

References 93

1. Paracontrolled calculus

Thirty years after Lyons’ seminal work on controlled differential equations [22],
it is now well-understood that the construction of a robust approximation theory
for continuous time stochastic systems, such as stochastic differential equations
or stochastic partial differential equations, requires a twist in the notion of noise
that allows to treat the resolution of such equations in a two-step process.

(a) Enhance the noise ζ into an enriched object ζ̂ that lives in some space of
analytic objects – this is a purely probabilistic step.

(b) Given any such object ζ̂ in this space, one can introduce a Banach space
S such that the equation makes sense for the unknown in the image of S
by a simple ζ̂ -dependent map. The equation can be formulated in S , and
solved uniquely by a deterministic analytic argument, such as the contraction
principle, which gives the continuity of the solution as a function of ζ̂ .

These two steps are very different in nature and require totally different tools.
The present work deals with the deterministic side of the story, point (b), for
the study of singular partial differential equations (PDEs). The term singular
refers here to the fact that the ‘noise’ in the equation is not regular enough for
all the expressions in the equation to make sense analytically, given the expected
regularity of the solution in terms of the regularity of the ‘noise’. Recall that one
can generically not make sense of the product of a distribution with a continuous
function.

1.1. Overview. Hairer’s theory of regularity structures [19] provides
undoubtedly the most complete picture for the study of a whole class of singular
stochastic PDEs from the above point of view – the class of the so-called singular
subcritical parabolic stochastic PDEs. It comes with a very rich algebraic structure
and an entirely new setting that are required to give flesh to the guiding principle
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High order paracontrolled calculus 3

that a solution should be described by the datum at each point in space–time of its
high order ‘jet’ in a basis given by the elements of the enhanced noise. Regularity
structures are introduced as a tool for describing these jets. At the same time that
Hairer built his theory, Gubinelli–Imkeller–Perkowski implemented in [17] this
idea of giving a local/global description of a possible solution in a different way,
using the language of paraproducts and avoiding the introduction of any new
setting, but providing only a first order description of the objects under study.
This is what we shall call from now on the first order paracontrolled calculus.
While this kind of approach may seem far from being as powerful as Hairer’s
machinery, the first order paracontrolled approach to singular stochastic PDEs
has been successful in recovering and extending a number of results that can
be proved within the setting of regularity structures, on the parabolic Anderson
model and Burgers equations [1, 2, 14, 17], the KPZ equation [18], the scalar Φ4

3
equation [9], the stochastic Navier–Stokes equation [24–26], or the study of the
continuous Anderson Hamiltonian [13], to name but a few.

We develop in this work a high order version of paracontrolled calculus that
allows to treat analytically within this paradigm some parabolic singular partial
differential equations that are beyond the scope of the original formulation of
the theory. We refer to our setting as paracontrolled calculus. By a ‘noise’ in
an equation we shall simply mean a function/distribution-valued parameter ζ –
realizations of a white noise are typical examples. Within our setting, and given
as input a noise ζ and some initial condition, the resolution process of a typical
parabolic equation

L u := (∂t + L)u = f (u, ∂u, ζ ), (1.1)

involves the following elementary steps. Write L −1
:= (∂t + L)−1 for the

resolution operator, and keep in mind that we have in hand two space–time
paraproducts P and P̃, related by the intertwining relation

L −1
◦ P = P̃ ◦L −1

;

all the objects are properly introduced below.

(1) Paracontrolled ansatz. The irregularity of the noise ζ , and the form
of the equation, dictate the choice of a solution space made up of
functions/distributions of the form

u =
k0∑

i=1

P̃ui Z i + u], (1.2)

for reference functions/distributions Z i that depend formally only on ζ , to
be determined later. The ‘derivatives’ ui of u also need to satisfy a similar
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a structure equation; their derivatives as well, and so on. See Definition 1
below. One sees the above description (1.2) of u as a paracontrolled
expansion at order k0 for it. Denote by û the datum of u and all its derivatives,
and by û ] the datum of all their derivatives.

(2) Right hand side. The use of a high order paracontrolled expansion
formula, and a number of continuity results for some operators, allow
together to rewrite the right hand side f (u, ∂u, ζ ) of Equation (1.1) in the
canonical form

f (u, ∂u, ζ ) =
k0∑

j=1

Pv j Y j + ([) (1.3)

where ([) is a nice remainder and the distributions Y j depend only on ζ and
the Z i .

(3) Fixed point. Denote by P the resolution of the free heat equation

Pu0 := (τ, x) 7→ (e−τ Lu0)(x).

Then the fixed point relation

u = Pu0 +L −1( f (u, ∂u, ζ ))

= Pu0 +

k0∑
j=1

L −1(Pv j Y j)+L −1([)

= Pu0 +

k0∑
j=1

P̃v j Z j +L −1([),

imposes some consistency relations on the choice of the Z i = L −1(Yi) that
define them uniquely as functions of ζ , and induces a fixed point relation
for û, or rather û ].

See Proposition 35 for a justification of the name ‘derivative’ for the ui in
identity (1.2). The expressions inside the Yi ’s that have no proper analytical
sense need to be given a priori as components of the enhanced distribution ζ̂ .
As expected, the enhanced noise ζ̂ contains what is needed to make sense of the
corresponding ill-defined products in the regularity structures setting. We shall
not touch in this work on renormalization matters, and we invite the reader to
read the latest developments of Hairer & co-authors on the subject; see [5, 7, 10].
In any case, we shall assume here that the enhancement ζ̂ of ζ is given.

We single out here the notion of paracontrolled system involved in point (1)
above, in the setting that will be sufficient to deal with the generalized (PAM)
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and (KPZ) equations studied in Section 4. It corresponds to having k0 = 3. Fix
2/5 < α < 1/2. For each 1 6 i 6 3, we denote below by Z i a finite collection
(Z (ni )

i ) of space–time functions of parabolic regularity iα. Given a collection
(u(ni )

i ) of bounded functions indexed by the same set (ni) as Z i , we write P̃ui Z i

for
∑

ni
P̃u

(ni )
i

Z (ni )
i .

DEFINITION 1. A third order paracontrolled system is a family

û := (u, ui , ui j , ui jk)16i,i+ j,i+ j+k63

of collections of bounded parabolic functions defined by the datum of remainders

u] ∈ C4α, u]i ∈ C(4−i)α, u]i j ∈ C(4−i− j)α, u]i jk ∈ Cα, 1 6 i, i+ j, i+ j+k 6 3

via the identity

u =
∑

i=1..3

P̃ui Z i + u],

ui =
∑

i+ j=1..3

P̃ui j Z j + u]i ,

ui j =
∑

i+ j+k=1..3

P̃ui jk Zk + u]i j ,

ui jk = u]i jk .

The above system is a shorthand notation for

u(ni )
i =

∑
i+ j=1..3

P̃u
(ni )
i j

Z j + (u
(ni )
i )],

and so on. There is only one function of the form ui jk above, namely u111.
One sees on the above synopsis that we shall in particular obtain solutions of

the (gPAM) and (gKPZ) equations under the form

u = Pf (u)Z1 + (2α).

Corollary 1.11 of Hairer and Pardoux’ work [21] follows then from
Proposition 35, proved in Appendix C. We denote here by [0, T ] a time interval
on which the solution of the equation is defined.

COROLLARY 2. Let f be C5
b . For 0 < t < T , there exists a positive constant C

such that one has the estimate

|u(e′)− u(e)− f (u(e))(Z1(e′)− Z1(e))| 6 C
(√
|τ − σ | + |y − x |

)2α
,

uniformly in e′ = (σ, y) and e = (τ, x) with |τ − σ | 6 T/2.
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1.2. The mechanics of computations within paracontrolled calculus. The
basics of the paracontrolled analysis of singular PDEs are easily grasped by a
parallel with Itô calculus. Denote by a, b, c three generic continuous martingales.
The following computational rules appear as fundamental in stochastic calculus.

• The basic Itô formula

d(ab) = a db + b da + d〈a, b〉.

• Itô formula
d( f (a)) = f ′(a) da + 1

2 f ′′(a) d〈a, a〉.

• Bracket rule for stochastic integrals

d
〈∫

adb, c
〉
− a d〈b, c〉 = 0.

The building blocks of the first order paracontrolled calculus devised by
Gubinelli, Imkeller and Perkowski in [17] are the exact counterparts of the above
three points, with the paraproduct operator in the role of the (derivative of the)
stochastic integral and the diagonal operator in the role of the (derivative of
the) bracket. For a, b, c functions or distributions with some precise regularity
properties, we have the following facts.

• Paraproduct decomposition

ab = Pab + Pba +Π(a, b)

where P is the paraproduct and Π the resonant part.

• Bony’s paralinearization

f (a) = Pf ′(a)a + (remainder).

• Fundamental corrector estimate. The operator

C(a, b, c) := Π(Pab, c)− aΠ(b, c) (1.4)

is continuous for certain ranges of regularity exponents for its arguments.

The three-step resolution process of Section 1.1 for the study of a singular
PDE requires that we refine these tools. The task of writing the right hand side
f (u, ∂u, ζ ) of a singular PDE under the form (1.3) can be divided into two
subtasks. First, making sense of the ill-defined products that appear in f (u, ∂u, ζ ),
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up to the datum of a number of formal multilinear functions of the noise ζ – the
enhancement ζ̂ . Second, writing f (u, ∂u, ζ ) under the form (1.3), needed to run
the fixed point argument – step (3) in Section 1.1. Ill-defined quantities appear
under the form of (possibly multi-)linear maps E(·), defined on Hölder spaces,
and formally taking values in a Hölder space Cγ of negative regularity exponent
γ < 0.

• In the line of identity (1.4), to deal with the first task, we systematically use
the paracontrolled structure to write the following kind of decomposition. Let
E stand for a map that formally sends Cβ into Cγ . For a ∈ Cα and b ∈ Cβ , with
α, β > 0, one has

E(Pab) = aE(b)+ E+(a, b)
= PaE(b)+ PE(b)a +Π(a,E(b))+ E+(a, b), (1.5)

for some linear operator E+(·, b) that formally takes values in the Hölder
space Cγ+α. The map Π(·,E(b)) also formally takes values in Cγ+α, while
the two paraproduct terms make perfect sense if E(b) does. The regularity
exponents of the two possibly ill-defined terms Π(a,E(b)) and E+(a, b) have
been increased by α, compared to the regularity exponent of E(Pab). One can
iterate the kind of expansion given by (1.5) on Π(a,E(b)) and E+(a, b) if a
has a paracontrolled structure. Iterating the expansion (1.5) as many times as
necessary, if possible, eventually leads to a decomposition of the initial quantity
into a sum of well-defined terms, up to the a priori datum of a number of terms,
like the above E(b).

• The second task involves giving a special form to the evaluation on some
paraproduct terms of well-defined continuous linear functions F. We
systematically use for that purpose the following kind of decomposition.
If F takes values in a Hölder space Cγ , whatever γ ∈ R, and for a ∈ Cα and
b ∈ Cβ , one has

F(Pab) = PaF(b)+ F+(a, b), (1.6)

for some continuous bilinear operator F+ that takes values in Cγ+α.

As an example of computation, let a1, a2, b be α-Hölder functions, with 0 <
α < 1, and let E send the space of α-Hölder functions into the space of γ -Hölder
functions, for some negative regularity exponent γ with −2α < γ < −α. One
has from formula (1.5)

E(Pab) = PaE(b)+ PE(b)a +Π(a,E(b))+ E+(a, b),

where the first term is γ -Hölder, the second term is (γ +α)-Hölder, an elementary
property of the paraproduct operator, and the third and fourth terms have formal
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regularity γ + α. If a = Pa1a2, then we have the F-type decomposition for the
(γ + α)-Hölder valued function a 7→ PE(b)a,

PE(b)a = Pa1(PE(b)a2)+Π
+

E(b)(a1, a2),

with the first term of regularity (γ +α) and the second term of regularity (γ +2α).
We also have the two E-type decompositions

Π(a,E(b)) = a1Π(b1,E(b))+Π(·,E(b))+(a1, b1)

= Pa1Π(b1,E(b))+ PΠ(b1,E(b))a1 +Π
(
a1,Π(b1,E(b))

)
+Π(·,E(b))+(a1, b1),

and

E+(a, b) = a1E+(a2, b)+{E+(·, b)}+(a1, a2)

= Pa1E
+(a2, b)+PE+(a2,b)a1+Π(a1,E+(a2, b))+{E+(·, b)}+(a1, a2).

In both expressions, the first term has regularity (γ + α), the second term has
regularity (γ + 2α), while the third and fourth terms have formal regularity
(γ + 2α). If one is only interested in having a description of E(Pab) up to terms
(]) of true or formal positive regularity (γ + 2α), one then has, with a = Pa1a2,

E(PPa1 a2 b) = PPa1 a2E(b)+
{
Pa1(PE(b)a2)+Pa1Π(a2,E(b))+Pa1E

+(a2, b)
}
+(]).

None of the computations of Section 4, dealing with the paracontrolled analysis
of concrete examples of singular PDEs, is more complicated than what we have
just done. Convenient notations will be used to work with iterated operators; they
are introduced in Section 3. (Note here that such expansions can be done on
systems of singular PDEs as well.) On a technical level, three ingredients are
used to run the three-step scheme of Section 1.1.

• The pair (P, P̃) of intertwined paraproducts introduced in [2]. It is used to
define a continuous map Φ from the solution space S to itself.

• A high order paracontrolled expansion formula generalizing Bony’s
paralinearization formula is used to give a paracontrolled expansion of a
nonlinear function of any α-Hölder function u, for 0 < α < 1. See Section 2.

• Continuity results. We introduce in Section 3 a number of operators and
prove their continuity. These are the operators that appear in applying the
decompositions (1.5) and (1.6) in the analysis of a generic right hand side
f (u, ∂u, ζ ) for Equation (1.1).
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1.3. Setting and results. We adopt in this work essentially the same geometric
and functional setting as in our previous work [2], slightly restricted so as not
to bother here the reader with the use of weighted functional spaces. All this
work could be formulated in the more general geometric/functional setting of
[2]; we refrain from doing this as it may blur the simple ideas that we want to
promote in this work. Let then (M, d, µ) stand for a compact smooth Riemannian
manifold equipped with a doubling measure µ that may differ from the canonical
Riemmanian volume measure. Let V1, . . . , V`0 stand for some smooth vector
fields on M , identified with first order differential operators. Given a tuple
I = (i1, . . . , ik) in {1, . . . , `0}

k , we shall set |I | := k and

VI := Vik · · · Vi1 .

Set

L := −
`0∑
`=1

V 2
`

and assume that L is elliptic, so that the Vi span smoothly at every point of M
the whole tangent space. So there exist smooth functions (γi)16i6`0 such that for
every function f ∈ C1(M,R) and x ∈ M we have

∇ f (x) =
`0∑
`=1

γ`(x)V`( f )(x)V`(x).

The operator L is then a sectorial operator in L2(M), it is injective on the quotient
space of L2(M) by the space of constant functions, it has a bounded H∞-calculus
on L2(M), and −L generates a holomorphic semigroup (e−t L)t>0 on L2(M) –
see [16]. The above class of operators includes obviously the Laplacian on the
flat torus. Note that under the above smoothness and ellipticity conditions, the
semigroup e−t L has regularity estimates at any order, by which we mean that for
every tuple I , the operators (t |I |/2VI )e−t L and e−t L(t |I |/2VI ) have kernels K t(x, y)
satisfying the Gaussian estimate

|K t(x, y)| .
1

µ(B(x,
√

t))
e−c(d(x,y)2/t)

and the following regularity estimate, for some constants which may depend
on |I |. For d(x, z) 6

√
t

|K t(x, y)− K t(x ′, y)| .
d(x, x ′)
√

t
1

µ(B(x,
√

t))
e−c(d(x,y)2/t).
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Note again that we could equally well develop paracontrolled calculus in the more
general setting adopted in our previous work [2]; we refrain from doing that here
as it could obscure the simplicity of the ideas put forward here.

Given a finite time horizon T , we define the parabolic space M as

M := [0, T ] × M,

and equip it with the parabolic metric

ρ
(
(τ, x), (σ, y)

)
=
√
|τ − σ | + d(x, y)

and the parabolic measure ν = dt ⊗ µ. Then (M, ρ, ν) is a doubling space of
homogeneous type. Note that for (τ, x) ∈ M and small positive radius r , the
parabolic ball BM((τ, x), r) has volume

ν
(
BM((τ, x), r)

)
≈ r 2 µ(BM(x, r)).

We shall denote by e = (τ, x) a generic element of the parabolic space M.
We have chosen to work in the scale of Hölder spaces; this makes life easier,

although we could equally develop paracontrolled calculus in the functional
setting of Sobolev spaces, in the line of what we did in our previous work [1]. For
a real number s, we denote by C s

= C s(M), the Hölder space on M of order s,
defined in terms of Besov spaces; and Cs

= Cs(M), the parabolic Hölder space.
We refer the reader to Appendix A for more details on these spaces. Following our
previous work [2], one can define from L only parabolic paraproduct and resonant
operators that have good continuity properties in the scale of parabolic Hölder
spaces – see Appendix A.3. The high order paracontrolled expansion formula and
the continuity results stated in Sections 2 and 3 respectively, and fully proved
in Appendices B and C, make use of these operators and provide the spine of
paracontrolled calculus. They are the main contributions of this work.

We illustrate our approach of the study of singular PDEs by proving well-
posedness results for the 3-dimensional generalized parabolic Anderson model
equation (gPAM)

L u := (∂t + L)u = f (u)ζ, (1.7)

and the generalized KPZ equation

L u = f (u)ζ + g(u)(∂u)2, (1.8)

on the one-dimensional torus, with a space/time white noise. The generalized
parabolic Anderson model equation is a natural nonlinear generalization of its
linear counterpart, for which f (u)= u. The latter equation describes the evolution
of a Brownian particle in a white noise environment. The generalized (KPZ)
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equation appears in the study of the random motion of a string on a manifold
[20]; its study in the setting of regularity structures is the object of Hairer and co-
authors’ works [6, 20]. The renormalization of the 70ish terms that appear in the
models for this equation motivated the development of systematic renormalization
procedures, such as done in the recent works of Bruned–Hairer–Zambotti [7] and
Chandra–Hairer [10]. In the present work, we assume that a proper enhancement
ζ̂ of the noise ζ is given. Defining ζ̂ in a stochastic setting is a very different
question that is not addressed here.

We have organized this work as follows. Section 2 is dedicated to the statement
and proof of a high order paracontrolled expansion formula generalizing Bony’s
paralinearization formula. The core results of the mechanics of computations
within paracontrolled calculus are obtained in Section 3, under the form of
continuity results for a number of operators. We test paracontrolled calculus
on the examples of the 3-dimensional generalized parabolic Anderson model
equation (1.7) (Theorems 24 and 25), and the generalized KPZ equation (1.8)
(Theorem 26), in Section 4. Appendix A contains all the relevant details about
the parabolic setting, approximation operators, Hölder spaces and paraproducts.
Appendices B and C contain the proofs of a number of statements.

2. High order paracontrolled expansion

We explain in this section a simple procedure for getting an arbitrary high
order expansion of a nonlinear map of a given Hölder function u defined on the
parabolic space M, in terms of its parabolic regularity properties. It provides, in
the setting of Hölder spaces, a refinement of Bony’s paralinearization theorem in
the form of a viable alternative to the paradifferential calculus of Chemin [11];
see also [12, Theorem 2.5, page 18,] for a more readable account of [11] in the
case of a second order expansion.

In its simplest form, the classical paraproduct operator ( f, g) 7→ Π 0
f g on the

d-dimensional torus is defined via Fourier analysis by modulation of the high
frequencies of a given ‘reference’ function/distribution g by the low frequencies
of another function/distribution f . For a function f on the torus, we denote by
f =

∑
∆i( f ) its usual Littlewood–Paley representation, where ∆i( f ) is the

dyadic bloc with Fourier coefficients essentially only at the frequency scale 2i .
Consider the Littlewood–Paley decompositions of two functions

f =
∑

i

∆i( f ), g =
∑

j

∆ j(g),
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as sums of smooth functions with localized frequencies; the paraproduct of g by
f is defined as

Π 0
f g =

∑
i< j−1

∆i( f )∆ j(g), (2.1)

and the resonant part as

Π 0( f, g) =
∑
|i− j |61

∆i( f )∆ j(g),

so we have the product decomposition

f g = Π 0
g f +Π 0

f g +Π 0( f, g).

In the parabolic setting of Section 1.3, one can define some paraproduct and
resonant operators associated with the operator L and its semigroup, that have
the same regularity properties in the scale of parabolic Hölder spaces as the
operatorΠ 0 in the scale of spatial Hölder spaces. We denote by P this paraproduct,
introduced in [2], and whose definition is recalled in Appendix A.3. It depends
implicitly on an integer-valued parameter b that is chosen once and for all, and
whose precise value is irrelevant for our purposes. It is not crucial at that stage to
go into the details of the definition of P.

The mechanics of the proof of our general Taylor expansion formula is fairly
simple and better understood in the light of the proof of Bony’s paralinearization
theorem given by Gubinelli, Imkeller and Perkowski in [17], which we recall first.

THEOREM 3 (Bony’s paralinearization). Let f : R 7→ R be a C2
b function and u

be a real-valued α-Hölder function on the d-dimensional torus, with 0 < α < 1.
Then

f (u) = Π 0
f ′(u)u + f (u)]

for some remainder f (u)] of spatial Hölder regularity 2α.

Proof. This is a copy and paste from [17]. Denote by Ki the kernels of the Fourier
projectors∆i corresponding to the Littlewood–Paley decomposition operator, and
write K6k for

∑
i6k Ki , with associated operator Sk :=

∑
i6k ∆i . Note that by their

definition we have, for any i > 1,∫
Rd

Ki(y) dy = 0; (2.2)

or more properly
∫

Rd Ki(x, y) dy = 0, for any x ∈ Rd . The trick is then simply to
write

f (u)−Π 0
f ′(u)(u) =

∑
∆i( f (u))− Si−2( f ′(u))∆i(u) =:

∑
εi
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with

εi(x) =
∫

Ki(x, y)K6i−2(x, z)
{

f (u(y))− f ′(u(z))u(y)
}

dz dy,

and to take profit from the fact that Ki has null mean for i > 1, as put forward in
identity (2.2), to see that one also has, for i > 1,

εi(x)=
∫

Ki(x, y)K6i−2(x, z)
{

f (u(y))− f (u(z))− f ′(u(z))(u(y)−u(z))
}

dz dy.

One thus has

|εi(x)| . ‖ f ′′‖∞

∫
|Ki(x, y)K6i−2(x, z)| |u(y)− u(z)|2 dz dy . 2−2iα

‖u‖2
Cα .

Since the functions εi are frequentially supported on the annulus of frequencies at
the scale 2i , and the εi are uniformly bounded by 2−2iα, the series

∑
i εi defines a

2α-Hölder function.

One can play exactly the same game and prove a general expansion result in a
parabolic setting, with our paraproduct P in the role of the comparison operator.

THEOREM 4 (Higher order Taylor expansion). Let f : R 7→ R be a C4
b , and let u

be a real-valued α-Hölder function on the parabolic space M, with 0 < α < 1.
Then

f (u) = Pf ′(u)(u)+ 1
2

{
Pf (2)(u)(u2)− 2Pf (2)(u)u(u)

}
+

1
3!

{
Pf (3)(u)(u3)− 3Pf (3)(u)u(u2)+ 3Pf (3)(u)u2(u)

}
+ f (u)] (2.3)

for some remainder f (u)] of parabolic Hölder regularity 4α. If f ∈ C5
b then the

remainder term f (u)] is a locally Lipschitz function of u, in the sense that

‖ f (u)] − f (v)]‖C4α . (1+ ‖u‖Cα + ‖v‖Cα )4‖u − v‖Cα . (2.4)

We give here a proof of this statement in the case where u is a time-independent
function on the d-dimension torus and we can use the elementary paraproductΠ 0

instead of P. The full proof of Theorem 4 is given in Appendix B, Theorem 36;
we hope this way of proceeding will make the reasoning clear and technical-free.

Proof. Let us prove the second order formula in the special case where
u : Td

→ R, and we use the elementary paraproduct Π 0 in place of P. The
claim amounts in that case to proving that

(?) := f (u)−Π 0
f ′(u)(u)−

1
2

{
Π 0

f (2)(u)(u
2)− 2Π 0

f (2)(u)u(u)
}
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is a 3α-Hölder function on the torus. As in the proof of Bony’s paralinearization
result, write (?) under the form∑

∆i( f (u))− Si−2( f ′(u))∆i(u)

−

{
1
2

Si−2( f (2)(u))∆i(u2)− Si−2( f (2)(u)u)∆i(u)
}
=:

∑
εi .

For each i > 1, we have

εi(x) =
∫

Ki(x, y)K6i−2(x, z){∫ 1

0
f (2)(u(z)+ t (u(y)− u(z)))(u(y)− u(z))2t dt

−
1
2

f (2)(u(z))u2(y)+ f (2)(u(z))u(z)u(y)
}

dz dy,

which we can rewrite as

εi(x) =
∫

Ki(x, y)K6i−2(x, z)∫ 1

0

∫ 1

0
f (3)(u(z)+ st (u(y)− u(z)))(u(y)− u(z))3 ds t2 dt dz dy,

using once again the fact that the kernels Ki(x, ·) have null mean. One reads on
this expression for εi that it is of order 2−3iα, uniformly in x . See Appendix B for
a full proof of the statement in the parabolic setting.

To prove the stability estimate (2.4), write

f (u)] =:
∑

i

εi,u, f (v)] =:
∑

i

εi,v

with εi,u equal to the above εi and εi,v defined similarly with v in place of u.
A uniform estimate of εi,u − εi,v provides an estimate on f (u)] − f (v)]. The
expression for εi,u − εi,v involves the difference

f (3)(u(z)+ st (u(y)− u(z)))(u(y)− u(z))3

− f (3)(v(z)+ st (v(y)− v(z)))(v(y)− v(z))3.

Use the fact that f (3) is Lipschitz continuous, that u and v are Cα, to see that each
of the two terms above is controlled by d(y, z)3α and

| f (3)(u(z)+st (u(y)−u(z)))− f (3)(v(z)+st (v(y)−v(z)))| . ‖ f (4)‖∞‖u−v‖Cα
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and

|(u(y)− u(z))3 − (v(y)− v(z))3| . ‖u − v‖Cα d(y, z)3α(‖u‖Cα + ‖v‖Cα )2.

Estimate (2.4) is obtained by combining these two estimates together.

Observe that the expansion (2.3) is exact, f (u)] = 0, for a polynomial function
f of degree at most 3. The above expansion formula for f (u) is conveniently
rewritten under the form

f (u) = Pf ′(u)−u f (2)(u)+(1/2)u2 f (3)(u)(u)+ 1
2 Pf (2)(u)−u f (3)(u)(u2)+ 1

6 Pf (3)(u)(u3)+ f (u)].

Note here that the general paracontrolled expansion formula writes

f (u) =
k∑

n=1

1
n!

n−1∑
j=0

(−1) j

(
n
j

)
Pu j f (n)(u)(un− j)+ f (u)],

for a function f of class C k+1 with bounded (k+ 1)th derivative, and a remainder
f (u)] of parabolic Hölder regularity (k + 1)α. Note that each paraproduct
Pu j f (n)(u)(un− j) is only of regularity α, while the two brackets that appear in (2.3)
are respectively 2α and 3α-Hölder. We shall see in Proposition 17 how to write
each bracket in (2.3) as a sum of terms of regularity 2α and 3α, respectively.

3. A toolkit for paracontrolled calculus

As said in Section 1.2, the mechanics of computations within paracontrolled
calculus lies in the analysis of how some operators behave when estimated on
paraproduct terms. As a rule of thumb, an ill-defined operator E satisfies an
expansion of the form

E(Pab) = aE(b)+ E+(a, b),

and well-defined operators F satisfy an expansion of the form

F(Pab) = PaF(b)+ F+(a, b).

Both E+ and F+ are expected to take values in spaces of functions/distributions
that are more regular than the typical elements of the spaces where E and F
take values, respectively. Gubinelli, Imkeller and Perkowski’s continuity result
(1.4) is the archetype of such an expansion. To iterate this kind of expansion,
we introduce in this section a number of operators and prove their continuity
properties. Together with the Taylor formula of Section 2, the results of this
section are our main contribution.
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The development of paracontrolled calculus beyond the first order calculus of
[17] requires the introduction of a modified paraproduct P̃, introduced in [2], and
the use of expansion formulae of the form

E(P̃ab) = aE(b)+ E+(a, b),
F(P̃ab) = PaF(b)+ F+(a, b).

This technical point is needed to run the fixed point procedure described in step (3)
of the three-step process of the paracontrolled analysis of a given singular PDE;
see Section 1.1. Concretely, one works with P̃ as one works with P. The modified
paraproduct P̃ is given by the formula

P̃ f g := L −1(P f (L g)),

where L stands for the parabolic differential operator (∂τ + L) on the parabolic
space M. See [2, Section 4.1] for a study of the continuity properties of P̃, and
Appendix C.2 for a digest. Recall from Section 1.2 the parallel between the basic
rules of stochastic calculus and the fundamentals of the first order paracontrolled
calculus. This integral picture of paraproduct provides a useful guide for the
intuition, where the time derivative d plays the role of the operator L . In that
comparison, P̃ f g corresponds to the formal quantity∫ (∫

f d2g
)
'

∫
f dg −

∫∫
d f dg,

after an integration by parts. So the difference between P and P̃ is a kind
of ‘bracket’ term, reminiscent of the Itô-to-Stratonovich rule for stochastic
integration.

We provide in this section a number of continuity results for some operators
involving the paraproduct and resonant operators, together with the modified
paraproduct P̃. We state in this section our results in their general form, in the
parabolic setting of Section 1.3, and give proofs in the time-independent, space
setting of the torus, of versions of each statement where we use Π 0 instead of P̃.
This should make it easier for the reader to go to the core of the machinery without
fighting with some possibly overwhelming technicalities; full proofs are given in
Appendix C. We hope this way of proceeding will convince the reader that the
basic ideas involved here are elementary. It is not necessary, for the purpose of
solving a particular singular PDEs using the paracontrolled calculus method, to
get into the details of the proofs of the different results given here. We invite the
reader to have a look at the results only and then go directly to Section 4 to see
them on stage.
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A word of caution. We repeatedly use below the fact that P1 f = f for an
arbitrary distribution. This is not true, strictly speaking, as one rather has P1 f =
f+(smooth), for an infinitely smooth additional term that is continuous and linear

with respect to f , for f in any Hölder space, with positive or negative Hölder
exponent. Using the first identity rather than the second has no effect whatsoever
on the analysis below, so we prefer not to burden the reader with these somewhat
irrelevant additional terms and stick to the identity P1 f = f .

3.1. Corrector C, commutator D, and their iterates. In this section, we
introduce four operators C,D and R,S. The operators C and D are used to
make sense of ill-defined products, while the operators R and S are used to
write the right hand side f (u, ∂u, ζ ) of Equation (1.1) in the form (1.3) needed
to run a fixed point argument. The definitions of these operators involves the
paraproduct and resonant operators and the modified paraproduct P̃. We define
similarly operators C◦,D◦ and R◦,S◦ using P instead of P̃.

To motivate the introduction of the different operators C,D and their iterates, let
set ourselves the task of making sense of the product uζ , of u ∈ Cα and ζ ∈ Cα−2,
with 2

5 < α < 1
2 . As a product of a β-Hölder function (β) with ζ is well defined

if β + α − 2 > 0, and paraproducts are always well defined in a Hölder setting,
we concentrate here on the ill-defined terms that appear in the computations and
write

(β)ζ ∼ 0

to mean that the product (β)ζ is well defined, and

uζ ∼ Π(u, ζ )

rather than
uζ = Puζ + Pζu +Π(u, ζ ).

This convention is only used in this paragraph. If the resonant term Π(u, ζ ) were
defined it would have regularity 2α − 2; we say that the term Π(u, ζ ) has formal
regularity 2α − 2. Assume

u =
3∑

i=1

Pui Z i + (4α),

for some functions ui ∈ Cα, some functions Z i ∈ C iα depending only on the noise
ζ , and a remainder (4α) ∈ C4α. We do not specify the structure of the remainder
term (4α) as its product with ζ is well defined. In the present work, all multilinear
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functions of the noise ζ only are assumed to be well defined, even if they have
negative formal regularity. Then

uζ ∼
3∑

i=1

Π(Pui Z i , ζ ),

and setting
C◦(a, b, c) := Π(Pab, c)− aΠ(b, c),

for the above map Π+, one has

uζ ∼
3∑

i=1

(
ui Π(Z i , ζ )+ C◦(ui , Z i , ζ )

)
∼

3∑
i=1

(
Π(ui ,Π(Z i , ζ ))+ C◦(ui , Z i , ζ )

)
.

Gubinelli, Imkeller and Perkowski proved in [17] that C◦(a, b, c) is essentially
well defined whenever the sum of the Hölder exponents of a, b and c add up to
a positive number, in which case it defines an element of regularity the sum of
the regularity exponents. (There is a mild restriction on the range of the different
regularity exponents.) The termΠ(Z i , ζ ) is of regularity (i+1)α−2, so we have

uζ ∼
2∑

i=1

(
Π(ui ,Π(Z i , ζ ))+ C◦(ui , Z i , ζ )

)
.

The formal regularity (i + 2)α − 2 of C◦(ui , Z i , ζ ) is negative. To proceed we
assume that each ui is also given in paraproduct form

ui =

2∑
j=1

Pui j Z j + (3α),

for ui j ∈ Cα and a remainder (3α) of regularity 3α. Setting

C◦((a1, a2), b, c) := C◦(Pa1a2, b, c)− a1C◦(a2, b, c),

for the operator (C◦)+, we shall prove in Theorem 8 that this map is well defined
whenever the sum of the Hölder exponents of a1, a2, b and c add up to a positive
number. (Here again, there is a mild restriction on the range of the regularity
exponents.) So we have

uζ ∼
2∑

i=1

(
Π(ui j ,Π(Z j ,Π(Z i , ζ )))+ C◦((ui j , Z j), Z i , ζ )

)
∼ Π

(
u11,Π(Z1,Π(Z1, ζ ))

)
+ C◦((u11, Z1), Z1, ζ ). (3.1)
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Assuming u11 = Pu111 Z1 + (2α), for u111 ∈ Cα and a 2α remainder (2α), and
iterating once more the E-expansion that we have just done twice shows that uζ
is be well defined, under the assumption that all the multilinear functions of the
noise ζ only that appear above are well defined and have regularity their formal
regularity. This kind of computation explains why we need the corrector operator
C◦ and its iterates. (The above mentioned restriction on the range of the regularity
exponents in the continuity results for C◦ imposes that the term C◦((3α), Z i ,

ζ ) in C◦(ui , Z i , ζ ) is treated differently from the others. A refined corrector is
introduced for that purpose in Section 3.1.1. Its use justifies identity (3.1).)

New things happen when we look at the product u2ζ , as

u2ζ ∼ Π(2Puu +Π(u, u), ζ ) ∼ 2C◦(u, u, ζ )+Π(Π(u, u), ζ ).

The C◦ term is dealt with as above. For the resonant termΠ(Π(u, u), ζ ) we need
first to use an F-type expansion onΠ(u, u) before using an E-type expansion. We
have

Π(u, u) =
3∑

i=1

(
PuiΠ(Z i , u)+ D◦(ui , Z i , u)

)
,

with D◦(·, ·, u) := Π+(·, ·, u), with the notation of Section 1.2. The resonant
terms

Π(PuiΠ(Z i , u), ζ )

are dealt with as above, using the corrector operator C◦. For the resonance of
D◦(ui , zi , u) with ζ , we use the paracontrolled structures of u and ui and the fact
that the operator D◦ satisfies an F-type expansion with respect to its first and third
arguments – this is proved in the next section. This gives

3∑
i=1

D◦(ui , Z i , u) = D◦(u1, Z1, u)+ (4α)

= Pu11(Pu1D
◦(Z1, Z1, Z1))+ (4α)′,

for remainders (4α), (4α)′ of regularity 4α, and

3∑
i=1

Π(D◦(ui , Z i , u), ζ ) ∼ u11Π(Pu1D
◦(Z1, Z1, Z1), ζ )

∼ u11u1Π(D◦(Z1, Z1, Z1), ζ ) ∼ 0,

provided Π(D◦(Z1, Z1, Z1), ζ ) is given a priori as an element of C4α−2.
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3.1.1. Corrector C and the outer centring operator C . Define on the space L∞

of bounded measurable functions on the parabolic space M the corrector C as
the operator

C( f, g, h) := Π(P̃ f g, h)− f Π(g, h).

The next theorem is the workhorse of the first order paracontrolled calculus,
such as devised in [17] by Gubinelli, Imkeller and Perkowski; we recall it here,
together with its proof, as this is our starting point. Recall we denote by Cα the
spacial Hölder spaces on the torus and by Cα the parabolic Hölder spaces over the
compact manifold M .

THEOREM 5. Let α, β, γ be regularity exponents, with α ∈ (0, 1), β ∈ (−3, 3)
and γ ∈ (−∞, 3). Assume α + β < 3, and

0 < α + β + γ < 1, while β + γ < 0.

Then, the corrector C extends continuously as a function from Cα × Cβ × Cγ to
Cα+β+γ .

Proof. As advertised above, we prove here this continuity result for a simplified
version of the operator C, and refer the reader to Proposition 40 in Appendix C
for full proofs. Assume we are working in the time-independent setting of the
d-dimensional torus, with the operator

C0( f, g, h) := Π 0(Π 0
f g, h)− f Π 0(g, h).

We prove the continuity of the corrector C0, as a function from Cα
× Cβ

× Cγ to
Cα+β+γ , under the above assumptions on α, β, γ .
• We first give a heuristic proof of the statement. The resonant operator is given
by

Π 0(a, b) '
∑
|i− j |61

∆i(a)∆ j(b). (3.2)

Write
C0( f, g, h) =

∑
|i− j |61

∆i(Π
0
f g)∆ j h − f∆i(g)∆ j(h),

and set
ε′i := ∆i(Π

0
f g)− f∆i(g),

so we have
C0( f, g, h) =

∑
|i− j |61

ε′i ∆ j(h).
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The fact that ε′i has L∞-norm of order 2−i(α+β) can be guessed on the expression

ε′i(x) =
∫

Ki(x, y)
{
(Π 0

f g)(y)− f (x)g(y)
}

dy

=

∫
Ki(x, y)

{
Π 0

f− f (x)1g
}
(y) dy.

As y is concentrated near x , at scale 2−i , and we are looking at the i th Littlewood–
Paley block of Pf− f (·)g, we expect

|ε′i(x)| . 2−iβ
‖Π 0

f− f (x)g‖Cβ . 2−iβ
‖ f − f (x)‖L∞ ‖g‖Cβ ,

with a term ‖ f − f (x)‖L∞ involving only the neighbourhood of x of size 2−i , that
is with

‖ f − f (x)‖L∞ . 2−iα
‖ f ‖Cα ,

since f is α-Hölder. Such an estimate would imply the continuity of the corrector
C as a function from Cα

×Cβ
×Cγ to Cα+β+γ , if α+β+γ is positive, since h is

γ -Hölder. However, this heuristic argument does not make it clear why we need
β + γ to be negative to get the result.
• A mathematically correct version of the above sketch of proof is done by
estimating the L∞-norm of the dyadic blocks of ε′i . For k > i + 2 then

∆kε
′

i = −∆k( f∆i(g)) ' −∆k( f )∆i(g);

here and below the ' means that the right hand side is equal to a finite sum
of terms of the given form. This is here a direct consequence of frequency
considerations with the frequency supports of the dyadic projections ∆k , for
k > i + 2. So we have

‖∆kε
′

i‖L∞ . 2−kα 2−iβ
‖ f ‖Cα‖g‖Cβ .

For k 6 i − 2 then

∆kε
′

i = −∆k( f∆i(g)) ' −∆k(∆i( f )∆i(g))

hence
‖∆kε

′

i‖L∞ . 2−i(α+β)
‖ f ‖Cα‖g‖Cβ .

We adopt the classical notation Sk−2 f for the partial sum
∑

`6k−2∆`( f ) of the
Littlewood–Paley decomposition, so for |i − k| 6 2 we have

∆kε
′

i ' ∆k(∆i(g)Si−2( f )− Sk+2( f )∆i(g)),

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


I. Bailleul and F. Bernicot 22

hence
‖∆kε

′

i‖L∞ . 2−i(α+β)
‖ f ‖Cα‖g‖Cβ .

As a consequence, we always have the following estimate

‖∆kε
′

i‖L∞ . 2−iβ 2−max(i,k)α
‖ f ‖Cα‖g‖Cβ . (3.3)

We can then estimate C0( f, g; h) in some Hölder space. For a nonnegative
integer k, we have

∆k(C0( f, g, h)) =
∑
|i− j |61

∆k(ε
′

i∆ j h)

'

∑
i<k−2
|i− j |61

∆k(ε
′

i)∆ j(h)+
∑

k<i−2
|i− j |61

∆k(∆i(ε
′

i)∆ j(h))

+

∑
|k−i |62
|i− j |61

∆k(Si(ε
′

i)∆ j(h))

which is then controlled, using estimate (3.3), by

‖∆k(C0( f, g, h))‖L∞

.

(∑
i<k−2

2−iβ2−kα2−iγ
+

∑
k<i−2

2−i(α+β+γ )
+

∑
|k−i |62

2−i(α+β+γ )

)
×‖ f ‖Cα‖g‖Cβ‖h‖Cγ

. 2−k(α+β+γ )
‖ f ‖Cα‖g‖Cβ‖h‖Cγ ;

we used the condition β + γ < 0 to estimate the first sum, and the condition
α+ β + γ > 0, to estimate the second sum. The fact that the latter estimate holds
uniformly in k concludes the proof of the (α + β + γ )-Hölder regularity of the
corrector.

We emphasize the importance of the above heuristic proof of continuity of the
corrector C by introducing a notation.

DEFINITION. Given an endomorphism A of some function space, we denote by
C f , or Cx f , the function

(C f )(·) := f (·)− f (x),

recentered around its value at the ‘running’ variable x , so that

A(C f )(x) = A( f − f (x))(x).
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Strictly speaking, the operator C is an operator on the space of operators A. The
choice of letter C for this operator is for ‘centring’, and we call C the outer
centring operator.

In those terms, we have

C( f, g, h) = Π(P̃C f g, h), (3.4)

and
Π(PC PCbcg, h)(x) = Π(PPb−b(x)c−(Pb−b(x)c)(x)g, h)(x),

for instance. The main property of this operator is the following. For a function
f ∈ Cα(Td

) with α positive, we have

Sk(C f )(x) = Sk( f − f (x))(x) = Sk( f )(x)− f (x)

=

∑
`>k+1

∆`( f )(x).

Since f has positive regularity, the L∞ size of the dyadic blocks ∆` f are
exponentially decreasing with `, so

‖Sk(C f )‖∞ + ‖∆k f ‖∞ . 2−αk . (3.5)

A very similar property holds in the parabolic setting, which is used in the proofs
of the continuity results of this section given in Appendix C.

3.1.2. Dealing with remainders: refined corrector C(1). The outer centring
operator allows to take profit from the Hölder continuity regularity property of
a function. To take further profit from the γ -Lipschitz regularity property of a
function, with 1 < γ < 2, one introduces a refined corrector, defined as
follows in the model setting of the flat torus; see Definition 37 for the definition in
the parabolic setting. This operator is used to take care of a number of remainder
terms in the paracontrolled analysis of ill-defined terms. Set

C0
(1)( f, g, h) := Π 0(P f g, h)− f Π 0(g, h)− f ′Π 0

(1)(g, h),

where
Π 0
(1)(g, h)(x) :=

∑
|i− j |61

∆i((· − x)g)(x) (∆ j h)(x),

for x ∈ T. An elementary refinement of the proof of Theorem 5 gives the
following statement. We refer the reader to Definition 37 for the definition of
the parabolic counterpart C(1) of C0

(1).
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THEOREM 6. Let α, β, γ be regularity exponents, with α ∈ (1, 2), β ∈ (−3, 3)
and γ ∈ (−∞, 3). Assume α + β < 3, and

0 < α + β + γ < 1, while β + γ < 0.

Then, the corrector C(1) extends continuously as a function from Cα × Cβ × Cγ to
Cα+β+γ .

The proof of the next statement is identical to the proof of the continuity result
for C from Theorem 5; it is left to the reader. Recall from Definition 37 that C(1)

is defined using the operators Π `
(1).

THEOREM 7. Let α, β, γ be regularity exponents, with α, β ∈ (0, 1), and γ ∈
(−∞, 3). Assume

β + γ + 1 < 0 < α + β + γ + 1 < 1.

Then all the operators

( f, g, h) 7→ Π `
(1)(P̃ f g, h)− fΠ `

(1)(g, h)

extend continuously as functions from Cα × Cβ × Cγ to Cα+β+γ+1, for 1 6 ` 6 `0.

3.1.3. Iterated correctors. Given a tuple of bounded functions (a, b, c, d), set

P̃◦2(a, b, c) := P̃P̃abc

and
P̃◦3(a, b, c, d) := P̃P̃◦2(a,b,c)d,

and give similar definitions of Π ◦2(a, b, c) and Π ◦3(a, b, c, d), using only P
operators, and (Π 0)◦2(a, b, c) and (Π 0)◦3(a, b, c, d), using only Π 0 operators,
respectively. Depending on whether or not such a paraproduct appears in the low
frequency, in place of f , or high frequency, in place of g, in the formulae for the
corrector C( f, g, h) or the commutator D( f, g, h), we shall talk about lower or
upper iterated operators.

•We define the 4 and 5-linear lower iterated correctors by the formulae

C((a1, a2), g, h)
:= C(P̃a1a2, g, h)− a1C(a2, g, h)
= Π(P̃◦2(a1, a2, g), h)−

{
(P̃a1a2)Π(g, h)+ a1Π(P̃C a2 g, h)

}
, (3.6)
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and

C(((a1, a2), a3), g, h) := C((P̃a1a2, a3), g, h)− a1C((a2, a3), g, h), (3.7)

also equal to

Π(P̃◦3(a1, a2, a3, g), h)
−
{
(P̃◦2(a1, a2, a3))Π(g, h)+ (P̃a1a2)Π(P̃C a3 g, h)+ a1Π(P̃C P̃Ca2 a3

g, h)
}
.

The conditions (· · · ) < 3 that appear in Theorem 8 below are purely technical; a
choice of implicit constant b in the definition of the paraproduct operator P = P(b)

would change the bound 3 for any other bound. In any concrete situation, one can
assume that such a good choice of parameter b has been done and forget about
that condition.

THEOREM 8. Let α1, α2, µ be regularity exponents in (0, 1), and α3 ∈ (−3, 3).
Let ν ∈ (−∞, 3] be another regularity exponent.

• Assume (α1 + α2 + µ) < 3, and

α2 + µ+ ν < 0, α1 + µ+ ν < 0
(α1 + α2 + µ+ ν) ∈ (0, 1).

Then the 4-linear lower iterated corrector

Cα1 × Cα2 × Cµ × Cν → Cα1+α2+µ+ν

(a1, a2, g, h) 7→ C((a1, a2), g, h)

is continuous.

• Assume that (α1 + α2 + α3 + µ) < 3, and

(α3 + µ+ ν) < 0, α2 + α3 + µ+ ν < 0
(α1 + α2 + β + α3 + ν) ∈ (0, 1).

The 5-linear lower iterated corrector

Cα1 × Cα2 × Cα3 × Cµ × Cν → Cα1+α2+α3+µ+ν

(a1, a2, a3, g, h) 7→ C(((a1, a2), a3), g, h)

is continuous.
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Proof. To get a clear idea of the mechanics at play, we only prove here the
analogue statement of the time-independent setting of the flat torus. That means
that we aim to prove that the formula

Π 0((Π 0)◦3(a1, a2, a3, g), h)
−
{
(Π 0)◦2(a1, a2, a3)Π

0(g, h)+ (Π 0
a1

a2)Π
0(Π 0

C a3
g, h)+ a1Π

0(Π 0
CΠ0

Ca2
a3

g, h)
}

defines a continuous map from Cα1×Cα2×Cα3×Cµ×Cν to Cα1+α2+α3+µ+ν , under the
above conditions on the regularity exponents. We then let the reader to complete
and adapt the proof in the full parabolic setting.

To see how the second term in the expansion arises, use formula (3.4) for the
corrector and write{

Π 0((Π 0)◦3(a1, a2, a3, g), h)− (Π 0)◦2(a1, a2, a3)Π
0(g, h)

}
(x)

= C0((Π 0)◦2(a1, a2, a3), g; h)(x)
= Π 0(Π 0

C (Π0)◦2(a1,a2,a3)
g, h)(x).

Note that since
Π 0

a1
a2 = (Π

0
a1

a2)(x)+ CΠ 0
a1

a2,

we have the identity

C (Π 0)◦2(a1, a2, a3) = (Π
0
a1

a2)(x)C a3 + CΠ 0
CΠ0

a1
a2

a3.

It follows that Π 0((Π 0)◦3(a1, a2, a3, g), h) is equal to

(Π 0)◦2(a1, a2, a3)Π
0(g, h)+ (Π 0

a1
a2)Π

0(Π 0
C a3

g, h)+Π 0(Π 0
CΠ0

CΠ0
a1 a2

a3
g, h).

Writing a1 = a1(x) + C a1, in the above expression for the remainder yields the
formula

C(a1, a2, a3, g, h) = Π 0(Π 0
CΠ0

CΠ0
Ca1

a2
a3

g, h). (3.8)

The fact that it defines a (α1 + α2 + α3 +µ+ ν)-Hölder function if this exponent
is positive can be seen as follows. For every x we have

Π 0(Π 0
CΠ0

CΠ0
Ca1

a2
a3

g, h)(x) '
∑

k

∆k(Π
0
CΠ0

CΠ0
Ca1

a2
a3

g)(x)∆k(h)(x)

'

∑
k

Sk−2(CΠ
0
CΠ0

Ca1
a2

a3)(x)∆k(g)(x)∆k(h)(x)

'

∑
k

∆k−2(Π
0
CΠ0

Ca1
a2

a3)(x)∆k(g)(x)∆k(h)(x),
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where we used (3.5). Iterating the reasoning, we get

Π 0(Π 0
CΠ0

CΠ0
Ca1

a2
a3

g, h)(x)

'

∑
k

∆k−6(a1)(x)∆k−4(a2)(x)∆k−2(a3)(x)∆k(g)(x)∆k(h)(x) (3.9)

and so since (α1 + α2 + α3 + µ+ ν) is nonnegative, and setting

m := ‖a1‖Cα1‖a2‖Cα2‖a3‖Cβ‖g‖Cα3‖h‖Cν ,

we conclude that

|Π 0(Π 0
CΠ0

CΠ0
Ca1

a2
a3

g, h)(x)| . m
∑

k

2−k(α1+α2+β+α3+ν)

. m,

uniformly in x , which yields that the main quantity defines a bounded function.
Using (3.9), we can also obtain its Hölder character. For x 6= y, we have

|Π 0(Π 0
CΠ0

CΠ0
Ca1

a2
a3

g, h)(x)−Π 0(Π 0
CΠ0

CΠ0
Ca1

a2
a3

g, h)(y)|

.
∑

k

|∆k−6(a1)(x)∆k−4(a2)(x)∆k−2(a3)(x)∆k(g)(x)∆k(h)(x)

−∆k−6(a1)(y)∆k−4(a2)(y)∆k−2(a3)(y)∆k(g)(y)∆k(h)(y)|

. m

 ∑
162k |x−y|

2−k(α1+α2+β+α3+ν) +

∑
1>2k |x−y|

|x − y|2k−k(α1+α2+β+α3+ν)


. m|x − y|α1+α2+β+α3+ν;

in the second sum, over 1 > 2k
|x − y|, we have used the finite increment

theorem together with the fact that differentiating one operator ∆k is equivalent
to multiplying it by 2k , together with the condition (α1 + α2 + α3 + µ + ν) ∈

(0, 1).

It is also necessary and possible to ‘expand’ the corrector C simultaneously on
its first two arguments. Define

C((a1, a2), (b1, b2), h) := C((a1, a2),Pb1 b2, h)− Pb1C((a1, a2), b2, h).

We let the reader write this operator in terms of the outer centring operator C , like
in identity (3.8).
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PROPOSITION 9. Assume that (α1 + α2 + µ1 + µ2) < 3, and

(α2 + µ2 + ν) < 0, α1 + µ2 + ν < 0
(α1 + α2 + µ1 + µ2 + ν) ∈ (0, 1) and µ2 ∈ (0, 1).

Then the 5-linear iterated corrector

Cα1 × Cα2 × Cµ1 × Cµ2 × Cν → Cα1+α2+µ1+µ2+ν

(a1, a2, b1, b2, h) 7→ C((a1, a2), (b1, b2), h)

is continuous.

Proof. As in the proof of Theorem 8, observe that (in the flat torus setting) we
have

C((a1, a2),Pb1 b2, h) '
∑

k

∆k−4(a1)∆k−2(a2)∆k(Pb1 b2)∆k(h)

'

∑
k

∆k−4(a1)∆k−2(a2)Sk−2(b1)∆k(b2)∆k(h).

At the same time,

Pb1C((a1, a2), b2, h) =
∑

k

Sk−2(b1)∆k(C((a1, a2), b2, h))

=

∑
k

Sk−2(b1)∆k

(∑
j

∆ j−4(a1)∆ j−2(a2)∆ j(b2)∆ j(h)

)
.

In the previous sum, the parameters k, j have to be equivalent in order to have a
nonvanishing contribution. With the normalization

∑
∆k = Id, we obtain

(?) := C((a1, a2),Pb1 b2, h)(x)− Pb1C((a1, a2), b2, h)(x)

'

∑
k, j

∆k(∆ j−4(a1)∆ j−2(a2)(S j−2(b1)− Sk−2(b1)(x))∆ j(b2)∆ j(h))(x).

From this decomposition, it is easy to check that for ` > 0 and because α1+α2+

µ1 + µ2 + ν ∈ (0, 1), and µ1 ∈ (0, 1), we have

‖∆`(?)‖L∞ .
∑

k, j&`

2− j (α1+α2+µ2+ν)(2− j
+ 2−k)µ1 m

. 2−`(α1+α2+µ1+µ2+ν)m,

with
m := ‖a1‖Cα1‖a2‖Cα2‖b1‖Cµ1‖b2‖Cµ2‖h‖Cν .
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The 5-linear iterated corrector will never appear explicitly in our computations
as it will provide a remainder term. The 4- and 5-linear upper iterated
correctors are defined by the formulae

C( f, (a1, a2), h) := C( f, P̃a1a2, h)− a1 C( f, a2, h)

and

C( f, (a1, (a2, a3)), h) := C( f, (a1, P̃a2a3), h)− a2 C( f, (a1, a3), h).

THEOREM 10. (i) Assume µ, α1 ∈ (0, 1), and the exponents (µ+ α1 + ν) and
(µ+ α2 + ν) are negative, and

(µ+ α1 + α2 + ν) ∈ (0, 1).

Then the 4-linear upper iterated corrector

Cµ × Cα1 × Cα2 × Cν → Cµ+α1+α2+ν

( f, a1, a2, h) 7→ C( f, (a1, a2), h)

is continuous.

(ii) Assume µ, α1, α2 ∈ (0, 1), and the exponents (µ + αi + ν) are all negative,
for 1 6 i 6 3, and

(µ+ α1 + α2 + α3 + ν) ∈ (0, 1).

Then the 5-linear upper iterated corrector

Cµ × Cα1 × Cα2 × Cα3 × Cν → Cµ+α1+α2+α3+ν

( f, a1, a2, a3, h) 7→ C( f, (a1, (a2, a3)), h)

is continuous.

Proof. We only sketch the proof of the continuity result of the 4-linear operator
in the model case of the time-independent setting of the flat torus, and rely
on formula (3.2) for the diagonal operator Π 0(·, ·) for that purpose. See
Proposition 44 in Appendix C.2 for a fully detailed proof in the parabolic
setting. In the present setting, the quantity C0( f ; a1, a2; g) is then given by a sum
of the form

C0( f, (a1, a2), h) =
∑
|i− j |61

ε′i∆ j h,
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with

ε′i :=
{
∆i(P f (Pa1a2))− a1∆i(P f a2)

}
+ f {a1∆i a2 −∆i(Pa1a2)}.

We read on the expression

ε′i(x) =
∫

Ki(x, y)
{
P f (Pa1a2)(y)− a1(x)(P f a2)(y)

+ ( f a1)(x)a2(y)− f (x)(Pa1a2)(y)
}

dy

=

∫
Ki(x, y)Pf− f (x)1(Pa1−a1(x)1a2)(y) dy,

that

ε′i = ∆i(PC f (PC a1a2))

has L∞-norm of order 2−i(µ+α1+α2), as a consequence of (3.5). The proof is then
not fully completed, since the block ε′i∆i h is not perfectly localized in frequency
at scale 2i , so an extra decomposition is necessary. The same thing happens in the
proof of Theorem 5. We do not give the details here and refer the reader to the
proof of Proposition 44 in Appendix C.

3.1.4. Commutator D. Define on the space L∞ of bounded measurable
functions on the parabolic space M the commutator D as the operator

D( f, g, h) := Π(P̃ f g, h)− P f (Π(g, h)),

THEOREM 11. (a) For positive regularity exponents α, β and γ , the commutator
D is continuous from Cα × Cβ × Cγ to Cα+β+γ .

(b) The commutator D is bounded from Cα×Cβ×Cγ into Cα+β+γ for α ∈ (−1, 0)
as soon as α + β + γ > 0.

Proof. Assume we are working in the time-independent setting of the d-
dimensional torus, with the operator

D0( f, g, h) := Π 0(Π 0
f g, h)−Π 0

f (Π
0(g, h)).

(a) We refer the reader to Proposition 40, in Appendix C.1, for a full proof of the
regularity statement for the commutator D. We simply mention here that in the
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special case of D0, the regularity estimate comes from the following identity

∆k(D0( f, g, h)) =
∑
`>k−2

∆k(∆`(g)S`−2( f )∆`(h))− Sk−2( f )∆k(∆`(g)∆`(h))

'

∑
`>k−2

∆k(∆`(g)S`−2( f )∆`(h)− Sk−2( f )∆`(g)∆`(h)).

(3.10)

(b) This case is easy and do not use the ‘difference’ structure in the commutator.
Indeed since α < 0 then α + β + γ > 0 implies β + γ > 0 and so by using the
boundedness of the paraproducts and those of the resonant part, it directly comes

Π(P̃ f g, h) ∈ Cα+β+γ and P f (Π(g, h)) ∈ Cα+β+γ .

3.1.5. Back to the high order paracontrolled expansion (2.3). The high order
paracontrolled expansion (2.3) might seem far from a possibly expected ordinary
Taylor-type expansion, such as it appears for instance in regularity structures [19].
The difference is not that big, as we see in this section by looking at the resonant
term Π( f (u), ζ ). This intermezzo has a formal character. Recall we denote
by C◦,D◦ the corrector, commutator and their iterates, built from the resonant
operator and the usual paraproduct Π,P instead of the modified paraproduct P̃;
they enjoy the same continuity properties as C and D. We consider in this section
the case where u ∈ Cα, with 2

5 < α < 1
2 , and for a function g ∈ C3

b , we write
the second order version of formula (2.3), giving the paracontrolled expansion of
g(u), under the form

g(u) =: Pg′(u)u + 1
2

{
Pg(2)(u)u2

− Pg(2)(u)uu
}
+ g(u)(1);

the exponent (1) referring to the fact that g(u)(1) ∈ C3α
⊂ C1, so it can be

differentiated in the space direction. We work in our general parabolic setting
over a Riemannian manifold so the refined corrector involves the additional term∑`0

`=1 γ`(V` f )Π `
(1)(g, h), from Definition 37. The reader can think of the time-

independent flat torus setting, where the additional term in the definition of the
refined corrector is simply f ′Π 0

(1)(g, h), with ′ denoting space derivative.

Notation. Given any β ∈ R, denote by (β) an element of Cβ whose precise
definition is unimportant for the reasoning, and whose only noticeable property is
its regularity. Its definition may change from line to line.

Pick now a function f ∈ C4
b . Writing

u2
= 2Puu +Π(u, u),

u3
= Pu2 u + 2Pu(Puu)+ Pu(Π(u, u))+ 2Π(u,Puu)+Π(u,Π(u, u)),
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the third order paracontrolled expansion formula (2.3) writes

f (u) = Pa1 u + Pa2Puu + Pa3(Pu(Puu))+ Pa4(Pu2 u)
+Pb1Π(u, u)+ Pb2(PuΠ(u, u))+ Pb3(Π(u,Puu))
+Pc(Π(u,Π(u, u)))+ f (u)],

where f (u)] ∈ C4α, and

a1 := f ′(u)− u f (2)(u)+ 1
2 u2 f (3)(u),

a2 := f (2)(u)− u f (3)(u),
a3 :=

1
3 f (3)(u),

a4 :=
1
6 f (3)(u),

b1 :=
1
2 ( f (2)(u)− f (3)(u)),

b2 :=
1
6 f (3)(u),

b3 :=
1
3 f (3)(u),

c := 1
6 f (3)(u).

Plugging this formula inside Π( f (u), ζ ) gives for it the expression

a1Π(u, ζ )+ C◦(a1, u, ζ )
+ a2uΠ(u, ζ )+ a2C◦(u, u, ζ )+ u C◦(a2, u, ζ )+ C◦(a2, (u, u), ζ )
+ a3u2Π(u, ζ )+ 2a3u C◦(u, u, ζ )+ u2 C◦(a3, u, ζ )
+ 2u C◦(a3, (u, u), ζ )+ a3 C◦(u, (u, u), ζ )
+ a4u2Π(u, ζ )+ a4 C◦(u2, u, ζ )+ u2 C◦(a4, u, ζ )+ C◦(a4, (u2, u), ζ )
+ b1Π(Π(u, u), ζ )+ C◦(b1,Π(u, u), ζ )
+ b2uΠ(Π(u, u), ζ )+ b2 C◦(u,Π(u, u), ζ )+ u C◦(b2,Π(u, u), ζ )
+ b3uΠ(Π(u, u), ζ )
+ b3 C◦(u,Π(u, u), ζ )+ b3Π(D◦(u, u, u), ζ )+ u C◦(b3,Π(u, u), ζ )
+ cΠ(Π(u,Π(u, u)), ζ )+ (5α − 2).

To get this expression in terms only of primitive quantities involving ill-defined
terms where u appears rather than a function of u, use the identity

C◦(ai(u), u, ζ ) = a′i(u)C◦(u, u, ζ )+ a(2)i (u)C◦((u, u), u, ζ )

+
1
2

a(2)i (u)C◦(Π(u, u), u, ζ )

+ (5α − 2)+ C◦(ai(u)(1), u, ζ )
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= a′i(u)C◦(u, u, ζ )+ a(2)i (u)C◦((u, u), u, ζ )

+
1
2

a(2)i (u)C◦(Π(u, u), u, ζ )

+ (5α − 2)+
`0∑
`=1

γ`V`(ai(u)(1))Π `
(1)(u, ζ ).

We expand C◦(u2, u, ζ ) using the identity u2
= 2Puu + Π(u, u) and the

iterated corrector. After simplification, one gets the following multiplicative
decomposition for Π( f (u), ζ )

f ′(u)Π(u, ζ )+ f (2)(u)
{

C◦(u, u, ζ )+
1
2
Π(Π(u, u), ζ )

}
+ f (3)(u)

{
1
3

C◦(u, (u, u), ζ )+
1
3

C◦((u, u), u, ζ )

+
1
6

C◦(u,Π(u, u), ζ )+
1
6

C◦(Π(u, u), u, ζ )

+
1
3
Π(D◦(u, u, u), ζ )+

1
6
Π(Π(u,Π(u, u)), ζ )

}
+

`0∑
`=1

(?)`Π
`
(1)(u, ζ )+ (5α − 2), (3.11)

with

(?)` := γ`V`(a1(u)(1))+ u γ`V`(a2(u)(1))+ u2 γ`V`(a3(u)(1) + a4(u)(1)) ∈ C3α−1.

(3.12)
In the time-independent setting of the flat torus, this reduces to

`0∑
`=1

(?)`Π
`
(1)(u, ζ )

=
{
(a1(u)(1))′ + u(a2(u)(1))′ + u2(a3(u)(1) + a4(u)(1))′

}
Π(1)(u, ζ ).

The term Π `
(1)(u, ζ ) has formal regularity 2α − 1, slightly less than 0, and the

product with the above bracket term {·} is well-posed provided Π `
(1)(u, ζ ) can be

given meaning as an element of regularity 2α − 1.
Write each expression Π(uk, ζ ) in multiplicative form and assign to a product

the regularity of its term of lowest regularity. For an expression B in multiplicative
form, we can then denote by bBckα−2 the part of B that is of formal regularity
(kα − 2). So we have for instance

bΠ(u, ζ )c2α−2 = Π(u, ζ ),
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and
Π(Puu, ζ ) = uΠ(u, ζ )+ C◦(u, u, ζ ),

with
bΠ(Puu, ζ )c2α−2 = uΠ(u, ζ )

and
bΠ(Puu, ζ )c3α−2 = C◦(u, u, ζ ).

In those terms, formula (3.11) for Π( f (u), ζ ) takes the following Taylor-type
form

Π( f (u), ζ ) = f ′(u)bΠ(u, ζ )c2α−2 + f (2)(u)
⌊
Π

(
u2

2!
, ζ

)⌋
3α−2

+ f (3)(u)
⌊
Π

(
u3

3!
, ζ

)⌋
4α−2

+

`0∑
`=1

γ`(V`(ai(u)(1)))Π `
(1)(u, ζ )+ (5α − 2). (3.13)

3.1.6. Iterated commutators. In addition to the above continuity properties for
the iterated correctors, we also need the following continuity result on iterated
commutator operators D.

PROPOSITION 12. • Given positive regularity exponents α1, α2, γ, δ, the
formulae

Cα1 × Cα2 × Cγ × Cδ → Cα1+α2+γ+δ

(a1, a2, g, h) 7→ D(P̃a1a2, g, h)− Pa1D(a2, g, h),

for the lower iterated commutator, and

Cγ × Cα1 × Cα2 × Cδ → Cγ+α1+α2+δ

( f, a1, a2, h) 7→ D( f, P̃a1a2, h)− Pa1D( f, a2, h),

for the upper iterated commutator, define continuous operators. The result also
holds true if α1 ∈ (0, 1) and −1 < α2 < 0, with α2 + γ + δ > 0.

• Fix α, γ, δ1 > 0 and δ2 ∈ (0, 1). The high frequency commutator

Cα × Cγ × Cδ1 × Cδ2 → Cα+γ+δ1+δ2

( f, g, h1, h2) 7→ D( f, g, P̃h1 h2)− Ph1D( f, g, h2),

is bounded. This continuity result also holds true if α ∈ (−1, 0), provided α +
γ + δ2 > 0.
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Proof. As in the proof of Theorem 5, we analyse in the present proof what
happens in the time-independent setting of the d-dimensional torus, in the case
where we also use Π 0 instead of P̃. So we set

D0(a1, a2, g, h) := D0(Π 0
a1

a2, g, h)−Π 0
a1

D0(a2, g, h)

and have a look at its continuity properties on the spacial Hölder spaces. Using
formula (3.10), it follows that we have

∆k(D0(a1, a2, g, h)) ' ∆k(D0(Pa1a2, g, h))− Sk−2(a1)∆k(D0(a2, g, h))

'

∑
`>k−2

∆k
{
∆`(g)∆`(h)

(
S`−2(Pa1a2)− Sk−2(Pa1a2)

− Sk−2(a1)(S`−2a2 − Sk−2a2)
)}
.

The quantity inside the brackets is equal to

S`−2(Pa1a2)− Sk−2(Pa1a2)− Sk−2(a1)(S`−2(a2)− Sk−2(a2))

=

`−2∑
j=k−1

∆ j(Pa1a2)− Sk−2(a1)∆ j(a2)

'

`−2∑
j=k−1

S j−2(a1)∆ j(a2)− Sk−2(a1)∆ j(a2)

'

`−2∑
j=k−1

(S j−2a1 − Sk−2a1)∆ j(a2),

which is bounded in L∞ by
`∑

j=k+1

2−kα
‖a1‖Cα1 2− jβ

‖a2‖Cα2 . 2−k(α1+α2)‖a1‖Cα1‖a2‖Cα2 .

This estimate allows us to conclude that

‖∆k(D0(a1, a2, g, h))‖∞ . 2−k(α1+α2+γ+δ)‖a1‖Cα1‖a2‖Cα2‖g‖Cγ ‖h‖Cδ ,

uniformly in k, which proves the continuity result for the 4-linear operator D0.
A very similar proof gives the continuity of the simplified version of the upper
iterated commutator; we leave the details to the reader.

For the second statement of the first item of the proposition, with α2 ∈ (−1, 0)
we follow the same computations and since we have now

`−2∑
j=k−1

2−kα
‖a1‖Cα1 2− jα2‖a2‖Cα2 . 2−kα1−`α2‖a1‖Cα1‖a2‖Cα2 ,
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then

‖∆k(D0(a1, a2, g, h))‖∞ .
∑
`>k

2−kα1 2−`(α2+γ+δ)‖a1|Cα1‖a2‖Cα2‖g‖Cγ ‖h‖Cδ

. 2−`(α+β+γ+δ)‖a1|Cα1‖a2‖Cα2‖g‖Cγ ‖h‖Cδ ,

since β + γ + δ > 0.
For the second item of the proposition, the same reasoning can be applied by

observing that now

∆k[D( f, g, P̃h1 h2)− Ph1D( f, g, h2)]

'

∑
`>k

∆k[∆ j(g)(S`−2 f − Sk−2 f )∆`h2(S`−2h1 − Sk−2h1)];

we conclude by using the regularity of the four functions.

3.2. Iterated paraproducts. The operators C and D introduced in Section 3
are used to analyse ill-defined products. The operators R and S that we introduce
in this section are used to write down the different terms that appear from using
the C and D operators in the paraproduct form required to apply the fixed
point strategy for the analysis of Equation (1.1) – Step (3) in Section 1.1. As a
motivating example, let us set ourselves the task of writing the paraproduct Pζu
under the form

∑4
i=1 Pv j Y j + (5α − 2), for some v j ∈ Cα, some Y j that depend

only on the Z i and the noise, and a remainder (5α − 2) of regularity 5α − 2,
assuming if necessary that the ui also have a paracontrolled expansion up to some
ui -dependent order. We repeatedly use for that purpose the F-type decomposition
(1.6) on the paraproduct map and its iterates. We use here the sign ∼ for the
equality of functions, up to some term of positive regularity. We have

Pζu ∼
3∑

i=1

PζPui Z i ,

and setting

S◦(ζ, ui , Z i) := PζPui Z i − Pui Pζ Z i ,

we have

Pζu ∼
3∑

i=1

(Pui Pζ Z i + S◦(ζ, ui , Z i)).
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Theorem 13 below shows that the ‘swap’ operator S◦ sends continuously Cα−2
×

Cα1 × Cα2 into Cα−2+α1+α2 . So we have

Pζu ∼
3∑

i=1

Pui Pζ Z i + S◦(ζ, u1, Z1)+ S◦(ζ, u2, Z2).

The first three terms on the right hand side have a good form. To analyse the two
S◦(ζ, ·, ·) terms, we do an F-type expansion on each of them, taking profit from
the paracontrolled expansion

u1 =

2∑
j=1

Pu1 j Z j + (3α), u2 = Pu21 Z1 + (2α),

of u1 and u2. The map

S◦ζ ((a1, a2), b) := S◦(ζ,Pa1a2, b)− Pa1S
◦(ζ, a2, b)

happens indeed to send Cα−2
× Cα1 × Cα2 × Cβ into Cα−2+α1+α2+β continuously –

Theorem 13, so we have

Pζu ∼
3∑

i=1

Pui (Pζ Z i)+

2∑
j=1

Pu1 j S
◦(ζ, Z j , Z1)

+Pu21S
◦(ζ, Z1, Z2)+ S◦(ζ, u11, Z1, Z1). (3.14)

A further F-type expansion on the last term in the above right hand side does the
job.

New things happen when we look at the paraproduct Pζu2, as we have to deal
with a term

PζPuu = PuPζu + S◦(ζ, u, u).

Using (3.14), we end up with terms of the form PuPua Ya . A similar thing happens
in the analysis of S◦(ζ, u, u) and PζΠ(u, u). To deal with PuPua Ya , we use the
merging operator R◦

PuPua Ya =: Puua Ya + R◦(u, ua, Ya),

and prove some continuity results and some expansion property of R◦ with respect
to its first two arguments.

In this section, we define and state continuity results for the swap and merging
operators S and R defined below. We prove here some of the results in the model
setting of the time-independent flat torus and refer the reader to Appendix C.2 for
the description of how things work in the parabolic setting.
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3.2.1. Swap operator S. The result stated below in Theorem 13 is fully proved
in Appendix C.2 – see Propositions 38 and 42. Given Hölder distributions f, g1,

g2, g3, g, h, we define the modified commutator on paraproducts, and its
iterates, by the formulae

S( f, g, h) := P f (P̃gh)− Pg(P f h),

and
S( f, (g1, g2), h) := S( f, P̃g1 g2, h)− Pg1(S( f, g2, h)) (3.15)

and

S( f, ((g1, g2), g3), h) := S( f, (P̃g1 g2, g3), h)− Pg1(S( f, (g2, g3), h)). (3.16)

The continuity properties of these operators are given in the following statement.
The range (−3, 3) in the next statement is purely technical and can be replaced
by any other interval by an adequate choice of constant b in the definition of
the paraproduct P = P(b). Note that no gain of regularity comes from the first
argument in the regularity statements below.

THEOREM 13. Pick γ ∈ R.

(a) Pick α ∈ (0, 1) and β ∈ R such that γ + α + β ∈ (−3, 3). The map

Cγ × Cα × Cβ → C(γ∧0)+α+β

( f, g, h) 7→ S( f, g, h)

is continuous.

(b) Pick α1, α2 ∈ (0, 1) and β ∈ R such that γ + α1 + α2 + β ∈ (−3, 3). The
map

Cγ × Cα1 × Cα2 × Cβ → C(γ∧0)+α1+α2+β

( f, g1, g2, h) 7→ S( f, (g1, g2), h)

is continuous.

(c) Pick α1, α2, α3 ∈ (0, 1) and β ∈ R such that γ +α1+α2+α3+β ∈ (−3, 3).
The map

Cγ × Cα1 × Cα2 × Cα3 × Cβ → C(γ∧0)+α1+α2+α3+β

( f, g1, g2, g3, h) 7→ S( f, ((g1, g2), g3), h)

is continuous.

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


High order paracontrolled calculus 39

3.2.2. Merging operator R and inner difference operator D . The value at x ∈
Td of some paraproduct Puv is a sum over the integers i of terms of the form

(Π 0,(i)
u v)(x) :=

∫∫
Ki(x, y)K6i−1(x, z)u(z)v(y) dz dy.

We thus have for f ∈ L∞, g ∈ Cα with α ∈ (0, 1), and h ∈ Cν ,

(Π
0,(i)
f (Π 0

g h)−Π 0,(i)
f g h)(x)

=

∫∫
Ki(x, y)K6i−1(x, z) f (z)(Π 0

g−g(z)h)(y) dz dy

=:

∫∫
Ki(x, y)K6i−1(x, z) f (z)(Π 0

Dgh)(y) dz dy. (3.17)

The above identity defines the inner difference operator D(=Dz). In those
terms, we have

R0( f, g, h) := Π 0
f (Π

0
a g)−Π 0

f ag = Π 0
f (Π

0
Dag)

and, given the definition of the inner difference operator in the parabolic setting
of Section C, we have more generally,

R( f, g, h) := P f (P̃gh)− Pf gh = P f (P̃Dgh). (3.18)

We use the same letter D in the spatial and parabolic settings. Compare this
expression with the formal multiple integral, where we use the same letters to
make it more striking,∫

f (z) d
(∫

·

g dh
)
(z) =

∫
f g dh +

∫
f (z) d

(∫
·

(g − g(z)) dh
)
(z).

A similar reasoning as in the proof of continuity of C( f, g, h) = Π(PC f g, h),
shows that R sends continuously L∞ × Cα × Cν into Cα+ν , as soon as α ∈ (0, 1).
A subtle thing happens here, though, as one has actually a refined continuity
estimate on R◦ that also takes into account the regularity of f as well. It is related
to the fact that R◦(1, g, h) = R◦( f, 1, h) = 0, for all f, g, h, whereas R(1, g, h)
6= 0.

PROPOSITION 14. • For α, β ∈ [0, 1) and γ ∈ (−3, 3), we have

‖R◦( f, g, h)‖Cα+β+γ . ‖ f ‖Cα ‖g‖Cβ ‖h‖Cγ . (3.19)

• For a1, a2, h ∈ Cα, one has

R(1,Pa1a2, h)− Pa1R(1, a2, h) ∈ C3α.
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• If a2, g ∈ Cα, with 0 < α < 1/2, and a1 ∈ Cν , with ν ∈ (0, 1/2), and h ∈ Cγ
for γ ∈ (−3, 3), then we have

R◦(Pa1a2, g, h)− Pa1R
◦(a2, g, h) ∈ C2α+γ+ν . (3.20)

Note that we need both f and g to be in Cα in (3.19); this is required by the
method of proof, based on an interpolation argument.

Proof. The first statement (3.19) is proved in details in the third statement,
inequality (C.3), of Proposition 38 in Appendix C. The second statement is a
particular (u = 1) case of Proposition 43, also in the same appendix. Let us
check the last statement (3.20). Because of the symmetry character that the first
two arguments of R◦ play in the proof of its regularity properties, Proposition 43
implies the boundedness of the operator

(a1, a2, g, h)→ R◦(Pa1a2, g, h)− Pa1R
◦(a2, g, h)

from C2ν
× L∞ × C2α

× Cγ into C2ν+2α+γ , because 2ν, 2α < 1. We also have the
boundedness of that operator from L∞ × C2α

× L∞ × Cγ into C2α+γ , because
2α < 1 – we only use (3.19) to estimate the two quantities and do not use the
difference structure in the commutator. We conclude by interpolating between
these two estimates.

THEOREM 15. • Let f, g ∈ L∞ and h ∈ Cν be given for ν ∈ (−3, 3). Let also
a1 ∈ Cα1 and a2 ∈ Cα2 be given, with α1, α2 ∈ (0, 1). Then both

R◦( f, (a1, a2), h) := R◦( f,Pa1a2, h)− R◦( f a1, a2, h) (3.21)

and

R◦((a1, a2), g, h) := R◦(P̃a1a2, g, h)− Pa1R
◦(a2, g, h) (3.22)

are elements of Cα1+α2+ν .

• If f ∈ Cµ, with µ ∈ (0, 1), and a1 ∈ Cα1 and a2 ∈ Cα2 , and h ∈ Cν with
ν ∈ (−3, 3), then we have

R◦( f, (a1, a2), h)− P f (R◦(1, (a1, a2), h)) ∈ Cµ+α1+α2+ν . (3.23)

The range (0, 1) for the exponent α, β and γ , is dictated by the operator D ,
which involves a first order increment and so can only encode regularity at order
at most 1.
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Proof. The second estimate (3.22) is proved in the appendix, see Proposition 43,
because the first two arguments of R◦ play a ‘symmetric’ role in the proof of the
continuity estimates; see Remark 16.

We prove the two other corresponding statements (3.21) and (3.23) in the model
time-independent setting of the flat torus. We prove first (3.21). We have

Π 0
f (Π

0
Π0

a1
a2

g)−Π 0
fΠ0

a1
a2

g −Π 0
f a1
(Π 0

Da2
g) = Π 0

f (Π
0
DΠ0

a1
a2

g)−Π 0
f a1
(Π 0

Da2
g)

is a sum over i of double integrals∫∫
Ki(x, y)K6i−2(x, z) f (z)(Π 0

D(Π0
a1

a2−a1(z)a2)
g
)
(y) dz dy

=

∫∫
Ki(x, y)K6i−2(x, z) f (z)(Π 0

DΠ0
Da1

a2
g)(y) dz dy

on which we read off that their L∞ norm is of order 2−i(α1+α2+ν). This point
finishes the proof since the last quantity corresponds to the dyadic blocks
∆i(R( f, (a1, a2), g)).

We prove (3.23). On the other hand, we have that

∆i(P f (R(1; (a1, a1); g)))(x)

=

∫∫∫
Ki(x, y)K6i−2(x, u) f (u)K6i−2(x, z)(Π 0

DΠ0
Da1

a2
g)(y) dz dy du.

So using that the kernel K6i−1(x, ·) has an integral equal to 1, we deduce that the
difference of the two dyadic blocks is given by∫∫∫

Ki(x, y)K6i−2(x, z)K6i−2(x, u)( f (z)− f (u))(Π 0
DΠ0

Da1
a2

g)(y) dz dy du,

on which we read off that their L∞ norm is of order 2−i(µ+α1+α2+ν).

REMARK 16. The operator R◦ is not symmetric in a proper sense, but rather in
terms of how the regularity properties of its first two arguments are taken into
account. The frequency analysis is exactly the same, if we assume a regularity on
f or on g. Since R◦ involves only P-paraproducts and not P̃-paraproducts, we can
exploit the difference structure between P f g and P f or Pg. In the operator R, one
can only exploit the regularity on g in R( f, g, h) because of the P̃-operator on g.
This phenomenon is illustrated by the observation that

R◦(1, g, h) = R◦( f, 1, h) = 0 = R( f, 1, h),

while R(1, g, h) = P̃gh − Pgh 6= 0.
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3.2.3. Back again to the high order paracontrolled expansion (2.3). Recall from
Proposition 14 that the operator R◦(a, b, c) = PaPbc−Pabc, has better regularity
properties than the merging operator R. We can use the continuity properties
of R◦ to rewrite the high order paracontrolled expansion (2.3) and clarify the
cancellations that happen in each of its brackets. We have first that

Pf (2)(u)u2
− 2Pf (2)(u)uu = Pf (2)(u)Π(u, u)+ 2Pf (2)(u)(Puu)− 2Pf (2)(u)uu

= Pf (2)(u)Π(u, u)+ 2R◦( f (2)(u), u, u)
= Pf (2)(u)Π(u, u)+ 2Pf (3)(u)R◦(u, u, u)+ (2α ∧ 1+ 2α),

from Bony’s paralinearization f (2)(u) = Pf (3)(u)u + (2α) and the continuity
properties of the merging operator R. Write D◦(a, b, c) for

Π(Pab, c)− PaΠ(b, c);

this operator has the same regularity properties as D. The third order expansion
formula is only needed when α < 1/2. In that case, an elementary computation
shows that

Pf (3)(u)u3
− 3Pu f (3)(u)u2

+ 3Pu2 f (3)(u)u
=
(
3R◦( f (3)(u), u2, u)+ 2Pf (3)(u)R◦(u, u, u)
+Pf (3)(u)(2D◦(u, u, u)+Π(u,Π(u, u)))
− 6R◦(u f (3)(u), u, u)

)
+ 3R◦( f (3)(u), u,Π(u, u))

= Pf (3)(u)(2R◦(u, u, u)+ 2D◦(u, u, u)+Π(u,Π(u, u)))
+
{
3R◦( f (3)(u),Π(u, u), u)+ 6R◦( f (3)(u), (u, u), u)

+ 3R◦( f (3)(u), u,Π(u, u))
}

is the sum of 3α-terms and a 4α-term, as one can use in that case the refined
continuity estimates (3.20) on R.

COROLLARY 17. Let f ∈ C5
b . If α < 1/2, one has

f (u) = Pf ′(u)u + 1
2!Pf (2)(u)Π(u, u)

+
1
3!Pf (3)(u)

(
8 R◦(u, u, u)+ 2 D◦(u, u, u)+Π(u,Π(u, u))

)
+ f (u)], (3.24)

for a remainder f (u)] ∈ C4α.

PROPOSITION 18. Let a noise ζ ∈ Cα−2 be given, together with a function u given
by a paracontrolled system with reference functions Z, and f ∈ C5

b . Then one can
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write the product f (u)ζ under the form

f (u)ζ = Pf (u)ζ +

2∑
i=1

Pf ′(u)ui Yi + Pf ′(u)u11 Y11 + Pf (2)(u)u2
1
Y(1,1) + (]) (3.25)

for explicit reference distributions Y ’s that depend only on the noise ζ and Z, and
a remainder term

(]) ∈ L (C4α) ⊂ C4α−2,

that depends continuously on û and the Y ’s.

The proper interpretation of the above statement is that the remainder (]) ∈
L (C4α), provided the noise ζ is enhanced into ζ̂ , with components belonging
to L (Ckα−2)-spaces; the remainder (]) also depends on ζ̂ ; see Remark 1 after
the proof. We first give a detailed proof of the statement, in which the reader
will see that we keep repeating the same kind of computations. The mechanics at
play here will be emphasized after the proof; this is nothing but the mechanics of
Section 1.2.

Proof. We start from the identity

f (u)ζ = Pf (u)ζ + Pζ f (u)+Π( f (u), ζ ),

and treat the second and third terms separately. We shall denote by ([) a term
in L (C4α) that may change from place to place. A term of the form Pζb, with
b ∈ C3α, is a ([)-term; so is a term Pa([), if a has nonnegative parabolic Hölder
regularity. We use below the following fact proved in Proposition 38 – (C.1) and
Proposition 42 of Appendix C.

LEMMA 19. Let a1 ∈ Cα1, a2 ∈ Cα2, a3 ∈ Cα3 be given, with αi ∈ (0, 1). The
quantities

S◦(ζ, a1, a2), S(ζ, a1, a2), S(ζ, (a1, a2), a3),

belong to L (C4α), if α1+α2 > 3α for the first two quantities, and α1+α2+α3 >
3α, for the third quantity. These operators are continuous functions of the ai under
these assumptions.

(1) We have

Pζ f (u) = PζPf ′(u)u + 1
2 PζPf (2)(u)Π(u, u)+ ([)

= Pf ′(u)Pζu + S◦(ζ, f ′(u), u)+ 1
2 Pf (2)(u)PζΠ(u, u)+ ([),
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from Lemma 19. So Pζ f (u) is equal to

Pf ′(u)Pui (Pζ Z i)+ Pf ′(u)S(ζ, ui , Z i)

+S◦(ζ, f ′(u), u)+ 1
2 Pf (2)(u)PζPu2

1
Π(Z1, Z1)+ ([)

= (Pf ′(u)ui Pζ Z i + R◦( f ′(u), ui ,Pζ Z i))+ (Pf ′(u)Pui j S(ζ, Z j , Z i)+ ([))

+ (Pf (2)(u)u2
1
S◦(ζ, Z1, Z1)+ ([))

+
(

1
2 P f (2)(u)Pu2

1
(PζΠ(Z1, Z1))+ ([)

)
+ ([),

from Lemma 19 again. Note that it follows from the sharp continuity estimate (14)
from Proposition 14 that R◦( f ′(u), ui ,Pζ Z i) is a ([)-term. Also, one has from
Lemma 19 that S(ζ, Z j , Z i) ∈ L (C(i+ j+1)α) and S◦(ζ, Z j , Z i) ∈ L (C(i+ j+1)α),
while PζΠ(Z1, Z1) ∈L (C3α). This allows us to write Pζ f (u) under the required
form

Pζ f (u) = Pf ′(u)ui (Pζ Z i)+ Pf ′(u)u11S(ζ, Z1, Z1)+ Pf (2)(u)u2
1
S◦(ζ, Z1, Z1)

+
1
2 P f (2)(u)u2

1
(PζΠ(Z1, Z1))+ ([).

(2) Consider now the resonant term Π( f (u), ζ ), and start for that purpose from
the multiplicative formula (3.11)

f ′(u)Π(u, ζ )+ f (2)(u)
{

C◦(u, u, ζ )+
1
2
Π(Π(u, u), ζ )

}
+ f (3)(u)

{
1
3

C◦(u, (u, u), ζ )+
1
3

C◦((u, u), u, ζ )

+
1
6

C◦(u,Π(u, u), ζ )+
1
6

C◦(Π(u, u), u, ζ )

+
1
3
Π(D◦(u, u, u), ζ )+

1
6
Π(Π(u,Π(u, u)), ζ )

}
+

`0∑
`=1

(?)`Π
`
(1)(u, ζ )+ (5α − 2)

for Π( f (u), ζ ) – recall (?)` is defined in (3.12). It suffices to see that each term
in this decomposition has the form (3.25) of the statement; we proceed from the
more to the less regular terms.

(2.1) Use Theorem 7 on the expansion rule for the operator Π(1), and the first
order paracontrolled structure of u, to write

Π `
(1)(u, ζ ) = u1Π

`
(1)(Z1, ζ )+ (3α − 1).
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This gives the paracontrolled representation

(?)`Π
`
(1)(u, ζ ) = P(?)`u1Π

`
(1)(Z1, ζ )+ (5α − 2), (3.26)

since α < 1/2.

(2.2) Write {u} for the bracket term after f (3)(u). The first order paracontrolled
structure of u and the continuity properties of the correctors and commutators
give

f (3)(u){u} = Pf (3)(u)u3
1
{Z1} + (5α − 2),

for a remainder term (5α− 2) ∈ C5α−2. The fact that {Z1} ∈L (C4α) is part of the
data ζ̂ .

(2.3) We use the paracontrolled structure of u and the continuity results on
correctors to write the term Π(Π(u, u), ζ ) in multiplicative form. This gives

Π(Π(u, u), ζ ) = Π(PuiΠ(Z i , u), ζ )+Π(D(ui , Z i , u), ζ )+ (5α − 2)
= uiΠ(Π(Z i , u), ζ )+ C◦(ui ,Π(Z i , u), ζ )
+ u11u1Π(D(Z1, Z1, Z1), ζ )+ (5α − 2)
= ui ujΠ(Π(Z i , Z j), ζ )+ u11u1 (?)+ (5α − 2)

with
(?) := 2C◦(Z1,Π(Z1, Z1), ζ )+ 2Π(D(Z1, Z1, Z1), ζ ),

after elementary computations. The fact that Π(Π(Z1, Z2), ζ ) and (?) are
elements of L (C4α) is part of the data ζ̂ . Now,

f (2)(u)u2
1 = P2 f (2)(u)u1u11+ f (3)(u)u3

1
Z1 + (2α),

so, recalling that an element in C5α−2 is of ([)-type, we have

f (2)(u)u2
1Π(Π(Z1, Z1), ζ )

= Pf (2)(u)u2
1
Π(Π(Z1, Z1), ζ )+ ([)+Π( f (2)(u)u2

1,Π(Π(Z1, Z1), ζ ))

= Pf (2)(u)u2
1
Π(Π(Z1, Z1), ζ )

+P2 f (2)(u)u1u11+ f (3)(u)u3
1
Π(Z1,Π(Π(Z1, Z1), ζ ))+ ([).

Here again, the fact that Π(Z1,Π(Π(Z1, Z1), ζ )) is of ([)-type is part of the
data ζ̂ , so the term f (2)(u)u2

1Π(Π(Z1, Z1), ζ ) has indeed the right form. Similar
computations show that f (2)(u)u1u2Π(Π(Z1, Z2), ζ ) and u11u1(?) also have the
right form.
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Very similar computations give the right decomposition of the term
f (2)(u)C◦(u, u, ζ ), once C◦(u, u, ζ ) has been put in multiplicative form. We
start from the identity

C◦(u, u, ζ ) = C◦(Pui Z i , u, ζ )+C◦(R(1, u1, Z1), u, ζ )+C◦(u(1), u, ζ )+(5α−2)

with
u(1) := u − P̃u1 Z1 − P̃u2 Z2

an element of C3α
⊂ C1, since 3α > 1. Recall Definition 37 of the refined corrector,

and observe that because of Theorem 10

C◦(u(1), u, ζ ) = u1C◦(u(1), Z1, ζ )+ (5α − 2),

since 3α − 1 > 5α − 2. Then using the continuity result on the refined corrector
C(1) from Theorem 6, and the fact that α > 5α − 2, one has

C◦(u(1), Z1, ζ ) =

`0∑
`=1

γ`V`(u(1))Π `
(1)(Z1, ζ )+ (5α − 2). (3.27)

The fact that Π `
(1)(Z1, ζ ) ∈ L (C2α+1) is part of the data ζ̂ , and it follows from

the fact that 5α − 2 > 0, that the preceding sum is a ([)-term. This gives, from
Proposition 14, the identity

C◦(u, u, ζ ) = ui C◦(Z i , u, ζ )+ C◦((ui , Z i), u, ζ )
+ u11C◦(R(1, Z1, Z1), u, ζ )+ ([)+ (5α − 2).

The multiplicative decomposition of C◦(u, u, ζ ) follows by an elementary
computation.

(2.4) Last, we have the term f ′(u)Π(u, ζ ). We first putΠ(u, ζ ) in multiplicative
form

Π(u, ζ ) = uiΠ(Z i , ζ )+ ui j C(Z j , Z i , ζ )

+ u111C((Z1, Z1), Z1, ζ )+ C(u]1, Z1, ζ )+ (5α − 2). (3.28)

The term C(u]1, Z1, ζ ) is treated using the refined corrector, as above, which gives
a contribution

`0∑
`=1

f ′(u)γ`V`(u
]

1)Π
`
(1)(Z1, ζ )+ (5α − 2), (3.29)
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for that term, in the analysis of f ′(u)Π(u, ζ ); this is a remainder term of ([)-type.
Look at the term f ′(u)u1Π(Z1, ζ ); the other terms are dealt with similarly. One
has

f ′(u)u1Π(Z1, ζ ) = Pf ′(u)u1Π(Z1, ζ )+ PΠ(Z1,ζ ) f ′(u)u1 +Π( f ′(u)u1,Π(Z1, ζ ))

= Pf ′(u)u1Π(Z1, ζ )+ PΠ(Z1,ζ )(Pf ′(u)u1 + Pu1 f ′(u))
+PΠ(Z1,ζ )Π( f ′(u), u1)

+ f ′(u)Π(u1,Π(Z1, ζ ))+ C◦( f ′(u), u1,Π(Z1, ζ ))

+ u1Π( f ′(u),Π(Z1, ζ ))+ C◦(u1, f ′(u),Π(Z1, ζ ))

+Π(Π( f ′(u), u1),Π(Z1, ζ )).

The last six terms in the right hand side are of regularity (4α − 2); a first order
expansion of f ′(u) and u1 allows to put the in the right form (3.25). For the second
and third terms in the right hand side, simply write

PΠ(Z1,ζ )Pf ′(u)u1 = Pf ′(u)PΠ(Z1,ζ )u1 + S◦(Π(Z1, ζ ), f ′(u), u1).

The last term has regularity (4α − 2), and a first order expansion of f ′(u) and u1

allows to put the in the right form. Also we have

Pf ′(u)PΠ(Z1,ζ )u1 = Pf ′(u)PΠ(Z1,ζ )Pu1 j Z j + (5α − 2)
= Pf ′(u)Pu1 j PΠ(Z1,ζ )Z j + Pf ′(u)S◦(Π(Z1, ζ ), u1 j , Z j)+ (5α − 2)
= Pf ′(u)u1 j PΠ(Z1,ζ )Z j + Pf ′(u)u111S

◦(Π(Z1, ζ ), Z1, Z1)+ ([)

from Proposition 14. Once again, the fact that S◦(Π(Z1, ζ ), Z1, Z1) is of ([)-type
is part of the data on ζ̂ ; this eventually gives

Pf ′(u)PΠ(Z1,ζ )u1 = Pf ′(u)u1 j PΠ(Z1,ζ )Z1 + ([).

The term PΠ(Z1,ζ )Pu1 f ′(u) is treated similarly.

Remarks. (1) The proof of Proposition 18 gives the structure

(]) = ([)+ Phn (̂u)Y
n
4α−2 + (5α − 2)

for the remainder (]) in (3.25), with an implicit sum in n in the right
hand side, explicit functions hn (̂u) ∈ Cα depending continuously on û, and
reference distributions Y n

4α−2 assumed to be in L (C4α), along the way; the
latter are components of ζ̂ – see Section 4.1.

(2) The above computations have a simple structure, that can be summarized
using the E and F notations from Section 1.2. Denote by Fβ(·), or Fβ(·, ·),
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a well-defined function on parabolic Hölder spaces that sends Ckα into Ckα+β ,
respectively Ckα

× C`α into C(k+`)α+β , and enjoying the F-type expansion
property. We allow ourselves to write identities like

Fβ(Pa1a2) = Pa1F
β(a2)+ F|a2|+β(a1), (3.30)

for a2 ∈ C |a2|. Also, denote by Eβ(·), or Eβ(·, ·), an operator satisfying an
E-type expansion formula, sending formally Cα into Cα+β , respectively Ckα

×

C`α into C(k+`)α+β . In those terms, we have

Eβ(Pa1a2) = Pa1E
β(a2)+ Fβ+|a2|(a1)+ Eβ+|a2|(a1). (3.31)

The above proof of decomposition (3.25) starts from the identity

f (u)ζ = Pf (u)ζ + Fα−2( f (u))+ Eα−2( f (u)),

and proceeds by writing

Fα−2( f (u)) = Fα−2(u)+ Fα−2( f ′(u), u)+ Fα−2(Π(u, u))+ ([)
= Fα−2(u)+ Fα−2(u, u)+ ([),

and

Eα−2( f (u)) = f ′(u)Eα−2(u)+ f (2)(u)Eα−2(u, u)
+ f (3)(u)Eα−2(u, u, u)+ ([).

One then uses the paracontrolled structure of u and the expansion rules (3.30)
and (3.31) to run the computations.

(3) Note that Proposition 18 makes sense from a regularity structures point of
view. Let us work in the regularity structure of the (gPAM) equation on the
3-dimensional torus, together with a model on it. Let u be represented by the
modelled distribution

u = u1+ u ′X + uττ =:
∑
a∈A

ua Z a,

in Dγ , for γ = (3/2)+. Denote by ◦ the noise symbol in the regularity
structure. Then one would have

f (u)◦ = f (u) ◦ + f ′(u)ua Z a ◦ +
1
2! f (2)(u)uaub Z a Z b ◦

+
1
3! f (3)(u)uaubuc Z a Z b Z c◦,
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with sums in A restricted to |a|, |a| + |b|, |a| + |b| + |c| 6 3α. Using
Theorem 1 in Bailleul and Hoshino’s work [4], we would have for f (u)ζ
the paracontrolled representation

Pf (u)ζ + Pf ′(u)ua [Z a◦] +
1
2! Pf (2)(u)uaub [Z a Z b◦]

+
1
3! Pf (3)(u)uaubuc [Z a Z b Z c◦] + (5α − 2)

=: Pf (u)ζ + Pf ′(u)ua [Z a◦] +
1
2! Pf (2)(u)uaub [Z a Z b◦] + ([), (3.32)

for distributions [Z a◦], [Z a Z b◦], [Z a Z b Z c◦], built from the regularity
structure and the model. This is the content of identity (3.25), and one
reads off the functions h`(̂u) of point 1 in the preceding formula. The
term f ′(u)u ′X◦ from the regularity structures picture appears in the above
paracontrolled analysis under the form f ′(u)u3Π(Z3, ζ ), in identity (3.28).
This makes perfect sense if one considers that the piece of u that is
differentiable is in its paracontrolled representation is given by Π u3 Z3 + u],
and we recall the pointwise first order expansion for paraproducts from
Corollary 2. The term f ′(u)2u ′ ◦I(X◦) from the regularity structures picture
appears above under the form

f ′(u)γ`V`(u
]

1)Π
`
(1)(Z1, ζ ),

in identity (3.29), while the term f (2)(u) f (u)u ′X ◦ I(◦) from the regularity
structures analysis appears in the form of identities (3.26) and (3.27). (Recall∑`0

`=1 γ`V`(v) = v
′, on the flat torus.)

3.3. Dealing with derivatives. We work in this section in the one-dimensional
torus T, with x as canonical coordinate and L = ∂2

x =: ∂
2. The study of the

generalized KPZ equation requires the analysis of quantities of the form P∂P f g∂h,
or similar quantities where f, g or h is itself given by a paraproduct. The following
remark provides the key to the analysis of such terms.

Recall the notations Pt and Qt for the parabolic projectors from the standard
collection of operators with cancellation – Definition 27 in Appendix A.1, and the
notation ν = dt ⊗ dx for the parabolic volume measure.

LEMMA 20. Both P∂ f ∂g and Π(∂ f, ∂g) can be written under the form∫ 1

0

1
t
P•t (Q̃1

t f Q̃2
t g)

dt
t
,

with Q̃1, Q̃2
∈ GC1, and Pt ∈ StGC[0,b].

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


I. Bailleul and F. Bernicot 50

Proof. Consider Pt , one of our localization operator at the parabolic scale t1/2,
then by integrating by parts in space, we see that for e := (τ, x)

(Pt f )(e) =
∫
M

KPt (e, e′)∂ f (e′)ν(de′)

= −

∫
M
∂x ′KPt (e, e′) f (e′)ν(de′)

= −t−1/2
∫
M

t1/2∂x ′KPt (e, e′) f (e′)ν(de′).

Then since we assume regularity estimates on the heat kernel, it follows that
t1/2∂x ′KPt (e, e′) satisfies the same kind of pointwise estimates as KPt . Moreover,
its first momentum is null, which is a cancellation property of order 1∫

M
t1/2∂x ′KPt (e, e′)ν(de′) =

∫
M

t1/2∂x ′KPt (e, e′)ν(de) = 0.

In terms of the notation introduced and described in Appendix A, the collection
(t1/2∂Pt)t>0 belongs to the class GC1. That legitimates to use the notation

Q̃t := t1/2∂Pt ,

from which the representation of the statement follows. A similar observation
holds for the operator Π(∂ f, ∂g).

Remark. In the model setting of spatial paraproducts on the one-dimensional
torus

P∂ f ∂g =
∑

k

Sk−2(∂ f )∆k(∂g),

so an integration by parts shows that

Sk−2(∂ f ) = 2k−2∆̃k−2 f,

for some Fourier multiplier ∆̃k−2 acting on a distribution f (·) =
∑

cnein·, as

(∆̃k−2 f )(x) = 2−(k−2)
∑
|n|62k−2

cnineinx
=

∑
|n|62k−2

in
2k−2

cneinx ,

with symbol (in/2k−2)1|n|62k−2 . This symbol is not exactly supported on the
annulus at scale 2k−2, as it is the case for the Fourier projector ∆k , but it satisfies
some decay property at 0 and at infinity, so it still encodes some cancellation
property. We have

P∂ f ∂g =
∑

k

22k−2(∆̃k f )(∆′k g),

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


High order paracontrolled calculus 51

for operators ∆′k perfectly localized at frequencies of scale 2k . The resonant
operator Π(∂ f, ∂g) has the same structure

Π(∂ f, ∂g) =
∑

k

22k∆̂k( f )∆′k(g),

for operators ∆̂k perfectly localized at frequencies of scale 2k .

It follows from that lemma that all the continuity results of Section 3.1 on
the corrector C and its iterates have direct counterparts in terms of the operator
( f, g) 7→ P∂ f g. We single out three of them here to make that point clear. Define
on the space of bounded measurable functions on the parabolic space M the
correctors

C<
∂ (( f1, f2), g) := P∂P̃f1 f2

∂g − f1P∂ f2∂g,

C<
∂ ( f, (g1, g2)) := P∂ f (P̃g1 g2)− g1P∂ f ∂g2,

C=∂ (( f1, f2), g) := Π(∂P̃f1 f2, ∂g)− f1Π(∂ f2, ∂g).

We use the exponent < in the notation to remind the reader from the fact that
paraproducts P f g are defined in a Fourier setting with frequencies of f strictly
smaller than those of g, while the resonant operator involves frequencies that are
essentially equal.

THEOREM 21. • Let α, β, γ be regularity exponents, with α ∈ (0, 1) and
α + β 6 1. If

β + γ − 2 < 0 < α + β + γ − 2,

then the maps

Cα × Cβ × Cγ → Cα+β+γ−2

( f, g, h) 7→ C<
∂ (( f, g), h),C<

∂ ( f, (g, h))

are continuous.

• Let α, β, γ1, γ2 be regularity exponents, with α, γ1 ∈ (0, 1) and α + β 6 1. If

β + γ1 + γ2 − 2 < 0 < α + β + γ1 + γ2 − 2,

then the map

Cα × Cβ × Cγ1 × Cγ2 → Cα+β+γ1+γ2−2

(( f, g), (h1, h2)) 7→ C<
∂ (( f, g), P̃h1 h2)− h1 C∂(( f, g), h2)

is continuous.

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


I. Bailleul and F. Bernicot 52

Proof. Let us concentrate first on the first statement, in the model case of the flat
torus, where

C<
∂ (( f, g), h) =

∑
22k−2(∆̃k−2(Π

0
f g)− f (∆̃k−2g))∆′k(h).

Note that since

∆̃k−2(Π
0
f g)− f ∆̃k−2g =

∑
`6k−2

2−(k−2−`)(S` f − f )∆`g,

we have the estimate

‖∆̃k−2(Π
0
f g)− f (∆̃k−2g)‖∞ .

∑
`6k−2

2−(k−2−`)2−`(α+β)‖ f ‖Cα‖g‖Cβ

. 2−k(α+β)
‖ f ‖Cα‖g‖Cβ ,

since α + β 6 1. We see here the importance of the decay of the symbol of the
operator ∆̃k−2, encoded in the factor 2−(k−2−`). The conclusion follows then from
the estimate

‖∆n(C<
∂ (( f, g), h))‖∞

.

( ∑
k>n−1

2−k(α+β+γ−2)
+

∑
k6n−1

2−nα2−k(β+γ−2)

)
‖ f ‖Cα‖g‖Cβ‖h‖Cγ

. 2−n(α+β+γ−2)
‖ f ‖Cα‖g‖Cβ‖h‖Cγ .

If now h = Π 0
h1

h2, then ∆k(h) ' (Sk−2h1)(∆kh2), and we have

C<
∂ (( f, g),Ph1 h2)− h1 C∂(( f, g), h2)

=

∑
2k−2(∆̃k−2(P f g)− f ∆̃k−2g)∆k(h2)(h1 − Sk−2h1)

and we may conclude by the same reasoning as above, with the extra exponents
coming from the positive regularity of h1, since

‖h1 − Sk−2h1‖∞ . 2−kγ1 ‖h1‖Cγ1 .

We let the reader state and prove the other continuity results for the iterated
versions of C<

∂ and C=∂ . Set

A := {i, i j, i jk}i,(i+ j),(i+ j+k)63, (3.33)

and set
|i | := i, |i j | := i + j, |i jk| := i + j + k.
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PROPOSITION 22. Let u be given by a paracontrolled system with reference
functions Z, together with a function g ∈ C4

b . Then one can write the product
g(u)(∂u)2 under the form

g(u)(∂u)2 =
∑

c1,c2∈A
|c1|+|c2|64

Pg(u)uc1 uc2
Xc1c2 +

∑
a,c1,c2∈A

|a|+|c1|+|c2|64

Pg′(u)uauc1 uc2
Xac1c2

+
1
2!

Pg(2)(u)u4
1
X1111 + (5α − 2) (3.34)

for some remainder term of regularity 5α − 2, and some explicit reference
distributions X’s that depend only on the noise ζ and Z.

As in Corollary 18 on the paracontrolled representation of f (u)ζ , the proper
interpretation of the above statement is that the remainder is of parabolic
regularity 5α − 2, provided the X ’s are well defined as elements of their natural
spaces. In the present work, these X ’s are given by the enhancement ζ̂ of the
noise.

Proof. If one is not interested in the precise form of the Xa in (3.34), one can
proceed very efficiently making only computations with E and F notations, as in
the proof of Corollary 18. We first provide a multiplicative decomposition for

(∂u)2 = (∂u)2 = 2P∂u∂u +Π(∂u, ∂u) =: E−2(u, u)

as follows. The function E−2 is a function of E-type with respect to its two
arguments. Recall that two E operators in the same identity may mean different
E-type operators. Distributions of regularity β that do not depend on u are denoted
by Xβ . Write' to mean equality up to a remainder term of regularity 5α−2. One
has

(∂u)2 = E−2(u, u)
= ui Eiα−2(u)+ Eiα−2(ui , u)
= ui uj X (i+ j)α−2

+ E(i+ j)α−2(uj)+ ui j E(i+ j)α−2(u)
= ui uj X (i+ j)α−2

+ ui ujk X (i+ j+k)α−2
+ ui E(i+ j+k)α−2(ujk)

+ ui j uk X (i+ j+k)α−2
+ ui j E(i+ j+k)α−2(uk)

' ui uj X (i+ j)α−2
+ ui ujk X (i+ j+k)α−2

+ ui ujk`X (i+ j+k+`)α−2

+ ui j uk X (i+ j+k)α−2
+ ui j uk`E(i+ j+k+`)α−2

' ui uj X (i+ j)α−2
+ ui ujk X (i+ j+k)α−2

+ (u1u111 + u2
11)X

4α−2.

The above implicit sums are restricted to (i + j), (i + j + k), (i + j + k +
`) 6 4. Look now at the term g(u)u2

1 X 2α−2 and show that it can be written in the
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form (3.34); the other terms are easier to deal with. We have

g(u)u2
1 X 2α−2

= Pg(u)u2
1
X 2α−2

+ F2α−2(g(u)u2
1)+ E2α−2(g(u)u2

1), (3.35)

with

F2α−2(g(u)u2
1) = Pg(u)F2α−2(u2

1)+ Pu2
1
F2α−2(g(u))+ F2α−2(g(u), u2

1)

= Pg(u)Pu1F
2α−2(u1)+ Pg(u)F2α−2(u1, u1)+ Pu2

1
F2α−2(g(u))

+Pg′(u)u2
1u11

X 4α−2
+ (5α − 2)

= Pg(u)u1F
2α−2(u1)+ Pg(u)u2

11
X 4α−2

+ Pu2
1
F2α−2(g(u))

+Pg′(u)u2
1u11

X 4α−2
+ (5α − 2).

One writes the first term in the right hand side in the good form

Pg(u)u1F
2α−2(u1) = Pg(u)u1Pu1 j X (2+ j)α−2

+ F3α−2(u11)

= Pg(u)u1u1 j X (2+ j)α−2
+ Pu111 X 4α−2

+ (5α − 2).

We use the paracontrolled expansion

g(u) = Pg′(u)ui Z i + Pg′(u)u11R(1, Z1, Z1)+
1
2 Pg(2)(u)u2

1
Π(Z1, Z1)+ (3α),

of g(u) to order 2 to get

Pu2
1
F2α−2(g(u)) = Pg′(u)u3

1
X 3α−2

+ Pg(2)(u)u3
1u11

X 4α−2
+ Pg′(u)u2u2

1
X 4α−2

+Pg′(u)u2
1u11

X 4α−2
+ Pg(2)(u)u4

1
X 4α−2

+ (5α − 2).

The term E2α−2(g(u)u2
1) in (3.35) is dealt with similarly, using the E-type

expansion rule

E2α−2(g(u)u2
1) = g(u)E2α−2(u2

1)+ u2
1E

2α−2(g(u))
+E2α−2(g(u), u2

1)+ E2α−2(Π(g(u), u2
1))

and the above second order paracontrolled expansion for g(u), to put
E2α−2(g(u)u2

1) in multiplicative form first, and then use the F-type expansion to
put it in the form of Equation (3.34). Details are left to the reader.

Remark. Similarly to Proposition 18, Proposition 22 makes perfect sense
from a regularity structures point of view. Note also that the above proof
implicitely uses a refined version of the C<

∂ corrector to deal with a first
argument u]1 of regularity strictly bigger than 1. This term corresponds to the
term 2g(u) f (u) f ′(u)u ′∂I(X◦)∂I(◦), that appears in the regularity structures
analysis.
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We summarize here the notations introduced in this section.

C( f, g, h) = Π(P̃ f g, h)− f Π(g, h),

D( f, g, h) = Π(P̃ f g, h)− P fΠ(g, h),

S( f, g, h) = P f (P̃gh)− Pg(P f h),

R( f, g, h) = P f (P̃gh)− Pf gh.

We use the same letters for the iterates of these operators, such as they were
defined above. The ◦ operators are defined by the corresponding formulae where
P̃ is replaced by P. To deal specifically with the derivatives, we have the operators

C<
∂ (( f1, f2), g) := P∂P̃f1 f2

∂g − f1P∂ f2∂g,

C<
∂ ( f, (g1, g2)) := P∂ f (∂P̃g1 g2)− g1P∂ f ∂g2,

C=∂ ( f1, f2, g) := Π(∂Pf1 f2, ∂g)− f1Π(∂ f2, ∂g),

and their iterates. The only thing that matters from a computational point of view
is to identify which operators are of E-type, and which operators are of F-type.

4. Nonlinear singular PDEs

We choose to illustrate the use of paracontrolled calculus for the study of
singular partial differential equations on the examples of the 3-dimensional
generalized parabolic Anderson model equation

L u = f (u)ζ,

and the generalized (KPZ) equation

L u = f (u)ζ + g(u)(∂u)2

on the one-dimensional torus. We introduce the notion of enhanced noise, and
consistent enhancement, in Section 4.1. We define in Section 4.2 the maps that
are used to give a fixed point formulation of the (gPAM) and (gKPZ) equations in
Section 4.3.

4.1. Enhanced noise. The archetype of singular equation is given by the
controlled ordinary differential equation

dxt = V (xt) dht , (4.1)
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where h is a nondifferentiable R`-valued control and V an L(R`
,Rd

)-valued
one form on Rd , say. Think of a Brownian path for the control h. One of the
deepest insights of Lyons in his theory of rough paths [22] was to understand
that one needs to change the notion of control to make sense of such an equation,
and that this enhanced control takes values in a very specific universal algebraic
structure. In simple terms, the enhanced control consists of h and the collection
of a number of objects playing the role of the nonexisting iterated integrals∫

s6s16···6sk6t dhs1 ⊗ · · · ⊗ dhs1 – such iterated integrals cannot be defined as
continuous functions of their integrands, here (h, . . . , h), if h is not sufficiently
regular; see Proposition 1.29 in [8]. Once given these extra data, one can make
sense of, and solve uniquely, the controlled ordinary differential equation (4.1)
under some appropriate regularity conditions on the one form V , and the solution
path happens to be a continuous function of the enhanced control, in some
appropriate topology. The enhancement of the control cannot be made on a purely
analytic basis and requires some extra input, typically the use of probabilistic
methods when the control h is random.

Hairer’s theory of regularity structures provides a conceptually close
framework for the study of a large class of singular partial differential equations
containing the generalized parabolic Anderson model equation

L u = f (u)ζ (4.2)

as a particular case. To make sense of Equation (4.2), one needs to enhance the
distribution ζ with the a priori datum of a number of other distributions. Contrary
to the case of the controlled ordinary differential equation (4.1), this enhanced
‘control’ takes values in an equation-dependent algebraic structure. The resolution
process is also different, as the equation is first recast in some abstract space
of jets of solutions, where it can be solved under appropriate conditions. This
corresponds to looking for a solution in a specific space of distributions where
one can actually make sense of all the terms in the equation, especially some
a priori ill-defined products. A fundamental tool, the reconstruction operator,
allows then to associate to this abstract solution a classical distribution. The
equation-dependent algebraic structure in which the enhanced distribution lives
also allows to give sense to this solution distribution as a limit of solutions to
some family of classically well-posed equations in which the distribution ζ has
been smoothened. The latter point is related to renormalization matters.

Recall now Proposition 22, and Remark 1 following its proof, giving the
paracontrolled expansion (3.34) of f (u)ζ , under the assumption that a number
of quantities (Ykα−2)26k64 are given a priori as elements of the L (Ckα)-spaces,
as measurable functions of ζ and Z; write Y =: Y (ζ,Z). A choice of Zk ∈ Ckα,
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with 2 6 k 6 4, and
L Zk = Ykα−2,

defines an enhancement ζ̂ = (ζ,Z) of the noise ζ for the generalized
parabolic Anderson model equation

L u = f (u)ζ.

Enlarge the finite collection Z2 by addingΠ(Z1, Z1) and R(1, Z1, Z1) into it. This
defines the collection Z2. Set Zk := Zk , for 3 6 k 6 4. We define this way the
finite collection Z. An enhancement ζ̂ is said to be coherent if

L Z j = Y jα−2(ζ, (Z`)26`63), 2 6 j 6 3.

A coherent enhancement of the noise ζ for the (gPAM) equation can be
used to work with Z = Z in a paracontrolled setting. The introduction of
Π(Z1, Z1) and R(1, Z1, Z1) in the system is necessary not only to give a
paracontrolled representation of the solution u of the equation but also a lower
order paracontrolled representation of its derivatives, amongst which f (u). This
is reminiscent of the use of two spaces of trees in the regularity structures setting.

The study of the generalized (KPZ) equation

L u = f (u)ζ + g(u)(∂u)2,

requires the introduction of further quantities (Xc1c2, Xac1c2, X1111, . . . ) that appear
in (3.34) and the proof of this decomposition. They are assumed to be elements
of L (Ckα)-spaces, and measurable functions of ζ and Z. Write

Xkα−2 = Xkα−2(ζ,Z),

and recall that Z2, Z3 may stand for tuples (Z n2
2 ), (Z

n3
3 ). The joint choice of Z and

elements Xk
∈ Ckα such that

LXk = Xkα−2(ζ,Z),

defines an enhancement ζ̂ = (ζ,Z,X) of the noise ζ for the generalized
(KPZ) equation. This enhancement is said to be coherent if

LXk = Xkα−2(ζ, (Z
`
)26`63, (X

`)26`63)).

In accordance with the regularity structures picture, the different terms
that form the enhanced noise correspond to the different pieces of a
paracontrolled/resonant expansion of all the formal products that appear in
the tree of negative homogeneity in the regularity structures expansions of the
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right hand sides of the generalized (PAM) and (KPZ) equations. Constructing
coherent enhancements is the task of renormalization of stochastic singular partial
differential equations. This has been implemented in the setting of regularity
structures in the groundbreaking works [7, 10] of Hairer and co-authors. This
work has not been done yet in the paracontrolled setting, but the use of Bailleul
and Hoshino’s results in [4] allows to construct coherent enhancements from the
renormalized models built from [10].

4.2. Fixed point equation. We give in this section the fixed point formulations
of the generalized (PAM) and (KPZ) equations. In both cases, we assume a
coherent enhancement ζ̂ of the noise ζ is given, and work with the associated
reference system Z. Recall 2

5 < α 6 1
2 , so 5α−2 > 0. To avoid working with time-

weighted Hölder spaces with exploding weights, we assume the initial conditions
u0 ∈ C4α, to have Pu0 ∈ C4α, and treat this term in the integral formulation of
the equation as a remainder term – recall P stands for the heat propagator. See
[3, 17] or [23] for a sample of works where u0 ∈ Cα, in a first order paracontrolled
setting.

4.2.1. Generalized (PAM) equation. Recall from (3.33) the definition of the
index set A . We obtained in Proposition 18 the paracontrolled decomposition

f (u)ζ = Pf (u)ζ + Pf ′(u)ua Ya +
1
2! Pf (2)(u)u2

1
Y11 + ([)+ Ph` (̂u)Y

(`)

4α−2 + (5α − 2)(̂u),

with implicit sums restricted to |a| 6 2α, and ([) ∈ L (C4α). The function
(5α − 2)(̂u) ∈ C5α−2, is a locally Lipschitz function of û. Define v ∈ Cα, setting,
with obvious notations,

v := Pu0 +L −1( f (u)ζ )
= P̃f (u)Z1 + P̃f ′(u)ua Z |a|+1 +

1
2! P̃f (2)(u)u2

1
Z (1)

3 +L −1([)

+ P̃h` (̂u)Z
(`)

4 +L −1((5α − 2)(̂u))+ Pu0. (4.3)

Note that f (u) has a second order paracontrolled expansion

f (u) = P̃f ′(u)u1 Z1 + P̃f ′(u)u2 Z2 + P̃f (2)(u)u2
1+2 f ′(u)u11

R(1, Z1, Z1)

+
1
2! P̃f (2)(u)u2

1
Π(Z1, Z1)+ f (u)](̂u), (4.4)

f ′(u)u1 = P̃f (2)(u)u2
1+ f ′(u)u11

Z1 + ( f ′(u)u1)
](̂u).

Equations (4.3) and (4.4) show that v is the first component of a paracontrolled
system v̂. Write û ] for the collection of all the remainders that define û, and v̂ ]

for the collection of all the remainders that define v̂. Set

Φ(̂u ]) := v̂ ]. (4.5)
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4.2.2. Generalized (KPZ) equation. Set

B :=
{
(c1c2), (c1c2c3), (c1c2c3c4); ci ∈ A , |c1| + |c2|, |c1| + |c2| + |c3|,

|c1| + |c2| + |c3| + |c4| 6 4α
}
. (4.6)

Propositions 18 and 22 together give the decomposition

f (u)ζ + g(u)(∂u)2

= Pf (u)ζ +
∑
|a|62α

Pf ′(u)ua Ya +
1
2!

Pf (2)(u)u2
1
Y11 + ([)+ Ph` (̂u)Y

4α−2
`

+

∑
b∈B

Pgb (̂u)Xb + (5α − 2)(̂u), (4.7)

for the explicit functions gb of û that appear in formula (3.34). We have for
instance h11(̂u) = g(u)u2

1, and one checks that h11(̂u) has a second order
paracontrolled expansion, using the paracontrolled expansion of g(u). One has

g(u)u2
1 = P̃(?)1 Z1+ P̃g′(u)u2

1u2
Z2+ P̃(?)2Π(Z1, Z1)+ P̃(?)3R(1, Z1, Z1)+ (3α)(̂u),

(4.8)
with

(?)1 := 2g(u)u1u11 + g′(u)u3
1,

(?)2 := g(u)u2
11 +

1
2 g(2)(u)u4

1 + 2g′(u)u2
1u11

(?)3 := f (2)(u)u4
1 + f ′(u)u2

1u11 + g(2)(u)u4
1 + g′(u)u2

1u11

+ 2g′(u)u2
1u11 + 2g(u)u2

11 + 2g(u)u1u111 + g(2)(u)u4
1 + 3g′(u)u2

1u11,

and a remainder in C3α that is a locally Lipschitz function of û. (Note that the two
reference functions Π(Z1, Z1) and R(1, Z1, Z1) are already in the Z2-collection,
since we are working with a coherent enhancement of the noise. They appear
separately in (4.8) as a result of computations.) The other functions gb (̂u) that
appear in formula (4.7) all have a first order paracontrolled expansion, obtained
by elementary means. Setting

v := Pu0 +L −1( f (u)ζ + g(u)(∂u)2)

defines the first component of a paracontrolled system. (Recall we assume
u0 ∈ C4α, so Pu0 ∈ C4α, and one can treat it as a remainder term.) Write v̂ ] for
the collection of all the remainders that define v̂, and set

Φ(̂u ]) := v̂ ]. (4.9)
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4.3. Solving the equation. Recall we work on the parabolic space [0, T )×M ,
for some possibly infinite positive time horizon T .

4.3.1. Generalized (PAM) equation. Let an initial condition u0 ∈ C4α(M) for
(gPAM) equation be given. Assume a coherent enhancement ζ̂ of the noise ζ
is given. We work with the associated reference system Z = (Z1, Z2, Z3) ∈∏3

k=1 Ckα. Pick regularity exponents (βa)a∈A such that

2
5 < βi < βi j < βi jk < α, (i), (i j), (i jk) ∈ A , (4.10)

and set β := min16i63 βi . Define a map∏
a∈A

C(3−|a|)α+βa × C3α+β
→ Cα ×

∏
a∈A

Cα

((u]a)a∈A , u]) 7→ û := (u, (ua)a∈A ),

given by the paracontrolled system

u =
∑

i=1..3

P̃ui Z i + u],

ui =
∑

i+ j=1..3

P̃ui j Z j + u]i ,

ui j =
∑

i+ j+k=1..3

P̃ui jk Zk + u]i j ,

ui jk = u]i jk .

Write û ] for ((u]a)a∈A , u]). Recall the synthetic form (3.32) obtained in
Section 3.2.3 for f (u)ζ , and the second order paracontrolled expansion (4.4) for
f (u). One reads on these formulae the fact that a ‘solution’ of the equation needs
to satisfy the constraint

ua = ha(u),

for explicit functions ha . (A proper definition of a solution to the (gPAM) equation
is given in Definition 4.1 below.) One has for instance

u1 = f (u), u(1)2 = ( f ′ f )(u), u(1)3 = f ′(u)u2 = (( f ′)2 f )(u),

u(2)3 =
1
2 f (2)(u)u2

1 =
1
2 ( f (2)( f ′)2)(u),

and so on. Note that a ‘solution’ u has null derivatives in the Π(Z1, Z1) and
R(1, Z1, Z1) directions. Define

Spam
T (u0) := {̂u ]

; u]a |τ=0 = ha(u0), u]
|τ=0 = u0};
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equipped with the natural norm induced from
∏

a∈A C(3−|a|)α+βa×C3α+β , the space
Spam

T (u0) is complete. Recall the definition of the map Φ defined in (4.5).

PROPOSITION 23. A choice of time horizon T sufficiently small ensures that Φ
is a contraction of Spam

T (u0).

Proof. The formulae defining the family of remainders v̂ ] are actually explicit –
see the end of the proof for a sample, and one can read on them that

Φ(Spam
T (u0)) ⊂

∏
a∈A

C(3−|a|)α+β ′a × C3α+β ′,

with β ′a > βa and β ′ > β, as a consequence of the choice of exponents (4.10) –
we use the regularity assumptions on the components of the enhanced noise ζ̂ and
the classical Schauder estimate on Hölder space of positive regularity. So not only
do we have that Φ sends Spam

T (u0) into itself, but we also have that Φ is locally
Lipschitz from Spam

T (u0) into
∏

a∈A C(3−|a|)α+β ′a × C3α+β ′ , as a consequence of the
locally Lipschitz character of the corrector and commutator and their iterates, and
the refined corrector. The contraction property of Φ : Spam

T (u0)→ Spam
T (u0), for

T sufficiently small, follows then from the elementary estimate

‖w‖Cδ1 . T
δ2−δ1

2 ‖w‖Cδ2 , w|τ=0 = 0 (4.11)

that holds for any δ2 > δ1 > 0.
Here are explicit formulae for the components v]1 and v]2 = v

]

11 of v̂ ]. The term
v
]

1 is the remainder in the second order paracontrolled expansion of f (u). Denote
by (3α) f (u) the 3α-remainder in the second order paracontrolled expansion
for f (u), defined by

f (u) = Pf ′(u)u + 1
2 Pf (2)(u)Π(u, u)+ (3α) f (u).

The function (3α) f sends continuously Cα into C3α. One has

v
]

1 =

3∑
i=1

Ro( f ′(u), ui , Z i)+

3∑
j=2

Pf ′(u)R(1, uj , Z j)+ Pf ′(u)R(1, P̃u12 Z2 + u]1, Z1)

+R(1, (u11, Z1), Z1)+ Pf ′(u)u] +
1
2

Pf (2)(u)D(ui , Z i , u)+ (3α) f (u)

+
1
2

R( f (2)(u), ui ,Π(Z i , u))+ R( f ′(u), u11,R(1, Z1, Z1))

+
1
2

3∑
j=2

Pf (2)(u)ujΠ(Z j , u)
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+
1
2

3∑
j=2

Pf (2)(u)u1Π(Z1, P̃uk Zk + u])+
1
2

Pf (2)(u)u1D(u1, Z1, Z1)

+
1
2

R( f (2)(u)u1, u1,Π(Z1, Z1))

+R(1, f ′(u)u2, Z2)+ R(1, f ′(u)u11,R(1, Z1, Z1))

+
1
2

R(1, f (2)(u)u2
1,Π(Z1, Z1))+ R(1, v]11, Z1)

+R(1, ( f (2)(u)u2
1 + f ′(u)u11, Z1), Z1)

+R(1, f (2)(u)u2
1,Π(Z1, Z1)), Z1).

The term v
]

2 = v
]

11 is the 2α-remainder in the first order paracontrolled expansion
of f ′(u)u1. Denote by (2α) f ′(u) the 2α-remainder in the paralinearization
formula for f ′(u), defined by

f ′(u) = Pf (2)(u)u + (2α) f ′(u).

One has

v
]

2 = v
]

11 = Π( f ′(u), u1)+ Pf ′(u)(P̃u12 Z1 + u]1)+ (2α) f ′(u)+ R( f ′(u), u11, Z1)

+Ro(u1, f (2)(u), u)+ R(1, f ′(u)u11, Z1)+

3∑
k=2

Pf (2)(u)(P̃uk Zk + u])

+Ro( f (2)(u)u1, u1, Z1)+ R(1, f (2)(u)u2
1, Z1).

The explicit expressions for the other terms of v̂ ] are similar or easier to obtain.
These expression are simpler in the case where f (u) = u, as f ′(u) = 1 and
f (2)(u) = 0, and Ro(1, . . . ) = 0 and P1(∗) = (∗).

DEFINITION 4.1. A solution to the generalized (PAM) equation is a fixed
point of Φ in Spam

T (u0).

We obtain the following well-posedness result as a direct consequence of
Proposition 23.

THEOREM 24. The generalized (PAM) equation has a unique solution in
Spam

T (u0); it depends continuously on the coherent enhancement ζ̂ of the noise ζ .

Remarks. • So far, the theory of regularity structures has not been developed
in a manifold setting. The recent work [15] of Dahlqvist–Diehl–Driver shows
how this can be done in the simplest case where the noise is not too rough,
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corresponding in our setting to a regularity exponent α > 2
3 . A first order

description of the objects is sufficient in that setting, as was the case in our
previous work [1], whose content covers partly their results.

• We assume here that the initial condition is in C4α. We use that fact to put the
term P(u0) in the remainder. One can improve upon this constraint on u0 and
only require that u0 ∈ Cα, at the price of working with weighted Hölder spaces
with a temporal weight, explosive at τ = 0, for example a space equipped with
the norm

sup
0<τ6T

τ γ ‖u(τ )‖Cα

for some γ > 0. See [3, 17] or [23] for a sample of works where u0 ∈ Cα, in a
first order paracontrolled setting.

The next statement is about the linear (PAM) equation

L u = uζ. (4.12)

THEOREM 25. Assume the noise ζ in the (PAM) equation is a space white noise
on M, and the components Zk,Xk of the enhanced noise ζ̂ are such that both L Zk

and LXk take values in L∞τ C kα−2
x . Then Equation (4.12) has a unique, global

in time, solution in Spam
∞
(u0). Its restriction to any finite time interval depends

continuously on the coherent enhancement ζ̂ of the noise ζ .

Proof. Define a temporal weight

w(τ) := eκτ , (4.13)

for some nonnegative constant κ to be fixed later, and work in weighted parabolic
Hölder space Cγw, described in Appendix A. We let the reader to check that all the
proofs of continuity for the paraproduct, resonant, correctors and commutators,
still hold in the setting of weighted parabolic Hölder spaces, with estimates
that are uniform in κ > 0. This uniform character of the continuity estimates
comes from the important fact that all our approximation operators Pt ,Qt , . . .

are supported only on ‘past time’-half spaces. Indeed, if T is an operator acting
on the time variable with a kernel K (τ, σ ) supported on the past time half space
{(τ, σ ), 0 6 σ 6 τ }, then

w(τ)−1T ( f )(τ ) = e−κτT ( f )(τ ) =
∫

K (τ, σ )e−κτ f (σ ) dσ

=

∫ τ

0
K (τ, σ )e−κ(τ−σ)e−κσ f (σ ) dσ,
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so we are reduced to the case of T (w−1 f ), up to an extra coefficient e−κ(τ−σ)

which is κ-uniformly bounded by 1, because of the time support of the kernel K .
With this point in mind, we repeat the previous computations in the weighted

Hölder spaces. The assumptions on the components of the enhanced noise allow
us to use Schauder estimates, Theorem 30, and gain an extra factor κ−(δ2−δ1)/2.
This is the analogue of (4.11) in the above unweighted proof. Taking κ large
enough allows to compensate any ‘implicit’ constants in the different estimates
and get the contraction property of the map Φ. We then conclude the proof of the
existence and uniqueness of the fixed point, for an arbitrary horizon time. This
approach using weighted spaces only works for a linear application f .

4.3.2. Generalized (KPZ) equation. We proceed exactly as in the preceding
section, working with an initial condition u0 ∈ C4α(T ). We assume a coherent
enhancement ζ̂ of the (gKPZ) noise ζ is given, and work with the associated
reference system Z. Recall from (4.6) that the components of Z are naturally
indexed by the index sets A and B63α := {b ∈ B; |b| 6 3α}. Here again, a
‘formal’ solution of the equation needs to satisfy the constraint

ub = hb(u),

for b ∈B63α and explicit functions hb, in addition to the constraints ua = ha(u),
a ∈ A , on the components that are common with the (gPAM) equation. One has
for instance

h(1)(1)(u) = (g f 2)(u), h(1)(2)(u) = (g f 2 f ′)(u), h(1)((1)(1))(u) = (g2 f 2)(u).

(Our index notation becomes a bit messy on concrete examples, and the tree-
indexed notation of regularity structures seems more appropriate to get concise
notations.) Set

Skpz
T (u0) := {̂u ]

; u]a |τ=0 = ha(u0), u]
|τ=0 = u0}.

Equipped with the natural norm induced from
∏

a∈A ∪B63α
C(3−|a|)α+βa×C3α+β , the

space Skpz
T (u0) is complete. Recall the definition of the map Ψ defined in (4.5).

DEFINITION. A solution of the (gKPZ) equation is a fixed point of Ψ in Skpz
T (u0).

The very same reasoning as above provides the local in time well-posed
character of the (gKPZ) equation; details are left to the reader.

THEOREM 26. Given u0 ∈ C4α(T ), one can choose the time horizon T sufficiently
small for the generalized (KPZ) equation to have a unique solution in Skpz

T (u0).
This solution depends continuously on the coherent enhancement ζ̂ of the noise ζ .
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Appendix A. Details on the parabolic setting

For the reader’s convenience, we recall in this appendix a number of
notions/facts introduced and studied in detail in our previous work [2], with
the hope that this will make the reading of the present work self-contained. We
refer the reader to [2] for the proofs of the different statements given here. We
describe in Section A.1 a class of operators with some cancellation property;
they play here the role played by the Fourier projectors ∆i on dyadic blocks in
Littlewood–Paley theory. Parabolic Hölder spaces are described in Section A.2,
together with Schauder estimates in this scale of spaces. We introduce the pair (P,
P̃) of paraproducts in Section A.3. The statements given here are explicitly used
in the proofs of the continuity results of Section 3, to be found in Appendix C.

We use the notations introduced in Section 1.3 and assume the operator L
satisfies the assumption stated there. Recall we denote by e a generic element
of the parabolic space M.

A.1. Approximation operators. The use of paraproducts and other kind of
singular operators involve the fundamental notion of approximation operators,
some aspects of which we discuss in this section. Recall typical space/time points
are denoted by (τ, x) and (σ, y).

The following parabolic Gaussian-like kernels (Gt)0<t61 will be used as
reference kernels. For 0 < t 6 1 and σ 6 τ , set

Gt((τ, x), (σ, y)) := ν(BM((τ, x),
√

t))−1

(
1+ c

ρ((τ, x), (σ, y))2

t

)−`1

and set Gt ≡ 0 if τ 6 σ . We do not emphasize the dependence of G on the
positive constant c in the above definition, and we shall allow ourselves to abuse
notations and write Gt for two functions corresponding to two different values of
that constant. So we have for instance, for s, t ∈ (0, 1), the estimate∫

M
Gt((τ, x), (σ, y))Gs((σ, y), (λ, z))ν(dσ dy) . Gt+s((τ, x), (λ, z)). (A.1)

Presently, note that a choice of large enough constant `1 in the definition of Gt

ensures that we have

sup
t∈(0,1]

sup
(τ,x)∈M

∫
M

Gt((τ, x), (σ, y))ν(dσ dy) <∞,

so any linear operator on M, with a kernel pointwisely bounded by some Gt is
bounded in L p(ν) for every p ∈ [1,∞].
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DEFINITION. We shall denote throughout by G the set of families (Pt)0<t61 of
linear operators on M, with kernels pointwisely bounded by

|KPt (e, e′)| . Gt(e, e′).

Given a real-valued integrable function φ on R, set

φt(·) :=
1
t
φ
(
·

t

)
;

the family (φt)0<t61 is uniformly bounded in L1(R). We also define the
‘convolution’ operator φ? associated with φ via the formula

φ?( f )(τ ) :=
∫
∞

0
φ(τ − σ) f (σ ) dσ.

Note that if φ has support in R+, then the operator φ? has a kernel supported on
the same set {(σ, τ ); σ 6 τ } as our Gaussian-like kernel. Moreover, we let the
reader check that if φ1, φ2 are two functions in L1, with φ2 supported on [0,∞)
then

(φ1 ∗ φ2)
?
= φ?1 ◦ φ

?
2,

where φ1 ∗ φ2 stands for the usual convolution of φ1 and φ2.
Given an integer b > 1, we define a family of operators on L2(M) setting

Q(b)
t := γ

−1
b (t L)be−t L and − t∂t P (b)

t = Q(b)
t ,

with γb := (b − 1)!; so P (b)
t is an operator of the form pb(t L)e−t L , for some

polynomial pb of degree b − 1, with value 1 in 0. Recall from Section 1.3
the definition of the differential operators VI , for I a multiindex. Under the
assumptions on L stated in Section 1.3, the operators P (b)

t and Q(b)
t both satisfy,

for any multiindex I , the Gaussian regularity estimates

|K t |I |/2VI R(x, y)| ∨ |K t |I |/2 RVI (x, y)| .
1

µ(B(x,
√

t))
e−c(d(x,y)2/t),

with R standing here for P (b)
t or Q(b)

t , as well as the following pointwise regularity
estimates. For d(x, z) 6

√
t , we have

|K (x, y)− K (z, y)| .
d(x, z)
√

t
1

V (x,
√

t)
e−c(d(x,y)2/t),

where K is the kernel of either t |I |/2VI R or t |I |/2 RVI .
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The parameters b and `1 are chosen large enough and fixed once and for all
– see [2] to see how to choose these parameters. The reader should simply keep
in mind that the higher b and `1 are, the higher order of regularity we can deal
with. In our applications, we need all the objects to have a regularity order in the
range (−3, 3), so b and `1 are chosen big enough to allow for this range in all the
following continuity results.

DEFINITION 27. Let an integer a ∈ J0, 2bK be given. The following collection
of families of operators is called the standard collection of operators with
cancellation of order a, denoted by StGCa . It is made up of all the space–time
operators

((t |J |/2VJ )(t L)(a−|J |−2k)/2 P (c)
t ⊗ m?

t )0<t61

where k is an integer with 2k + |J | 6 a, and c ∈ J1, bK, and m is any smooth
function supported on [ 12 , 2] such that∫

τ i m(τ ) dτ = 0, (A.2)

for all 0 6 i 6 k − 1, with its first b derivatives bounded by 1. We also set

StGC[0,2b]
:=

⋃
06a62b

StGCa
.

The above mentioned cancellation effect is quantified by the property (A.3)
stated in Proposition 28 below. Note here that it makes sense at an intuitive
level to say that L (a−|J |−2k)/2 encodes cancellation in the space variable of order
a − |J | − 2k, that VJ encodes a cancellation in space of order |J | and that the
moment condition (A.2) encodes a cancellation property in the time variable of
order k for the convolution operator m?

t . Since we are in the parabolic scaling,
a cancellation of order k in time corresponds to a cancellation of order 2k in
space, so the operator VJ L (a−|J |−2k)/2 P (c)

t ⊗ m?
t is expected to have a space–time

cancellation property of order a.

DEFINITION. Given an operator Q := VI φ(L), with |I | > 1, defined by
functional calculus from some appropriate function φ, we write Q• for the formal
dual operator

Q• := φ(L)VI .

For I = ∅, and Q = φ(L), we set Q• := Q. For an operator Q as above we set

(Q ⊗ m?)• := Q• ⊗ m?.
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Note that the above definition is not related to any classical notion of duality,
and emphasize that we do not assume that L is self-adjoint in L2(µ). This notation
is only used to indicate that a Q t operator, respectively a Q•t operator, can be
composed on the right, respectively on the left, by another operator ψ(L), for
a suitable function ψ , due to the functional calculus for L . L is supposed to
be sectorial and to have a holomorphic functional calculus, so for example it
is known to give a sense to φ(L) for every holomorphic function φ (or function
which are holomorphic and bounded in a small sector of the complex plane around
(0,∞), as φ(z) = zke−z for example).

PROPOSITION 28. Consider Q1
∈ StGCa1 and Q2

∈ StGCa2 two standard
collections with cancellation, and set a := min(a1, a2). Then for every s,
t ∈ (0, 1], the operator Q1

s ◦Q2•
t has a kernel pointwisely bounded by

|KQ1
s ◦Q2•

t
(e, e′)| .

(
ts

(s + t)2

)a/2

Gt+s(e, e′). (A.3)

The above mentioned orthogonality property of standard operators with
cancellation is encoded in the factor (ts/(s + t)2)a/2 that appears in the above
estimate. This factor is small as soon as s or t is small compared to the other.

DEFINITION. Let a be an integer in [0, 2b]. We define the subset GCa of G of
families of operators with the cancellation property of order a as the set of
elements Q of G with the following cancellation property. For every 0 < s, t 6 1
and every standard family S ∈ StGCa′ , with a′ ∈ Ja, 2bK, the operator Qt ◦ S•s
has a kernel pointwisely bounded by

|KQt◦S•s (e, e′)| .
(

st
(s + t)2

)a/2

Gt+s(e, e′). (A.4)

We introduced above the operators Q(b)
t and P (b)

t acting on functions/distributions
on M ; we now introduce their parabolic counterpart. Choose arbitrarily a smooth
real-valued function ϕ on R, with support in [ 12 , 2], unit integral and such that for
every integer k = 1, . . . , b ∫

τ kϕ(τ) dτ = 0.

Set
P (b)

t := P (b)
t ⊗ ϕ

?
t and Q(b)

t := −t∂tP (b)
t .

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


High order paracontrolled calculus 69

An easy computation yields that

Q(b)
t = Q(b)

t ⊗ ϕ
?
t + P (b)

t ⊗ ψ
?
t

where ψ(σ) = ϕ(σ) + σϕ′(σ ). Note that, from its very definition, a parabolic
operator Q(b)

t belongs at least to GC2, for b > 2. Note also that due to the
normalization of ϕ, then for every f ∈ L p(R) supported on [0,∞), we have
the convergence in L p

ϕ?t ( f ) −−→
t→0

f.

So, the operators Pt tend weakly as t goes to 0 to the identity on L p
[0,∞)(M),

the set of functions f ∈ L p(M) with time support included in [0,∞), with p ∈
[1,∞). The same convergence holds on the set of functions f ∈ C0(M) with
time support included in [0,∞). The following Calderón reproducing formula
follows as a consequence. For every continuous function f ∈ L∞(M) with time
support in [0,∞), then

f =
∫ 1

0
Q(b)

t f
dt
t
+ P (b)

1 f. (A.5)

Noting that the measure dt/t gives unit mass to intervals of the form [2−i−1,

2−i
], and considering the operator Q(b)

t as a kind of multiplier roughly localized
at ‘frequencies’ of size t−1/2, Calderón’s formula appears as nothing else but a
continuous time analogue of the Littlewood–Paley decomposition of f , with dt/t
in the role of the counting measure.

A.2. Parabolic Hölder spaces and Schauder estimates. We recall in this
section the definitions and basic properties of the space and space–time-weighted
Hölder spaces, with possibly negative regularity index. We also recall the
fundamental regularization properties of the heat operator, quantified by Schauder
estimates.

Let us start recalling the following well-known facts about Hölder space on M ,
and single out a good class of weights on the parabolic spaceM. Given 0< α 6 1,
the classical metric Hölder space Hα is defined as the set of real-valued functions
f on M with finite Hα-norm, defined by the formula

‖ f ‖Hα := ‖ f ‖L∞(M) + sup
x 6=y∈M

| f (x)− f (y)|
d(x, y)α

<∞.

DEFINITION. For α ∈ (−3, 3), define Cα
:= Cα(M) as the closure of the set of

bounded and smooth functions for the Cα-norm, defined by the formula

‖ f ‖Cα := ‖e−L f ‖L∞(M) + sup
0<t61

t−α/2‖Q(b)
t f ‖L∞(M).
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This norm does not depend on the integer b > |α|/2, and the two spaces Hα

and Cα coincide and have equivalent norms when 0 < α < 1 – see for instance
[1, Proposition 2.5]. These notions have parabolic counterparts which we now
introduce. Recall we work with the parabolic space M = [0, T ] × M , for a
finite time horizon T . The introduction of a time weight in the next definition
thus has no effect on the space involved, nor on its topology. Its introduction
happens however to be a convenient freedom which allows to simplify a number
of arguments. Let then a nonnegative parameter κ be given and denote by w the
weight

w(τ) := eκτ . (A.6)

For 0 < α 6 1, the metric parabolic Hölder space Hα
= Hα(M) is defined as

the set of all functions on M with finite Hα-norm, defined by the formula

‖ f ‖Hα := ‖w−1 f ‖L∞(M) + sup
0<ρ((τ,x),(σ,y))61;τ>σ

w−1(τ )
| f (τ, x)− f (σ, y)|
ρ((τ, x), (σ, y))α

.

As in the above space setting one can recast this definition in a more functional
setting, using the parabolic standard operators. A set of distributions was
introduced in [2], whose precise definition is irrelevant here.

DEFINITION. For α ∈ (−3, 3), we define the parabolic Hölder space

Cα = Cα(M) = Cαw(M) = Cαw

as the closure, in the set of distributions, of the set of bounded and continuous
functions on M for the Cα − w-norm, defined by

‖ f ‖Cαw := sup
Q∈StGCk
06k62b

‖w−1Q1( f )‖L∞(M) + sup
Q∈StGCk
|α|<k62b

sup
0<t61

t−α/2‖w−1Qt( f )‖L∞(M).

We write Cαw if we want to emphasize the dependence of the norm on w. The
following result was proved in [2], building on Calderón’s formula (A.5).

PROPOSITION 29. Choose any finite nonnegative parameter κ in the definition
(A.6) of the weight w. Given α ∈ (0, 2), set

Eα := (Cα/2
τ L∞x ) ∩ (L

∞

τ Cα
x ),

and endow this space with its natural norm. Then Eα is continuously embedded
into Cαw. Furthermore, if α ∈ (0, 1), the spaces Eα, Cαw and Hα are equal, with
equivalent norms.
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The weighted version (L∞τ Cα
x )w of L∞τ Cα

x is the same space, equipped with the
norm

‖ f ‖(L∞τ Cα
x )w
:= sup

06τ6T
e−κτ‖ f (τ, ·)‖Cα .

We use the following regularization properties of the heat operator associated
with L , in the proof of global in time well-posedness for the (PAM) equation.
It is proved under this form in [2, Section 3.4].

THEOREM 30 (Schauder estimates). • For any choice of parameters β and
ε > 0, such that −2+ 2ε < β < 0, we have

‖L −1(v)‖Cβ+2−2ε
w

.T κ
−ε
‖v‖

(L∞T Cβ
x )w
.

• Given β ∈ (0, 2) and ε ∈ [0, 1), we have the continuity estimate

‖L −1(v)‖Cβ+2−2a−2ε
w

. κ−ε‖v‖Cβw ,

for an implicit constant in the inequality independent of κ .

Before turning to the definition of an intertwined pair of parabolic paraproducts
we close this section with another useful continuity property involving the Hölder
spaces Cσω ; it is used in the proof of the continuity properties of the swap an
merging operators, Proposition 38 in Appendix C. Recall the manifold M is
compact.

PROPOSITION 31. Given α ∈ (0, 1), a space–time weight ω, some integer a > 0
and a standard family P ∈ StGCa , there exists a constant c depending only on
the weight ω, such that

ω(τ)−1
|(Pt f )(e)− (Ps f )(e′)| 6 c(s + t + ρ(e, e′)2)α/2‖ f ‖Cαω ,

uniformly in s, t ∈ (0, 1] and e = (τ, x) and e′ = (σ, y) ∈M, with τ > σ .

It is possible, and necessary for our purpose here, to make the link between
the notions of regularity defined in terms of the operator L and the usual notion
of regularity given by the differentiable structure of the manifold, for regularity
indices in the range (1, 2). Since the collection of vector fields (Vi)16i6`0 spans
smoothly each tangent space, for every function f ∈ C1(M) and every x ∈ M

∇ f (x) =
∑

16i6`0

γi(x)(Vi f )(x)Vi(x),
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for a collection (γi)16i6`0 of smooth coefficients. For two points x, y ∈ M and
f ∈ C2(M) we have

| f (x)− f (y)− 〈∇ f (x), πx,y〉Tx M | . f d(x, y)2,

where Tx M is the canonical tangent space of M at the point x ∈ M , and πx,y is
a tangent vector of Tx M of length d(x, y), whose associated geodesic reaches y
at time 1. Such a tangent vector πxy is unique if d(x, y) is no greater than rM ,
the injectivity radius of the compact manifold M . Combining these two facts, we
have ∣∣∣∣∣ f (x)− f (y)−

`0∑
`=1

γ`(x)V`( f )(x)〈V`(x), πx,y〉Tx M

∣∣∣∣∣ . f d(x, y)2.

We can then define for α ∈ (1, 2), the space Hα defined by the norm

‖ f ‖Hα := ‖ f ‖H1(M)

+ sup
x 6=y∈M

d(x,y)<rM

∣∣∣ f (x)− f (y)−
∑`0

`=1 γ`(x)V`( f )(x)〈V`(x), πx,y〉Tx M

∣∣∣
d(x, y)α

< ∞. (A.7)

Following [1, Proposition 2.5], it can be easily proved that for α ∈ (1, 2) then Cα

is continuously embedded into Hα: Uniformly in x, y ∈ M with d(x, y) 6 rM ,
one has∣∣∣∣∣ f (x)− f (y)−

`0∑
`=1

γ`(x)V`( f )(x)〈V`(x), πx,y〉Tx M

∣∣∣∣∣ . d(x, y)α‖ f ‖Cα . (A.8)

The parabolic counterpart goes as follows, taking into account the fact that
because of the parabolic scaling, a regularity of order α < 2 can be encoded
in finite increments in time, with no need of a higher order expansion, and a first
order expansion in space. The precise statement takes the following form.

PROPOSITION 32. Given α ∈ (1, 2) and f ∈ Cα, there exists a positive implicit
constant such that for every e = (τ, x), e′ = (σ, y) in M, with ρ(e, e′) 6 rM then∣∣∣∣∣ f (e)− f (e′)−

`0∑
`=1

γ`(e)V`( f )(e)〈V`(x), πx,y〉Tx M

∣∣∣∣∣ . ‖ f ‖Cαρ(e, e′)α.

Proof. We do not give all the details of the proof since it follows exactly the proof
of Proposition 2.5 in [1]. Here is a guideline.

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


High order paracontrolled calculus 73

We decompose f at the scale r = ρ(e, e′) with

f = ( f − P2
r2 f )+ c

∫
∞

r2
PtQt( f )

dt
t
.

We plug this decomposition in the left hand side of the desired inequality. One
gets estimate on the contribution of the first part ( f − P2

r2 f ) using that

‖ f − P2
r2 f ‖∞ . rα‖ f ‖Cα , ‖Vi( f − P2

r2 f )‖∞ . rα−1
‖ f ‖Cα

and recalling that πx,y has length d(x, y) 6 r . For the second part, we integrate
the contributions along t > r 2, applying (A.8) at order 2 to the kernel KPt to
obtain, for e = (τ, x) and e′ = (σ, y), the estimate∣∣∣∣∣KPt (e, e′′)− KPt (e

′, e′′)−
`0∑
`=1

γ`(x)KV`Pt (e, e′′)〈V`(x), πx,y〉Tx M

∣∣∣∣∣
.

(
r
√

t

)2

Gt(e, e′′),

where Gt is the Gaussian kernel. Integrating this estimate against Qt( f ) gives a
factor (r/

√
t)2tα/2 which can then be integrated along t ∈ (r 2,∞) since α ∈ (1, 2).

A.3. Parabolic paraproducts. We give here a quick presentation of the pair
of intertwined paraproducts introduced in [2], following the semigroup approach
developed first in [1]. The starting point for the introduction of the operator Π is
Calderón’s reproducing formula (A.5). Using iteratively the Leibniz rule for the
differentiation operators Vi or ∂τ , we have the following decomposition

f g =
∑
Ib

a I,J
k,`

∫ 1

0
(AI,J

k,` ( f, g)+AI,J
k,` (g, f ))

dt
t
+

∑
Ib

b I,J
k,`

∫ 1

0
B I,J

k,` ( f, g)
dt
t
,

where

• Ib is the set of all tuples (I, J, k, `) with the tuples I, J and the integers k, `
satisfying the constraint

|I | + |J |
2

+ k + ` =
b
2
;

• a I,J
k,` , b I,J

k,` are bounded sequences of numerical coefficients;
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• for (I, J, k, `) ∈ Ib, AI,J
k,` ( f, g) has the form

AI,J
k,` ( f, g) := P (b)

t (t |I |/2+k VI∂
k
τ )(S (b/2)

t f · (t |J |/2+`VJ∂
`
τ )P (b)

t g)

with S (b/2)
∈ GCb/2;

• for (I, J, k, `) ∈ Ib, B I,J
k,` ( f, g) has the form

B I,J
k,` ( f, g) := S (b/2)

t ({(t |I |/2+k VI∂
k
τ )P (b)

t f } · {(t |J |/2+`VJ∂
`
τ )P (b)

t g})

with S (b/2)
∈ GCb/2.

DEFINITION. Given f in
⋃

s∈(0,1) Cs and g ∈ L∞(M), we define the
paraproduct P(b)

g f by the formula

P(b)
g f :=

∫ 1

0

 ∑
Ib;|I |/2+k>b/4

a I,J
k,`A

I,J
k,` ( f, g)+

∑
Ib;|I |/2+k>b/4

b I,J
k,`B

I,J
k,` ( f, g)

 dt
t
,

and the resonant term Π (b)( f, g) by the formula

Π (b)( f, g) :=
∫ 1

0

 ∑
Ib;|I |/2+k6b/4

a I,J
k,` (A

I,J
k,` ( f, g)+AI,J

k,` (g, f ))

+

∑
Ib;|I |/2+k=|J |/2+`=b/4

b I,J
k,`B

I,J
k,` ( f, g)

 dt
t
.

With these notations, Calderón’s formula becomes

f g = P(b)
g f + P(b)

f g +Π (b)( f, g)+∆−1( f, g)

with the ‘low-frequency part’

∆−1( f, g) := P (b)
1 (P (b)

1 f · P (b)
1 g).

If b is chosen large enough, then all the operators involved in the paraproduct
and resonant terms have a kernel pointwisely bounded by a kernel Gt at the right
scaling. Moreover,

(a) the paraproduct term P(b)
g f is a finite linear combination of operators of the

form ∫ 1

0
Q1•

t (Q2
t f · P1

t g)
dt
t

with Q1,Q2
∈ StGCb/4, and P1

∈ StGC[0,b],
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(b) the resonant termΠ (b)( f, g) is a finite linear combination of operators of the
form ∫ 1

0
P1•

t (Q1
t f ·Q2

t g)
dt
t

with Q1,Q2
∈ StGCb/4 and P1

∈ StGC[0,b].

We invite the reader to see what happens of all this when working in the flat
torus with its associated Laplacian. Note also that P(b)

f (1) = Π (b)( f, 1) = 0, and
that we have the identity

P(b)
1 f = f − P (b)

1 (P (b)
1 f ),

as a consequence of our choice of renormalizing constant. Therefore, the
paraproduct with the constant function 1 is equal to the identity operator, up to
the strongly regularizing operator P (b)

1 ◦ P
(b)
1 . The regularity properties of the

paraproduct and resonant operators can be described as follows; it behaves as its
classical, Fourier-based, counterpart (2.1).

PROPOSITION 33. (a) For every real-valued regularity exponent α, β, and every
positive regularity exponent γ , we have

‖∆−1( f, g)‖Cγ . ‖ f ‖Cα‖g‖Cβ .

(b) For every α ∈ (−3, 3) and f ∈ Cα, we have

‖P(b)
g f ‖Cα . ‖g‖∞‖ f ‖Cα

for every g ∈ L∞, and

‖P(b)
g f ‖Cα+β . ‖g‖Cβ‖ f ‖Cα

for every g ∈ Cβ with β < 0 and α + β ∈ (−3, 3).

(c) For every α, β ∈ (−3, 3) with α + β > 0, we have the continuity estimate

‖Π (b)( f, g)‖Cα+β . ‖ f ‖Cα‖g‖Cβ .

DEFINITION. We define a modified paraproduct P̃(b) setting

P̃(b)
g f := L −1(P(b)

g (L f )).

The next proposition shows that if one chooses the parameter `1 that
appears in the reference kernels Gt , and the exponent b in the definition of
the paraproduct, both large enough, then the modified paraproduct P̃(b) has the
same algebraic/analytic properties as P(b).
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PROPOSITION 34. • For a choice of large enough constants `1 and b, the
modified paraproduct P̃g f is a finite linear combination of operators of the
form ∫ 1

0
Q1•

t (Q2
t f · P1

t g)
dt
t

with Q1
∈ GCb/8−2, Q2

∈ StGCb/4 and P1
∈ StGC[0,b].

• For every α ∈ (−3, 3) and ε ∈ (0, 1) with α − ε ∈ (−3, 3) and f ∈ Cα, we
have

‖P̃(b)
g f ‖Cα−εw

. κ−ε‖w−1g‖∞‖ f ‖Cα ,

for every g ∈ L∞.

The notation Q1• does not make sense for a generic element Q1 of GC. The
operator that appears in this formula is actually of the form Q1

t = Qt t−1L −1,
with Q ∈ StGC, for which the notation Q1• makes sense. Note that the norm
‖ f ‖Cα above has no weight. Note here the normalization identity

P̃(b)
1 f = f −L −1

◦ P (b)
1 ◦ P

(b)
1 (L f )

for every distribution in f ∈ S ′o; it reduces to

P̃(b)
1 f = f − P (b)

1 P (b)
1 ( f )

if f|τ=0 = 0.
Following the definition of the inner difference operator D given in

Section 3.2, we extend it to the parabolic setting defining D(=De) by the formula∫∫
M2
(D f )(e′)g(e) ν(de)ν(de′) :=

∫∫
M2
( f (e′)− f (e))g(e) ν(de)ν(de′);

with this notation, the crucial motivating relation

P f (P̃ag)− Pf ag = P f (P̃Dag)

holds true.
Last, we prove an elementary property of the modified paraproduct that

provides some pointwise information on the solutions to singular partial
differential equations.

PROPOSITION 35. Let α, β be positive regularity exponents, and let u, Z ∈ Cα
with v ∈ Cβ be given, with Z(0, ·) = 0. Assume that

u − P̃vZ ∈ Cα+β,
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and define γ := min(α + β, 1). If α + β 6= 1, we have

|u(e)− u(e′)− v(e)(Z(e)− Z(e′))| . ρ(e, e′)γ ,

uniformly in e, e′ ∈M with ρ(e, e′) 6 1. If α + β = 1, we have an additional
logarithemic loss

|u(e)− u(e′)− v(e)(Z(e)− Z(e′))| . ρ(e, e′) log(1+ ρ(e, e′)−1).

Proof. Due to the assumption, one has

|u(e)− u(e′)− v(e)(Z(e)− Z(e′))| . ρ(e, e′)β + (?)

with
(?) := |(P̃vZ)(e)− (P̃vZ)(e′)− v(e)(Z(e)− Z(e′))|.

Using Calderón reproducing formula, or the normalization, yields

P̃1 Z = Z

since Z(0, ·) = 0, and we see that (?) is equal to∣∣∣∣∫ 1

0
Q•t (Qt ZPtv)(e)−Q•t (Qt ZPtv)(e′)

− v(e)Q•t (Qt Z)(e)+ v(e)Q•t (Qt Z)(e′)
dt
t

∣∣∣∣ ,
so

(?) .
∫ 1

0

∣∣∣∣∫ (KQ•t (e, a)− KQ•t (e
′, a))Qt Z(a)(Ptv(a)− v(e))ν(da)

∣∣∣∣ dt
t
.

Using the regularity estimates on v and on the kernel of the approximation
operators, one sees that

(?) . ‖v‖Cβ
∫ 1

0

∫
min

{
1,
ρ(e, e′)
√

t

}
Gt(e, a)|Qt Z(a)|(t + ρ(a, e)2)γ /4ν(da)

dt
t

. ‖v‖Cβ‖Z‖Cα
∫ ρ(e,e′)2

0
t (2α+γ )/4

dt
t
+ ‖v‖Cβ‖Z‖Cα

∫ 1

ρ2

∫
ρ(e, e′)
√

t
t (2α+γ )/4

dt
t

. ‖v‖Cβ‖Z‖Cαρ(e, e′)γ ,

which concludes the proof.
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Appendix B. Paracontrolled expansion formula

We give in this section a detailed and rigorous proof of Theorem 4. The
parameter b is fixed, and we note Π for Π (b).

THEOREM 36 (Higher order Taylor expansion). Let f : R 7→ R be a C4 function,
and let u be a real-valued and Cα function on M, with α ∈ (0, 1). Then

f (u) = Pf ′(u)(u)+ 1
2 {Pf (2)(u)(u2)− 2Pf (2)(u)u(u)}

+
1
3! {Pf (3)(u)(u3)− 3Pf (3)(u)u(u2)+ 3Pf (3)(u)u2(u)} + f (u)] (B.1)

for some remainder f (u)] ∈ C4α. If moreover f is of class C5, then the remainder
term f (u)] is locally Lipschitz with respect to u, in the sense that

‖ f (u)] − f (v)]‖C4α . (1+ ‖u‖Cα + ‖v‖Cα )4‖u − v‖Cα . (B.2)

Proof. Let us give a detailed proof of the third order expansion, that claims that

(?) := f (u)− Pf ′(u)(u)− 1
2 {Pf (2)(u)(u2)− 2Pf (2)(u)u(u)}

is a 3α-Hölder function. We invite the reader to follow what comes next in the
light of the proof given in Section 2 in the time-independent, flat, model setting
of the torus.

As, by definition, the paraproduct operator Pg(·) is a finite sum of different
terms, each of them of the form

A1
g(·) :=

∫ 1

0
Q1•

t (Q2
t (·)P1

t (g))
dt
t
,

with Q1,Q2 at least to StGC3, it is sufficient to prove that the following function

(?) := f (u)−
∫ 1

0

[
Q1•

t (Q2
t (u)P1

t ( f ′(u)))+
1
2
Q1•

t (Q2
t (u

2)P1
t ( f (2)(u)))

−Q1•
t (Q2

t (u)P1
t ( f (2)(u)u))

]
dt
t

is an element of C3α. Using Calderón’s reproducing formula together with the
normalization of the paraproduct, we have

f (u) '
∫ 1

0
Q1•

t Q2
t ( f (u)P1

t (1))
dt
t

https://doi.org/10.1017/fms.2019.44 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.44


High order paracontrolled calculus 79

up to a remainder quantity corresponding to the low-frequency part that is as
smooth as we want. So one can write (?) under the form

(?) =

∫ 1

0
Q1•

t (εt)
dt
t
, (B.3)

with

εt := Q2
t ( f (u))P1

t (1)−Q2
t (u)P1

t ( f ′(u))
−

1
2Q

2
t (u

2)P1
t ( f (2)(u))+Q2

t (u)P1
t ( f (2)(u)u).

Due to the orthogonality/cancellation property of the operators Q1•
t , it suffices

for us to get an L∞ control of εt . Using the kernel representation of the different
operators, we have for every e ∈M

εt(e) =
∫∫

M2
KQ2

t
(e, e′)KP1

t
(e, e′′)

{
f (u(e′))− u(e′) f ′(u(e′′))

−
1
2

u2(e′) f (2)(u(e′′))+ u(e′) f (2)(u(e′′))u(e′′)
}
ν(de′)ν(de′′).

Note also that we have from the usual Taylor formula for f

f (u(e′))− u(e′) f ′(u(e′′))−
1
2

u2(e′) f (2)(u(e′′))+ u(e′) f (2)(u(e′′))u(e′′)

=

∫∫∫
[0,1]3

f (3)(u(e′′)+ s3s2s1(u(e′)− u(e′′)))s2s1(u(e′)− u(e′′))3 ds3 ds2 ds1

+ f (u(e′′))+ u(e′′) f ′(u(e′′))+
1
2

u2(e′′) f (2)(u(e′′)).

When we integrate against KQ2
t
(e, e′)KP1

t
(e, e′′) a quantity depending only in e′′

has no contribution, since the latter kernel satisfies a cancellation property along
the e′-variable. So we have exactly

εt(e) =
∫∫

M2
KQ2

t
(e, e′)KP1

t
(e, e′′)(∫∫∫

[0,1]3
f (3)(u(e′′)+ s3s2s1(u(e′)− u(e′′)))s2s1(u(e′)− u(e′′))3 ds3 ds2 ds1

)
× ν(de′)ν(de′′).

Since KQ2
t

and KP1
t

are both pointwisely dominated by the Gaussian kernel Gt ,
and using the fact that f (3) is bounded on the range of u, we obtain the uniform
control

|εt(e)| .
∫∫

M2
Gt(e, e′)Gt(e, e′′)(u(e′)− u(e′′))3 ν(de′)ν(de′′)

. ‖u‖3
Cα t3α/2,
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from which the fact that (?) belongs to C3α follows from (B.3). We used for that
purpose the identity

u(e′)− u(e′′) = (u(e′)− u(e))+ (u(e)− u(e′′)),

together with Proposition 29 on the characterization of parabolic regularity in
terms of increments, to see that

|u(e′)− u(e′′)| . (d(e′, e)+ d(e′′, e))α‖ f ‖Cα .

The fourth order expansion of the statement is proved by a very similar reasoning
left to the reader. One proceeds exactly as in the proof of Theorem 4 to prove the
stability estimate (B.2).

Observe the fact that one can give a paracontrolled expansion formula with the
P̃ operator in place of the P operator, as a consequence of Proposition 34 on the
structure of the modified paraproduct P̃, and the proof of Theorem 36.

Appendix C. Continuity results

Recall the definitions of the corrector

C( f, g, h) := Π(P̃f (g), h)− f Π(g, h),

the (modified) commutators

D( f, g, h) = Π(P̃f (g), h)− P f (Π(g, h)),

R( f, g, h) = P f (P̃gh)− Pf gh,

S( f, g, h) = P f (P̃gh)− Pg(P f h),

and their iterates, introduced in Section 3. We use also their ◦ variants, built with
P in the role of P̃; we have for instance

R◦( f, g, h) = P f (Pgh)− Pf gh.

All these operators are initially defined on the space of smooth functions. We
prove in this section the continuity results on these operators stated in Section 3.

Let χ stand for a smooth nonnegative function on [0,∞), equal to 1 in a
neighbourhood of 0, with χ(r) = 0 for r > rM . Given e = (t, x) ∈M, set

δ`(e, e′) := χ(d(x ′, x))〈V`(x), πxx ′〉Tx M ,

for e′ = (t ′, x ′) ∈M and expx(πxx ′) = x ′, and 1 6 ` 6 `0, and

Π `
(1)(g, h) := Π(Pδ`(e,·)g, h)(e).
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DEFINITION 37. The refined paraproduct is defined by the formula

C(1)( f, g, h)(e) := C( f, g, h)(e)−
`0∑
`=1

γ`(V` f )Π `
(1)(g, h)(e).

Recall from Section 3.1.1 the simple definition of the refined corrector in the
model setting of the flat torus.

C.1. Boundedness of commutators/correctors. We start by looking at the
case of the swap and merging operators S and R. We do not emphasize in the next
statement the choice of parameter κ in the time weight. This has no consequence
on the use of these continuity results for the study of singular PDEs, as we
only use Schauder estimates in weighted spaces to deal with the terms from the
enhancement of the noise in the study of the linear (PAM) equation, not for all the
well-defined terms built from the corrector, commutator and their iterates.

PROPOSITION 38. • Let α, β, γ be Hölder regularity exponents with

γ ∈ (−3, 3), β ∈ (0, 1) and α ∈ (−∞, 0).

Then if
β + γ < 3, and δ := α + β + γ ∈ (−3, 3),

we have

‖S( f, g, h)‖Cδ + ‖S◦( f, g, h)‖Cδ . ‖ f ‖Cα‖g‖Cβ‖h‖Cγ , (C.1)

so the modified commutator on paraproducts extends naturally into a trilinear
continuous map from Cα × Cβ × Cγ to Cδ.

• If α = 0 then the product f g has a sense for f ∈ L∞(M) and g ∈ Cβ , with
0 < β < 1, and we have

‖R◦( f, g, h)‖Cβ+γ + ‖R( f, g, h)‖Cβ+γ . | f ‖L∞ |g‖Cβ‖h‖Cγ . (C.2)

• If α, β ∈ (0, 1) and γ ∈ (−3, 3), then we have

‖R◦( f, g, h)‖Cα+β+γ . ‖ f ‖Cα‖g‖Cβ‖h‖Cν . (C.3)

Proof. Recall the operators P(b)
g (·), respectively P̃(b)

g (·), are given by a finite sum
of operators of the form

A1
f (·) :=

∫ 1

0
Q1•

t (Q2
t (·)P1

t ( f ))
dt
t
,
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respectively

Ã1
f (·) :=

∫ 1

0
Q̃1•

t (Q̃2
t (·)P1

t ( f ))
dt
t
,

where Q1,Q2, Q̃2 belong at least to StGC3 and Q̃1 is an element of GC3. We
describe similarly the operator P(b)

f (·) as a finite sum of operators of the form

A2
f (·) :=

∫ 1

0
Q3•

t (Q4
t (·)P2

t ( f ))
dt
t
.

Thus, we need to study a generic modified commutator

A2
f (Ã1

g(h))−A1
g(A2

f (h)),

and introduce for that purpose the intermediate quantity

E( f, g, h) :=
∫ 1

0
Q3•

s (Q4
s (h) · P1

s (g) · P2
s ( f ))

ds
s
.

(We proceed similarly for the study of S◦.) Note here that due to the normalization
P1 ' Id, up to some strongly regularizing operator, there is no loss of generality
in assuming that∫ 1

0
Q̃1•

t Q̃2
t
dt
t
=

∫ 1

0
Q1•

t Q2
t
dt
t
=

∫ 1

0
Q3•

t Q4
t
dt
t
= Id. (C.4)

Step 1. Study of A2
f (Ã1

g(h))− E( f, g, h). We shall use a family Q in StGCa ,
for some a > |δ|, to control the Hölder norm of that quantity. By definition, and
using the normalization (C.4), for every r ∈ (0, 1), the quantity Qr (A2

f (Ã1
g(h))−

E( f, g, h)) is equal to∫ 1

0

∫ 1

0
QrQ3•

s {Q4
sQ̃1•

t (Q̃2
t (h)P1

t (g)) · P2
s ( f )}

ds dt
st

−

∫ 1

0
QrQ3•

s (Q4
s (h) · P1

s (g) · P2
s ( f ))

ds
s

=

∫ 1

0

∫ 1

0
QrQ3•

s

{
Q4

sQ̃1•
t (Q̃2

t (h)(P1
t (g)− P1

s (g))) · P2
s ( f )

}ds dt
st

,

where in the last line the variable of P1
s (g) is that of Q3•

s , and so it is frozen
through the action of Q̃4

sQ1•
t . Then using that g ∈ Cβ with β ∈ (0, 1), we know

by Proposition 31 that we have, for τ > σ ,

|(P1
s g)(x, τ )− (P1

t g)(y, σ )| . (s + t + ρ((x, τ ), (y, σ ))2)α/2‖g‖Cβ .
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Note that it follows from Equation (A.1) that the kernel of Q4
sQ̃∗1t is pointwisely

bounded by Gt+s , and allowing different constants in the definition of G, we have

Gt+s((x, τ ), (y, σ ))(s + t + d(x, y)2)β/2 . (s + t)β/2Gt+s((x, τ ), (y, σ )). (C.5)

So using the cancellation property of the operators Q, respectively Qi and Q̃i , at
an order no less than a, respectively 3, we deduce that

‖Qr (A2
f (Ã1

g(h))− E( f, g, h))‖∞

. ‖ f ‖Cα‖g‖Cβ‖h‖Cγ
∫ 1

0

∫ 1

0

(
sr

(s + r)2

)a/2 ( st
(s + t)2

)3/2

× tγ /2(s + t)β/2sα/2
ds dt

st
,

where we used that α is negative to control P2
s ( f ). The integral over t ∈ (0, 1)

can be computed since γ > −3 and β + γ < 3, and we have

‖Qr (A2
f (Ã1

g(h))− E( f, g, h))‖∞

. ‖ f ‖Cα‖g‖Cβ‖h‖Cγ
∫ 1

0

∫ 1

0

(
sr

(s + r)2

)a/2

sδ/2
ds
s

. ‖ f ‖Cα‖g‖Cβ‖h‖Cγ r δ/2,

uniformly in r ∈ (0, 1) because |a| > δ. That concludes the estimate for the
high-frequency part. We repeat the same reasoning for the low-frequency part by
replacing Qr with Q1 and conclude that

‖A2
f (Ã1

g(h))− E( f, g, h)‖Cδ . ‖ f ‖Cα‖g‖Cβ‖h‖Cγ .

Step 2. Study of A1
g(A2

f (h)) − E( f, g, h). This term is almost the same
as that of Step 1 and can be treated in exactly the same way. Note that
Qr (A1

g(A2
f (h))− E( f, g, h)) is equal, for every r ∈ (0, 1), to∫ 1

0

∫ 1

0
QrQ1•

t (Q2
t Q3•

s (Q4
s (h)P2

s ( f )) · P1
t (g))

ds dt
st

−

∫ 1

0
QrQ3•

s (Q4
s (h) · P1

s (g) · P2
s ( f ))

ds
s

=

∫ 1

0

∫ 1

0
QrQ1•

t

{
Q2

t Q3•
s (Q4

s (h)(P1
t (g)− P1

s (g)) · P2
s ( f ))

}ds dt
st

,

where in the last line the variable of P1
t (g) is that of Q1•

t , so it is frozen through
the action of Q3•

s . The same proof as in Step 1 can be repeated, which gives the
first statement of the theorem.
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Step 3. Proof of the second statement. For the second statement, Step 1
still holds. So it only remains to compare E( f, g, h) with A2

f g(h). This amounts
to compare P2

t ( f g) with P1
t ( f gP2

t ( f ). Using the regularity of g ∈ Cβ and the
uniform boundedness of f ∈ L∞, we get

‖P2
t ( f g)− P1

t (g)P2
t (u f )‖L∞ . tβ/2

which allows us to conclude.

Step 4. Proof of the third statement. The key observation is that R◦ satisfies
more cancellation that R, namely

R◦(1, g, h) = R◦( f, 1, h) = 0.

Taking advantage of that fact, for any Q ∈ StGC3, we have for s ∈ (0, 1) and
e ∈M, the identity

Qs(R◦( f, g, h))(e) = Qs(R◦( f − f (e), g − g(e), h))(e).

The difference structure has been taken into account in this cancellation/identity
and we can now estimate each piece in the definition of R◦ separately. Using
previous arguments, one has

|Qs(Pf− f (e)Pg−g(e)(h))(e)|

.
∫
[0,1]3

∫∫
M2

(
st1

(s + t1)2

)3 ( t1t2

(t1 + t2)2

)3 ( t2t3

(t2 + t3)2

)3

×Gs+t1(e, e′)Gt1+t2(e, e′′)

| f (e′)− f (e)| |g(e)− g(e′′)|ν(de′)ν(de′′)tγ /23 ‖h‖Cγ
dt1

t1

dt2

t2

dt3

t3

. f,g,h

∫
[0,1]3

∫∫
M2

(
st1

(s + t1)2

)3 ( t1t2

(t1 + t2)2

)3 ( t2t3

(t2 + t3)2

)3

×Gs+t1(e, e′)Gt1+t2(e, e′′)

ρ(e, e′)αρ(e, e′′)βν(de′)ν(de′′)tγ /23
dt1

t1

dt2

t2

dt3

t3

. f,g,h

∫
[0,1]3

(
st1

(s + t1)2

)3 ( t1t2

(t1 + t2)2

)3 ( t2t3

(t2 + t3)2

)3

× (s + t1 + t2)
(α+β)/2tγ /23

dt1

t1

dt2

t2

dt3

t3

. s(α+β+γ )/2‖ f ‖Cα‖g‖Cβ‖h‖Cγ ,
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uniformly in e ∈ M and s ∈ (0, 1), which concludes the proof of the desired
estimate for this first term. (The intermediate implicit constants in the upper
bounds are constant multiples of ‖ f ‖Cα‖g‖Cβ‖h‖Cγ .) The second estimate is
obtained similarly, observing that

|( f (e′)− f (e))(g(e′)− g(e))| . ρ(e′, e)α+β‖ f ‖Cα‖g‖Cβ ,

and gives in the end

‖Qs(R◦( f, g, h))‖L∞ . s(α+β+γ )/2‖ f ‖Cα‖g‖Cβ‖h‖Cγ .

REMARK 39. The above proof actually shows the following property of the
operator

S f,h := g 7→ S( f, g, h) (C.6)

where f ∈ Cα and h ∈ Cγ are fixed. For all families Q1,Q2
∈ GCa for some

a > 0, the linear operator Q1
t S f,hQ2•

s has a kernel pointwisely bounded by

(t + s)(β+γ )/2
(

st
(s + t)2

)a/2

Gt+s(e, e′)‖ f ‖Cα‖h‖Cγ .

PROPOSITION 40. • Let α, β, γ be Hölder regularity exponents with α ∈ (0, 1),
β ∈ (−3, 3) and γ ∈ (−∞, 3]. Set

δ := (α + β) ∧ 3+ γ.

If
0 < α + β + γ < 1 and β + γ < 0

then the corrector C extends continuously into a trilinear map from Cα×Cβ×Cγ
to Cδ.

• If α, β, γ are positive then the commutator D is a continuous trilinear map
from Cα × Cβ × Cγ to Cδ.

Proof. The result on C was already proved in [1, Proposition 3.6] in a more
general setting. We only focus here on proving the boundedness of D. As already
done above, we represent the operator P(b)

f (·) under the form

A f (·) :=

∫ 1

0
Q1•

t (Q2
t (·)P1

t ( f ))
dt
t
,

and the resonant term Π (b)(g, h) as

B(g, h) :=
∫ 1

0
P2•

t (Q3
t (g)Q4

t (h))
dt
t
.
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Thus, we need to study a generic modified commutator

(?) := B(A f (g), h)−A f (B(g, h))

=

∫ 1

0

∫ 1

0
P2•

t (Q3
t Q1•

s (Q2
s (g)P1

t ( f ))Q4
t (h))

ds
s

dt
t

−

∫ 1

0

∫ 1

0
Q1•

s (Q2
sP2•

t (Q3
t (g)Q4

t (h))P1
s ( f ))

ds
s

dt
t
,

and introduce for that purpose the intermediate quantity

E( f, g, h) :=
∫ 1

0
P2•

t (P1
t ( f )Q3

t (g)Q4
t (h))

dt
t
.

Then we compare the two quantities with E( f, g, h), such as done previously.
Each of these two comparisons makes appear an exact commutation on the
function f , due to our choice of normalization for our paraproducts. Using the
Cα regularity on f together with the cancellation property of the Q operators, we
get

‖Qr (?)‖L∞ .
∫ 1

0

∫ 1

0

(
r

r + t

)3 ( st
(s + t)2

)3

sβ/2tγ /2(s + t)α/2
dt
t

ds
s

+

∫ 1

0

∫ 1

0

(
rs

(r + s)2

)3 ( s
s + t

)3

tβ/2tγ /2(s + t)α/2
dt
t

ds
s

.
∫ 1

0

(
r

r + t

)3

t (α+β+γ )/2
dt
t
+

∫ 1

0

(
r

r + t

)3

tβ/2tγ /2(r + t)α/2
dt
t

. r δ/2,

which shows that (?) belongs to Cδ.

C.2. Boundedness of iterated commutators/correctors. We now turn
to the study of the continuity properties of the iterated versions of
commutators/correctors, and start with the (modified) iterated commutator
on paraproducts.

PROPOSITION 41. If γ ∈ (0, 1), α, ν ∈ (0, 1/2) and β ∈ (−3, 3) then we have

‖R◦(u, f,Pag)− PaR◦(u, f, g)‖Cα+β+γ+ν . ‖ f ‖Cα‖g‖Cβ‖u‖Cν‖a‖Cγ . (C.7)

This statement is a combination of both (C.1) and (C.3) of Proposition 38; we
let the reader write the proof. We now state the continuity result for the 4-linear
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iterated swap operator defined in (3.15); a similar continuity result holds for the
5-linear iterated operator defined in (3.16); its proof is left to the reader.

PROPOSITION 42. Let α, β1, β2, γ be Hölder regularity exponents with
γ ∈ (−3, 3), β1, β2 ∈ (0, 1) and α ∈ (−∞, 0). Then if

α + β2 + γ < 3, and δ := α + β + γ + ν ∈ (−3, 3),

we have
‖S( f, (g1, g2), h)‖Cδ . ‖ f ‖Cα‖g1‖Cβ1

‖g2‖Cβ2
‖h‖Cγ , (C.8)

so the commutator defines a quadrilinear continuous map from Cα×Cβ1×Cβ2×Cγ
to Cδ.

Proof. Fix some functions f ∈ Cα and g2 ∈ Cβ2 ; we have

S( f, (g1, g2), h) := S( f, P̃g1 g2, h)− Pg1S( f, g2, h).

With the same notations as in the proof of Proposition 38, for which we have
relations (C.4), we write

Pg1[S( f, g2, h)] =
∫ 1

0
Q1•

t (Q2
t [S( f, g2, h)] · P1

t g1)
dt
t

=

∫ 1

0

∫ 1

0
Q1•

t (Q2
t [S( f, Q̃1•

s Q̃2
s g2, h)] · P1

t g1)
ds
s

dt
t
.

Expanding S( f, P̃g1 g2, h) correspondingly, we get with S f,h defined in (C.6),

S( f, (g1, g2), h) =
∫ 1

0

∫ 1

0
Q1•

t

{
Q2

t S f,h(Q̃1•
s (Q̃2

s g2 · (P1
t g1 − P1

s g1)))
}ds

s
dt
t
,

(C.9)
where the variable of P1

t g1h is that of Q1•
t . Since g1 belongs to Cβ1 , with

β1 ∈ (0, 1), we know from Proposition 31 that

|(P1
t g1)(e)− (P1

s g1)(e′)| . (t + s + ρ(e, e′)2)β1/2‖g1‖Cβ1 ,

for all e, e′ ∈ M. As above, fix a collection Q of StGCa , for some a > 3, to
control Hölder norms. We need to estimate

‖Qr S( f, (g1, g2), h)‖L∞(M).

Using decomposition (C.9), we have

‖Qr S( f, (g1, g2), h)‖L∞(M) .
∫ 1

0

∫ 1

0

(
r t

(r + t)2

)a/2

Is,t
ds
s

dt
t
, (C.10)
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where
Is,t := sup

e∈M
Q2

t S f,h(Q̃1•
s (Q̃2

s g2 · (P1
t g1(e)− P1

s g1)))(e).

Due to Remark 39, we have a pointwise estimate of the kernel of the operator
Q2

t S f,h(Q1•
s (·)), so with the pointwise regularity estimate on h and (C.5), we

deduce that

Is,t . (s + t)(α+β1+γ )/2‖Q̃2
s g2‖L∞‖ f ‖Cα‖g1‖Cβ1‖h‖Cγ

. (s + t)δ/2‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ .

It follows from that estimate and the fact that |σ | < a, that

‖Qr S( f, (g1, g2), h)‖L∞(M) . r δ/2‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ ,

uniformly in r ∈ (0,1). A similar analysis of the low frequency of S( f, (g1, g2), h)
can be done, which completes the proof of the Hölder estimate.

PROPOSITION 43. Pick β1, β2 ∈ (0, 1) with β1 + β2 < 1, and γ ∈ (−3, 3). We
have

‖R( f, P̃g1 g2, h)− Pg1R( f, g2, h)‖Cβ1+β2+γ

+‖R◦( f,Pg1 g2, h)− Pg1R
◦( f, g2, h)‖Cβ1+β2+γ

. ‖ f ‖L∞‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ . (C.11)

Proof. Fix a parameter r ∈ (0, 1) and look for a control (uniformly in e ∈M) of

(?) := Qr [R( f, P̃g1 g2, h)− Pg1R( f, g2, h)](e).

We follow the arguments of Proposition 38 – more precisely of (C.2) and (C.3),
since

(?) = Qr [R( f, P̃g1 g2, h)](e)−
∫ 1

0
QrQ•s

[
Ps g1 ·Qs[R( f, g2, h)]

]
(e),

and we have seen there how to control the composition of a Q operator with R.
So we repeat the exact same reasoning with replacing the function f by P̃g1 f and
now the commutator (with the extra paraproduct Pg1 ) brings terms of the form

[Pg1 g2(e′)− Pg1 g2(e′′)] − Pr (g1)(e′′′)[g2(e′)− g2(e′′)]

for points e′, e′′, e′′′ of the parabolic space M, multiplied by Gaussian kernels
localizing points at the scale ρ(e, e′) + ρ(e, e′′) + ρ(e, e′′′) . r 1/2. Using
Proposition 35, we deduce that since g1 ∈ Cβ1 and g2 ∈ Cβ2 then

|[Pg1 g2(e′)− Pg1 g2(e′′)] − Pr (g1)(e′′′)[g2(e′)− g2(e′′)]| . r (β1+β2)/2.

The result follows by repeating the computations done in proving (C.3).
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We now look at the iterated corrector. The proof of continuity for the lower and
upper iterates are almost the same and the reader can see clearly on the model
case of iterated integrals what the difference is.

PROPOSITION 44. Let α, β1 ∈ (0, 1), β2 ∈ (−3, 3) and γ ∈ (−∞, 3]. Assume
that α + β1 + β2 < 3 with

δ := α + β1 + β2 + γ ∈ (0, 1), α + β2 + γ < 0 and β1 + β2 + γ < 0.

Then the 4-linear upper iterated corrector C is a continuous map from Cα×Cβ1×

Cβ2 × Cγ to Cδ.

Proof. Fix f ∈ Cα and h ∈ Cγ and set

C(·) := C( f, ·, h),

so
C( f, (g1, g2), h) = C(P̃g1 g2)− g1 C(g2).

Using the same notation as previously, and omitting for convenience the indices
on the different collections Q and P , we write

C(P̃g1 g2) =

∫ 1

0
CQ̃•s (Q̃s g2 · Ps g1)

ds
s
,

g1 C(g2) = g1 C(P̃1(g2)) = g1

∫ 1

0
CQ̃•s (Q̃s g2 · Ps1)

ds
s
.

Note that due to the conservation property of the heat semigroup associated
with L , the quantity Ps1 is either constant equal to 1 or to 0, depending on whether
Ps encodes some cancellation or not. Thus, given e = (x, τ ) ∈M, and setting

Fs,e := Q̃s g2 · (Ps g1 − Ps(1) · g2(e)),

we have

C( f, (g1, g2), h)(e) = C(P̃g1 g2)(e)−1 (e)C(g2)(e) =
∫ 1

0
C(Q̃•s Fs,e)(e)

ds
s
.

As before, we can use that g1 ∈ Cβ1 , with β1 ∈ (0, 1). We have for e, e′ ∈M

|g1(e)− g1(e′)| . ρ(e, e′)β‖g1‖Cβ1 ,

and therefore, using the ‘Gaussian bounds’ for Ps ,

|(Ps g1)(e′)− (Ps1)(e′) g1(e)| . (s + ρ(e, e′)2)β/2‖g1‖Cβ1 .
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As done in the proof of Proposition 40, we introduce an intermediate quantity of
the form

S(a, b, c) :=
∫ 1

0
Pt(Qt b ·Qt c · Pta)

dt
t
,

and write

C(Q̃•s Fs,e)(e) = Π(P̃ f (Q̃•s Fs,e), h)(e)− S( f, Q̃•s Fs,e, h)(e)

+ S( f, Q̃•s Fs,e, h)(e)− f (e) ·Π(Q̃•s Fs,e, h)(e)
=: I1(s)+ I2(s). (C.12)

•We start with the estimate for I2. One can then write with generic notations for
the resonant term Π

(S( f, g2, h)− f ·Π(g2, h))(e) =
∫ 1

0
Pt(Qt g2 ·Qt h · (Pt f − f (e)))(e)

dt
t
,

and it is known that the integrand is pointwisely bounded by t (α+ν1+ν2)/2. Since this
argument only uses pointwise estimates, we can replace b by Q•s Fs,e. Therefore,
by writing∫ 1

0
I2(s)

ds
s
=

∫ 1

0

∫ 1

0
Pt(QtQ̃•s Fs,e ·Qt h · (Pt f − f (e)))(e)

dt
t

ds
s

and using

‖QtQ̃•sφ‖L∞(M) .

(
st

(s + t)2

)3/2

‖φ‖L∞(M), (C.13)

with φ = Fs,e, we obtain∥∥∥∥∫ 1

0
I2(s)

ds
s

∥∥∥∥
L∞(M)

6
∫ 1

0

∫ 1

0
‖e 7→ Pt(QtQ̃•s Fs,e ·Qt h · ( f (e)− Pt f ))(e)‖L∞

dt
t

ds
s

. ‖g1‖Cβ1‖g2‖Cβ2‖ f ‖Cα‖h‖Cγ

×

∫ 1

0

∫ 1

0

(
st

(s + t)2

)3/2

Gt+s(e, e′)(s + ρ(e, e′)2)β1/2sβ2/2t (α+γ )/2
ds
s

dt
t

. ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ
∫ 1

0

∫ 1

0

(
st

(s + t)2

)3/2

× sβ2/2(s + t)β1/2t (α+γ )/2
ds
s

dt
t

. ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ ,

since α + β1 + β2 + γ > 0.
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• Let us now estimate the regularity of I2(s). Let e, e′ ∈M with ρ(e, e′) 6 1. We
split the integral in t into two parts, corresponding to t < ρ(e, e′)2 or t > ρ(e, e′)2.
In the first case, note that∫ ρ(e,e′)2

0
t (α+β1+β2+γ )/2 dt

t
. ρ(e, e′)α+β1+β2+γ ,

so that by repeating the arguments above, we get the desired estimate. In the case
t > ρ2 with ρ := ρ(e, e′), write for s ∈ (0, 1)∫ 1

ρ2

{
Pt(QtQ̃•s Fs,e ·Qt h · ( f (e)− Pt f ))(e)

−Pt(QtQ̃•s Fs,e′ ·Qt h · ( f (e′)− Pt f ))(e′)
}dt

t

=

∫ 1

ρ2

{
Pt(QtQ̃•s Fs,e ·Qt h · ( f (e)− Pt f ))(e)

−Pt(QtQ̃•s Fs,e ·Qt h · ( f (e)− Pt f ))(e′)
}dt

t

+ (g1(e)− g1(e′))
∫ 1

ρ2
Pt(QtQ̃•sQ̃sb · Q t h · ( f (e′)− Pt f ))(e′)

dt
t

− ( f (e)− f (e′))
∫ 1

ρ2
Pt(QtQ̃•s Fs,e ·Qt h)(e′)

dt
t
. (C.14)

For the second and third term, we can assume s ' t by (C.13). One obtains

|g1(e)− g1(e′)|
∫ 1

ρ2
|Pt(QtQ̃•sQ̃s g2 ·Qt h · ( f (e′)− Pt f ))(e′)|

dt
t

. ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ ρβ1

∫ 1

ρ2
t (α+β1+γ )/2 dt

t

. ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ ρα+β1+β2+γ ,

since α + β2 + γ is negative, and

| f (e)− f (e′)|
∫ 1

ρ2
|Pt(QtQ̃•s Fs,e ·Qt h)(e′)|

dt
t

. ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ ρα
∫ 1

ρ2
t (β1+β2+γ )/2 dt

t

. ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ ρα+β1+β2+γ ,
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since β1 + β2 + γ is also negative. For the first term in (C.14), we now repeat the
arguments of the proof of Proposition 40, which rely on the Lipschitz regularity
of the heat kernel as well as the fact that (α+β1+β2+γ ) ∈ (0, 1). Summarizing,
we have shown that for e, e′ ∈M with ρ(e, e′) 6 1∣∣∣∣∫ 1

0
(I2(s)(e)− I2(s)(e′))

ds
s

∣∣∣∣
. ρ(e, e′)α+β1+β2+γ ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ .

Let us now come to I1(s) as defined in (C.12). Set φ := Q̃•s Fs,e, and write

|Π(P̃ f (φ), h)− S( f, g2, h)| 6
∫ 1

0
|Pt(At(φ, f ) ·Qt h)|

dt
t

with

At(φ, f ) := Qt

(∫ 1

0
PtQ̃•r (Q̃rφ · Pr f )

dr
r
− Pt f Ptφ

)
.

Following the proof of Proposition 40, and using (C.13), one obtains

‖At(Q̃•s Fs,e, u)‖L∞(M)

.
∫ 1

0

(
r t

(r + t)2

)3/2 ( sr
(s + r)2

)3/2

× sβ2/2(r + t)(α+β1)/2 dr
r
‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2 ,

hence∥∥∥∥∫ 1

0
I1(s)

ds
s

∥∥∥∥
L∞(M)

. ‖ f ‖Cα‖g1‖Cβ1‖g2‖Cβ2‖h‖Cγ

×

∫ 1

0

∫ 1

0

∫ 1

0

(
r t

(r + t)2

)3/2 ( sr
(s + r)2

)3/2

sβ2/2(r + t)(α+β1)/2tγ /2
dr
r

ds
s

dt
t
,

and the triple integral is finite since (α + β1 + β2 + γ ) is positive.
• For the regularity estimate of I1(s), consider∫ 1

0

{
Pt(At(Q̃•s Fs,e, f ) ·Qt h)(e)− Pt(At(Q̃•s Fs,e′, f ) ·Qt h)(e′)

}dt
t
.

The estimate of this expression is similar, though simpler, compared to the one
of I2(s), as here e is frozen only in one spot. As before, one deals with this terms
using the heat kernel regularity of Pt and the regularity estimate for a.
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