
The Aeronautical Journal (2022), 126, pp. 1101–1123
doi:10.1017/aer.2022.48

REGULAR PAPER

Improvements in learning to control perched landings
L. Fletcher1,∗ , R. Clarke1 , T. Richardson1 and M. Hansen2

1Department of Aerospace Engineering, University of Bristol, Bristol, UK and 2Bristol Robotics Lab, Bristol, UK
∗Corresponding author. Email: liam.fletcher@bristol.ac.uk

Received: 5 November 2021; Revised: 21 February 2022; Accepted: 11 April 2022

Keywords: UAV; Machine learning; Reinforcement learning; Perching; Agile manoeuvres

Abstract
Reinforcement learning has previously been applied to the problem of controlling a perched landing manoeuvre
for a custom sweep-wing aircraft. Previous work showed that the use of domain randomisation to train with atmo-
spheric disturbances improved the real-world performance of the controllers, leading to increased reward. This
paper builds on the previous project, investigating enhancements and modifications to the learning process to fur-
ther improve performance, and reduce final state error. These changes include modifying the observation by adding
information about the airspeed to the standard aircraft state vector, employing further domain randomisation of
the simulator, optimising the underlying RL algorithm and network structure, and changing to a continuous action
space. Simulated investigations identified hyperparameter optimisation as achieving the most significant increase
in reward performance. Several test cases were explored to identify the best combination of enhancements. Flight
testing was performed, comparing a baseline model against some of the best performing test cases from simulation.
Generally, test cases that performed better than the baseline in simulation also performed better in the real world.
However, flight tests also identified limitations with the current numerical model. For some models, the chosen
policy performs well in simulation yet stalls prematurely in reality, a problem known as the reality gap.

Nomenclature

at an action
Ât advantage function estimate
DQN Deep Q-Network
E expectation
Ê expectation estimation
J objective function
JCLIP PPO surrogate objective function
LSTM Long-Short Term Memory
MLP Multi-layer Perceptron
N normal distribution
PPO Proximal Policy Optimisation
P probability
q pitch rate
R return
RL Reinforcement Learning
RNN Recurrent Neural Network
rt reward
S state space
s0 initial state
st state at time step t
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t discrete time step
T final time step
TRPO Trust Region Policy Optimisation
u, w velocity in aircraft body axis
U uniform distribution
ur airspeed component
UAV Uncrewed Aerial Vehicle
VTOL Vertical Takeoff and Landing
x aircraft state vector
xe, ze position in earth coordinates (z down)

Greek symbol

ε PPO hyperparameter
η elevator angle
θ neural network parameters
θe pitch angle
� wing sweep
μ dynamics parameters
π policy parameterised by θ

τ trajectory

1.0 Introduction
Fixed-wing uncrewed aerial vehicles (UAVs) typically have several advantages over multirotor vehi-
cles, such as greater range and flight endurance. These attributes make them more suited to long-range
surveillance or monitoring tasks. However, due to the nature of fixed-wing flight, these operations tend
to be restricted to open environments. Runways or equipment such as catapults and arresting systems are
often required to operate the UAV. In addition, conventional flight control systems for UAVs are designed
for restricted flight envelopes, with limited ability to control highly agile manoeuvres. As such, they are
not capable of sustained high-alpha flight or rapid avoidance manoeuvres. These constraints limit the
ability for such fixed-wing aircraft to operate in complex environments, such as urban areas.

Vertical Take-Off and Landing (VTOL) aircraft, such as quad-plane and tailsitter configurations, are
one method for landing in limited spaces. Another is to use a bio-inspired, perched landing approach,
as described by Waldock et al. [1]. A perched landing uses a dynamic stall that decelerates the aircraft
to safely land. This bio-inspired manoeuvre can be used to land small, fixed-wing aircraft in confined
or challenging environments. Perching UAVs, both multirotor and fixed-wing, have been explored by
others. For example, Meckstroth et al. [2] and Moore et al. [3] both demonstrated experimental perching
manoeuvres with small fixed-wing UAVs. Meckstroth et al. used a motion capture system to measure
pitch-up manoeuvres, generating a numerical model of perching based on component buildup methods.
Moore et al. demonstrated perching at height, controlled using Linear Quadratic Regulator trees. More
recently, Novati et al. [4] employ model-free reinforcement learning (RL) for controlled gliding and
perching for a simulated elliptical body. Here, RL was able to generate robust controllers that could
generalise to previously unseen initial conditions.

This paper builds upon previous work carried out by the Bristol Flight Lab, where a perched landing
manoeuvre is performed by a custom variable-sweep aircraft using an RL controller. Greatwood et al.
created the aircraft [5] and Waldock et al. demonstrated the efficacy of a DQN-based schedule optimiser
when compared against a non-linear optimisation algorithm [1]. RL was used as a schedule optimiser
in an open-loop manner, where the DQN algorithm was used to pre-generate a schedule of actions [1].
Clarke et al. trained an RL controller in simulation, then deployed it on the aircraft to form a closed-
loop RL controller [6]. The aircraft state from the flight controller was sent to the deployed network to
select an action during flight. Fletcher et al. investigated the addition of atmospheric disturbances to the
simulation to reduce the gap between simulation and reality and improve real-world performance [7].
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Figure 1. Sweep wing Bixler 2 during flight testing.

Modern reinforcement learning algorithms, using neural networks as non-linear function approxi-
mators, have been applied across several control tasks, though mainly in virtual environments, such as
video games [8] and simulated robotics tasks [9]. RL control has been applied to several aerial robotics
applications in recent years. For example, Koch et al. used RL to generate flight controllers for the atti-
tude control of multirotors, demonstrating both simulated and real-world operation [10]. For fixed-wing
aircraft, Bohn et al. used the Proximal Policy Optimisation (PPO) RL algorithm to make an attitude
controller for an X8 UAV, demonstrating superior performance to that of a tuned PID [11].

Real-world applications, such as robotics, pose a greater challenge than simulated tasks. Current
RL methods typically require a significant amount of experience to be collected during training, based
on an agent’s interactions with an environment. One approach to this is to learn in-situ, learning from
experience gained by the robot in the real world. This can be unfeasible for an aerial robot due to the time
required and the likelihood of damaging hardware. A more practical approach is to learn in simulation
and then transfer the trained agent to the robot for real-world testing. However, it is unlikely that the
simulator will precisely model reality. This is particularly true for highly dynamic environments such
as agile fixed-wing flight. For example, a numerical model generated from wind tunnel testing will
have several simplifications and sources of error. The cumulative discrepancies between the simulated
environment and the real world are known as the reality gap.

This project investigates several enhancements and modifications to the reinforcement learning pro-
cess to improve the performance of the perched landing controller, both in simulation and during flight
testing. These enhancements span three key categories: input observation modifications, modelling
refinements and changes to the reinforcement learning process and architecture. Results from simulation
are presented, demonstrating the effect of each modification individually and the cumulative effect when
combined. The objective is to find a combination of improvements that achieves greater performance
than the baseline model. Results from flight testing are then shown, demonstrating the impact of these
improvements on the real-world performance of the RL controller.

2.0 Aircraft model
The test platform for this work is a custom sweep-wing aircraft, based on a standard Bixler 2 model
aircraft, seen in Fig. 1. The Bixler 2 is an off-the-shelf foam trainer model aircraft. The aircraft was
modified with the installation of a servo and custom mechanism. The modifications allow the sweep
angle of the wings to be rapidly changed during flight. Wingtip incidence control was also added. Rapidly

https://doi.org/10.1017/aer.2022.48 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2022.48


1104 Fletcher et al.

varying sweep can generate pitching moments by changing the centre of lift relative to the centre of mass.
These pitching moments are far in excess of what the small elevator alone can generate. Full details of
the hardware modifications and airframe design are provided in Greatwood et al. [5].

As well as wing modifications, a suite of avionics hardware is installed, enabling flight testing. This
hardware includes a Pixhawk flight controller, running a custom fork of the ArduPlane firmware [12],
as well as sensors such as an airspeed sensor and GPS module. A Raspberry Pi is onboard to run the RL
controller, and the Pi communicates with the Pixhawk over the MAVLink protocol.

The numerical model of the aircraft is based on wind tunnel data. A non-linear, longitudinal model
was developed previously, with aerodynamic coefficients based on aircraft state. A full description of
the wind tunnel testing and aerodynamic coefficients is given by Waldock et al. [1]. No propulsion is
modelled as the perched landing manoeuvre does not require thrust. The ability to model atmospheric
disturbances, in the form of steady-state winds and Dryden gusts, was later added to better resemble real-
world flight conditions [7]. The numerical model is implemented in Python and forms the simulated
environment for the reinforcement learning process. The model is wrapped as an OpenAI Gym [9]
environment, making it compatible with popular RL libraries, such as Stable Baselines [13].

3.0 Reinforcement learning
Reinforcement learning is a machine learning paradigm with the objective of training an agent from
experience. An agent maps states or observations to actions. A state is a complete description of the
state of the world, with no hidden information. In robotics, a complete state is not usually possible,
and with an incomplete state, or observation, gathered from the robot’s sensors. During RL training,
an agent interacts with an environment. The environment can be simulated, such as a video game or
robotics simulator, or can be the real world. In this work, the training environment is the flight dynamics
model of the aircraft. At each time step of the learning process, the agent receives an observation from
the environment. Based on the observation, the agent uses a policy to determine the action to take.
The action space describes how the agent interacts with an environment. In this work, the action space
relates to the movement of the aircraft’s control surfaces. The agent’s policy decides the mapping from
observation to action. The policy is updated based on a reward signal emitted by the environment.

Reinforcement learning is formalised as a Markov Decision Process (MDP), described by a four-
element tuple: (S, A, R, P), where S is the set of all valid states, A is the set of valid actions, R is the
reward function, and P is the transition probability function. At each time step t, the agent receives a state
st and selects an action at based on the policy, πθ (at|st). Commonly, the policy will be deterministic and
is parameterised by θ , the weights of a neural network. Based on the state, or state-action pair, the agent
will receive a reward rt from the reward function, rt = R(st+1, at). The transition function P(st+1|st, at)
defines the probability of transitioning to st+1 when starting from st and taking action at. Generally, in the
RL setting, the transition probabilities will be unknown. This scenario is known as model-free learning,
where the agent does not have access to a model to predict the next state from the current. In an episodic
scenario task, the goal of reinforcement learning is to find a policy that maximises the expected return,
Equation (1).

R =
∑

t

rt (1)

RL is an area of active research interest, with a wide array of algorithms and approaches. A key differ-
entiator is model-free and model-based algorithms. In model-based RL, the agent has access to, or learns,
a dynamics model of the environment, which can then be used in a planning algorithm. In model-free RL,
the agent has no access to the underlying model and instead directly maps states to actions. Model-free
learning has had much more research interest and is more widely applied in robotics literature. Model-
based RL tends to be more sample efficient than model-free, however it is more complex and challenging
to train [14]. Clarke et al. used a Deep Q-Network (DQN), a model-free, value-based algorithm [6].
DQN, developed by Mnih et al., was the first deep-RL algorithm to be successfully demonstrated. A
neural network is used as a non-linear function approximator for the Q-function [15]. Whilst DQN has
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demonstrated efficacy for some tasks, it has several limitations, including being limited to only discrete
action spaces. More modern algorithms are compatible with continuous action spaces and bring other
improvements such as reduced complexity and higher performance. Proximal policy optimisation (PPO),
developed by Schulman et al. [16] is a more modern algorithm and has been widely applied across a
range of tasks and domains. For example, it has demonstrated high levels of performance for real-world
dexterous manipulation [17] and quadrupedal walking projects [18]. As well as being compatible with
discrete and continuous actions, PPO tends to be less sensitive to hyperparameter selection and is less
complex than other algorithms.

PPO is an on-policy, model-free RL algorithm. Unlike DQN, which is a value-based method, PPO is a
policy-gradient method that aims to optimise a surrogate objective function using gradient ascent. Being
an on-policy algorithm, this optimisation can only update with data collected while acting according to
the most recent version of the policy.

For a generic policy gradient algorithm, the aim is to maximise an objective function,
Equation (2).

J(πθ ) =
∫

τ

P(τ |πθ )R(τ ) = E
τ∼πθ

[R(τ )] = E
τ∼πθ

[
T∑

t=0

R (st, at)

]
(2)

where π is a stochastic policy parameterised by θ . For deep reinforcement learning, this is a neural
network with weights θ . P(τ |πθ ) represents the probability of a trajectory τ following policy πθ , given
by Equation (3). The transition model P(st+1|st, at) is determined by the dynamics of the environment,
and πθ (at|st) is the probability of policy πθ suggesting at given st.

P(τ |πθ ) = P(s0)
T−1∏
t=0

P(st+1|st, at)πθ (at|st) (3)

The policy is optimised through gradient ascent for policy gradient algorithms to find the optimal
policy π ∗. To numerically compute the policy gradient, the objective function is commonly expressed
in the form of Equation (4), with the policy gradient given by Equation (5).

J(πθ ) = Ê

[
log πθ (at|st)Ât

]
(4)

∇θJ(πθ ) = Ê

[
∇θ log πθ (at|st)Ât

]
(5)

Here, Ât is the estimate of the advantage function, a measure of how good an action is when com-
pared with other actions on average, relative to the current policy. An actor-critic network architecture
is commonly used to estimate Ât, with a separate critic network trained to predict the value function.
Employing the advantage function helps to reduce the variance of the gradient estimates.

This form of the policy gradient seen in Equations (4) and (5) is used in the vanilla policy gradient
algorithm. However, performing optimisation using such a methodology can lead to large policy updates
that cause instability during training. As such, Trust Region Policy Optimisation (TRPO) was created
to limit the size of policy updates by enforcing Kullback–Leibler constraints [19]. PPO was created to
achieve similar benefits and performance as TRPO whilst being less complex and easier to implement.
PPO uses a clipped surrogate objective function to constrain the update’s size. The surrogate objective
function is given by Equation (6). Here, rt(θ ) is the probability ratio between the new and old policies,
Equation (7), and ε is a hyperparameter that requires tuning.

JCLIP(θ ) = Ê

[
min (rt(θ )Ât, clip(rt(θ ), 1 − ε, 1 + ε)Ât

]
(6)

rt(θ ) = πθ (at|st)

πθold (at|st)
(7)
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Figure 2. Perched landing diagram.

4.0 Perched landing
4.1 Manoeuvre description
Pure fixed-wing vehicles typically require a significant length of clear ground to land intact unless spe-
cialist equipment such as arresting gear can be used. This imposes significant restrictions on their use in
congested environments or minimally prepared locations. However, many birds demonstrate the ability
to land in unprepared locations and minimal distance when landing on a perch. If a similar manoeu-
vre can be carried out by a fixed-wing vehicle, it would allow for significantly increased flexibility in
operations.

The ability of a bird to change the shape of its wings far outweighs that available to conventional
fixed-wing aircraft, imparting a significant advantage in available control effort relative to their size.
The many degrees of freedom that enable this are currently impractical to integrate into a fixed-wing
platform. Therefore, the vehicle used in this work only has the additional ability to vary the sweep of its
wings. This means the required trajectory is likely to differ significantly from that of a bird. Because of
this, rather than specifying a desired trajectory for the perching manoeuvre, only the desired final state
is specified.

The aircraft in this work can use the variable-sweep wings and elevator in unison to generate sig-
nificant pitching moments, enabling a rapid increase in drag. This can be used to quickly slow the
vehicle, helping to achieve the desired final state. Figure 2 shows a representation of the path and
attitude of the vehicle throughout such a manoeuvre. The dynamics of the aircraft throughout this
manoeuvre are highly non-linear, particularly the dynamic stall effects caused by the rapid change in
main wing pitch [20]. This poses a significant challenge for a conventional flight controller. Waldock
et al. approached the problem by using a set of pre-computed, open-loop schedules to drive the wing
sweep and elevator. Closed-loop control was then used to correct for deviations in pitch rate from the
pre-computed schedule, with control effected by additional elevator deflection. The schedule optimised
through reinforcement learning was shown to perform better than that generated by a more conven-
tional optimiser. More recently, as in this work, an RL agent has been directly used as a closed-loop
controller.

Before performing a perched landing, it is assumed that the aircraft is 40m away from the desired
landing site, heading towards it in level flight and at a constant airspeed. The manoeuvre is unpowered,
so the throttle is set to zero at the start of the manoeuvre. In earlier work, the manoeuvre was started at a
height of 2m above the target. However, when facing headwinds, this was too limiting, so was increased
to 5m.
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4.2 Reward function
The objective of the perched landing manoeuvre is to land flat on the ground, with velocities close to
zero. As such, the reward is a function of the five relevant longitudinal aircraft states, (xe, ze, θe, u, w).
The reward function generates a scalar output from these parameters. The reward is only returned at the
end of an episode, when the terminal state is reached. This is known as a sparse reward.

The terminal state is reached when the aircraft height relative to the target, ze, becomes zero, simulat-
ing a landing on the floor. The reward is calculated based on the error between the final and target states.
In this case, the target value for each state element is zero. The episode will end early if the aircraft
breaches boundary conditions, such as maximum airspeed or pitch angle. In these cases, the reward for
the episode is 0.

Waldock et al. used a reward function based on a weighted dot product of the mean square error
for each parameter. However, with the introduction of atmospheric disturbances, this function resulted
in undesirable multi-modal behaviour, with high rewards given to trajectories that would not reach the
target position intact. Experimentation with modifications and alternative functions was performed in
previous work, leading to the reward function that has been retained for this work [7]. The reward func-
tion is based on the product of a Gaussian applied to the error in each state element. This reward function
is crafted such that a high reward will only be returned if all the target states are within acceptable bounds,
otherwise the reward is near zero. Each state is normalised before being passed through the Gaussian
function, with the normalisation values found from iterative experimentation until the desired behaviour
was achieved. The reward function is defined in Equation (8).

�st = (xe, ze, θe, u, w)

�b = (15, 5, 20, 10, 10)

ci = sti

bi

g(ci) = 1

σ
√

2π
e−(ci−μ)2/2σ 2

rt =
∏

i

g(ci) (8)

where sti represents each state element, μ is the target value for each element, in this case zero for all,
and σ is 0.4.

5.0 Training improvements
This paper follows a similar methodology to previous work, where reinforcement learning models are
trained in simulation and then deployed onto the real-world vehicle for flight testing. A series of modifi-
cations to the training process were investigated to improve real-world flight performance by minimising
terminal state error.

5.1 Input observation
Previous flight testing of the perched landing manoeuvre demonstrated that atmospheric disturbances,
steady winds and gusts, significantly impact real-world performance. Simulating wind and gusts showed
an increase in mean reward achieved over the baseline models, with room for improvement. The baseline
input observation, Equation (9), are the longitudinal states of the aircraft, including the longitudinal
position of the aircraft in the world frame, xe, ze, the pitch angle θe, longitudinal body velocities u, w,
pitch rate q, and wing sweep and elevator angles, � and η.

x = [xe, ze, θe, u, w, q, �, η] (9)
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This observation, however, does not include any information about the state of the air. It was hypoth-
esised that learning, and real-world performance, could be improved by augmenting the input state with
air mass data. While the wind vector could be added to the observation in simulation, this information
is challenging to measure in the real world. The test aircraft has an airspeed sensor, which the flight
controller uses during automated flight. As such, this is a state that can be used in the RL controller.
During training, the component of airspeed along the body x-axis is added to the input vector to give
the augmented input vector, Equation (10).

x = [xe, ze, θe, u, w, q, �, η, ur] (10)

5.2 Improving simulation
The reality gap is the difference between simulation and reality and poses a significant problem when per-
forming experimental flight tests. Any uncertainty or error in the simulator can lead to poor real-world
performance. Sources of discrepancy include unmodelled real-world dynamics, incorrect parameters,
and stochasticity in the real environment. Accurately modelling fixed-wing flight is particularly chal-
lenging, with a typical numerical model requiring several assumptions and simplifications. For example,
a numerical model constructed from wind tunnel data will have sources of error such as wall interference
effect and loadcell measurement noise.

Domain randomisation is one technique used to improve the sim-to-real transfer of models trained in
simulation. A policy trained using domain randomisation will be more robust to modelling uncertainty
and error by experiencing variations of the domain. Whilst training the RL policy during simulation,
various dynamics parameters are sampled. Peng et al. and Tan et al. have shown it to be effective for
generating robust controllers for robotic arm manipulation tasks [21] and locomotion for quadrupedal
robots [18]. Formally, the objective function in Equation (2) is modified to produce Equation (11), to
maximise the expected return across a distribution of dynamics models ρμ, where μ is a set of dynamics
parameters [21].

J(πθ ) = E
μ∼ρμ

[
Eτ∼p(τ |πθ ,μ)

[
T−1∑
t=0

R (st, at)

]]
(11)

Domain randomisation was previously introduced for this perched landing scenario by randomising
wind and gusts during training [7]. Steady-state winds were randomised at the start of each episode,
sampled from a uniform distribution, and gusts were injected as Dryden noise. Further sources of domain
randomisation are introduced in this work.

Sensor noise is simulated using a similar method as suggested by Peng et al. [21]. Gaussian noise is
applied to the observation at each time step, with a mean of zero and a standard deviation of 5% of the
running standard deviation for each observation feature. A small amount of acceleration noise, in the
form of Gaussian noise, is applied to the acceleration term of the numerical model. This is similar to the
noise applied by Walodck et al. where it was found to improve performance in the real world. This noise
augments the Dryden gusts already added, helping to generate models that are more robust to numerical
model inaccuracies and disturbances during flight. A noise level of 0.3m/s2 is used in these experiments.

Whilst the flight controller aims to reach an initial target state before handing over control to the RL
model, in reality, there is variation in these start conditions. Previous experiments demonstrated varia-
tion in initial airspeed and pitch angle in particular. As such, initial state noise was simulated between
episodes, with initial pitch angle and airspeed selected from normal distributions. Table 1 details all of
the domain randomisation parameters and values defined in this section.

Peng et al. identified action latency and observation noise as having a significant impact on RL train-
ing performance for controlling a robotic arm [21]. Ibarz et al. suggest that actuator dynamics and the
lack of latency modelling are the leading causes of modelling error for learning quadrupedal walking
[22]. A characterisation of the action latency on the test aircraft was performed. One source of latency
for the real system is communication between the flight controller and RL model. At each time step,
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Table 1. Domain randomisation parameters

Parameter Modelling details Units
Steady wind U ( − 8, 0) m/s
Dryden gusts Dryden(Lu, Lv = 2, σu, σv = 1.06) m/s2

Action latency 18 + lognormal(0, 1) ms
Sensor noise N (0, 0.05Sxi ) –
Acceleration noise N (0, 0.3) m/s2

Initial variance Airspeed: N (13, 1) Pitch: N (0,3) m/s deg

the flight controller sends the input observation to the onboard computer over a serial connection, using
the observation to select an action from the trained model. This action is then sent back to the flight
controller over the serial connection to be performed by the servos. This communication and computa-
tion latency was characterised by timing the delta between the flight controller sending the state and it
receiving the control action from the model. This latency model does not consider mechanical latency.

Table 1 summarises all of the domain randomisation parameters used in this work, including the
steady-state wind gust parameters. Similar to previous work, steady-state winds are selected from a
uniform distribution. Only headwinds are modelled in this work, up to 8m/s due to poor performance
of tailwind scenarios during previous flight testing. The modelling of Dryden gusts remains unchanged,
using the process and parameters for low altitude, light turbulence defined by Beard and Mclain [23]
and Langelaan et al. [24].

5.3 Hyperparameter optimisation
Investigations into improving the performance of the underlying RL algorithm were performed. Current
RL algorithms are highly sensitive to appropriate hyperparameter selection and require significant opti-
misation for maximum performance. Henderson et al., for example, demonstrated the effect of changing
several hyperparameters for several algorithms, including PPO [25].

In previous research, the hyperparameters and network structure remained as the default values
defined in the baseline implementation of PPO in Stable-Baselines [13]. These settings are defined
to achieve good performance across a range of environments, particularly the OpenAI Gym and Atari
environments [9]. With sufficient computational capacity, a full hyperparameter sweep would allow for
the optimisation of each hyperparameter. Instead, with the resources available, a more limited investiga-
tion was performed to identify the parameters that would significantly impact training performance. An
initial hyperparameter sweep was performed using the Weights and Biases sweep tool [26]. A Bayesian
sweep was performed on ten parameters, based on the mean reward after 5 million time steps, for a total
of 102 runs. The hyperparameter sweep showed that changing the n_steps parameter had a significant
effect on training performance. This parameter is defined as the number of time steps to run for each
environment before running the PPO update [13]. Figure 3 shows a training history plot, comparing
the reward per time step for several n_steps parameters. The plot shows a general trend of the reward
increasing as n_steps increases, with the highest reward obtained when the parameter is set at 2,048,
the highest value used in the sweep. With a higher number of steps, the policy update will be more
generalised, instead of fluctuating between extreme policies that may be present if n_steps is lower.
For the models in this paper, this is the value used, yet future investigations with n_steps greater than
2,048 could lead to further improvement.

As well as the sweep, tuned hyperparameters from other environments were identified from litera-
ture, such as those provided by the Stable Baselines Zoo collection [27]. This research suggested that
increasing the nminibatches hyperparameter from the default value should lead to improved perfor-
mance. This parameter is defined as the number of training minibatches per update. From the research
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Table 2. Change of hyperparameters

Parameter Default value Tuned value
n_steps 128 2,048
nminibatches 4 32

Figure 3. Training graph, showing reward against time steps for several values of the n_steps
hyperparameter.

and investigations carried out, it was decided that these two parameters would be varied in a number of
test cases. Table 2 summarises these values.

5.4 Network architecture
Previous work has used a fully connected multi-layer perceptron (MLP) neural network architecture
with two layers of 64 nodes. This is the default network architecture for an MLP as defined in the Stable-
Baselines library [13]. One potential change is to increase the size of the network, such as changing the
number of layers or the number of nodes of each layer. Raffin et al. and Henderson et al. both show
performance increases when using a larger neural network [28,25]. As such, investigations with a more
extensive network architecture, two layers of 256 nodes, were performed in this work.

With the use of further domain randomisation as described in Section 5.2, there is a significant change
in the dynamics of the environment during training. Peng et al. suggest that a policy with a form of mem-
ory will perform better than a standard MLP in such a scenario [21]. One method of adding memory
is the use of recurrent neural networks (RNNs), such as the Long-Short Term Memory (LSTM) archi-
tecture used by OpenAI [17]. However, RNNs are usually more challenging to train, requiring finer
tuning of the underlying hyperparameters and increased computational time. An alternative approach,
as used by Haaronja et al. [29] and Xiao et al. [30], is frame stacking. Instead of a single observation,
the observation at each time step is augmented by a window of n − 1 previous observations, where n is
the number of frames in the stack. Frame stacking can be used with a standard MLP structure, requires
minimal modification to the existing architecture, and is easier to train than an LSTM. Initial investiga-
tions were conducted to identify the number of frames n to use, summarised in Fig. 4. The plot shows
that using a stack of four frames results in a greater reward during evaluation than eight. As such, test
cases using frame stacking in Section 7 use a n of 4.
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Figure 4. Mean reward obtained during training by models using frame stacking, with n of four (yellow
line) and n of eight (blue line).

5.5 Continuous actions
Discrete actions spaces have been used previously with both Deep Q-Network [6] and PPO [7]. The
actions are encoded as a pair of arrays of angular rates for the wing sweep and elevator, with the action
effectively selecting a pair of indices into these arrays. Equation (12) shows the discrete action arrays.

�̇ = [ − 60, −10, −5, 0, 5, 10, 60]◦/s

η̇ = [ − 60, −10, −5, 0, 5, 10, 60]◦/s (12)

PPO is compatible with continuous action spaces, where ranges of actions are defined, and the model
selects a continuous value in that range. In this case, the continuous action space was encoded as the
minimum and maximum angular rates for both the sweep and elevator. It was hypothesised that, with
a finer level of control over actions at each time step, the agent would be able to achieve greater per-
formance levels. However, the use of continuous actions expands the size of the action space and can
increase learning difficulty. Equation (13) shows a continuous representation of actions.

−60◦/s ≤ �̇ ≤ 60◦/s

−60◦/s ≤ η̇ ≤ 60◦/s (13)

6.0 Simulation methodology
For each test case, five instances are trained using different random seeds. Each instance is trained for 40
million time steps on eight CPU cores of the University of Bristol’s BluePebble HPC, with each instance
taking approximately 72 hours to train. This represents approximately 1 million simulated attempts at
performing the manoeuvre. Multiple workers are employed, where experience from eight environments
per time step is used to train the agent.

Once trained, each test case was evaluated in simulation. This was performed by running each trained
model through the simulator to obtain time histories and simulated rewards. Two methods of evaluation
are used in the simulated investigations. The baseline evaluation represents the evaluation scenario used
in previous work, with randomisation of only steady winds and gusts. Enhanced evaluation employs
further domain randomisation, such as variable initial conditions, latency and sensor noise, as described
in Section 5.2. This presents a more challenging environment, with trained models expected to receive
less reward in this scenario than when evaluated under baseline conditions. Table 1 provides details
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Table 3. Test Case configurations for the first set of simulation evaluations

Airspeed Domain Network frame
Test Case input randomisation size stacking Hyperparameters Actions
Baseline No No [64, 64] No Default Discrete
Test Case 1 Yes No [64, 64] No Default Discrete
Test Case 2 Yes Yes [64, 64] No Default Discrete
Test Case 3 Yes Yes [256, 256] No Default Discrete
Test Case 4 Yes Yes [256, 256] Yes Default Discrete
Test Case 5 Yes Yes [256, 256] Yes Tuned Discrete

Figure 5. Training history for test cases detailed in Table 3.

of the domain randomisation parameters used in the two evaluation scenarios. During evaluation, each
model is evaluated against a range of steady wind speeds. To account for the stochastic nature of the
evaluation environments, the reward presented at each wind speed for each test case is the mean of 100
evaluations for the five instances.

7.0 Simulation results
The first set of experiments looked to compare the performance of adding each improvement in succes-
sion, with the baseline test case representing a model without any improvements. Table 3 shows the test
cases for this set of investigations.

Figure 5 shows the training history of the test cases from Table 3. Each line represents the average
training performance for the five instances of each test case. The plot shows the reward obtained per
time step. An overall increase in reward with time step is expected to show that the models are training
successfully. An exponential moving average with a smoothing factor of 0.7 is applied to the data. The
baseline and Test Case 1, in general, obtain the highest reward per episode, due to the lack of additional
variation of the domain during training. Using domain randomisation for the other test cases leads to a
more challenging scenario with greater variance between episodes, hence lower reward. For the remain-
ing test cases described, Test Cases 5 and 6 demonstrate generally higher rewards per episode, with
Test Cases 2 and 3 obtaining the lowest reward per episode during training. This suggests that improve-
ments such as frame stacking and tuning of hyperparameters lead to greater training performance when
additional noise is added.
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Figure 6. Mean reward for 100 runs of each test case under the baseline evaluation (steady state wind
with Dryden gusts) and under the enhanced evaluation with domain randomisation enabled.

Figure 6 shows a plot of the mean rewards for the two evaluation scenarios, with higher reward
showing superior performance. Figure 6 shows that, when evaluated against the baseline scenario, the
baseline model and Test Case 1 obtain significantly higher rewards than the other test cases. Test Cases
2–6 add additional noise to the environment, and there is a general decrease in mean reward. The baseline
and Test Case 1, trained without noise, have more experience during training of this simpler environment
and obtain higher rewards when evaluated against the baseline scenario. However, these models perform
poorly when evaluated against the enhanced scenario. These models cannot generalise to the noisier
environment, as they have insufficient experience of these states during training. In general, across all
test cases, there is a decrease in reward from the baseline evaluation to the enhanced evaluation, due to
the more challenging environment.

Test Case 1 shows that the addition of airspeed into the observation leads to a slight increase in
mean reward across both evaluations. This suggests that this additional information is useful to the
model when learning. The addition of noise during training in Test Case 2 results in an increase in
reward, as these models have experience of a more comprehensive array of states and can generalise
more successfully. Test Case 5 obtains the highest mean reward of 0.178 under enhanced evaluation.
This test case employs all previous improvements yet still uses discrete actions. Continuous actions in
Test Case 6 lead to a decrease in mean reward compared to Test Case 5. This is most likely a product
of the training constraints. With sufficient training time and a comprehensive parameter tuning process,
the models with continuous actions would likely show performance above that of discrete. Test Case 3
also shows worse performance than Test Case 2, which is identical except uses a larger network. Whilst
this result suggests that the smaller default network size should be used, further investigation showed
that performance is sensitive to the combination of improvements. As such, the best performing model
may not be that with all improvements enabled.

7.1 Combinations of modifications
Based on the first set of simulation results, a series of tests were conducted with various combinations
of improvements to identify the best performing model. This section provides results from a selection
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Table 4. Test Case configurations for the second set of simulation investigations

Airspeed Domain Network frame
Test Case input randomisation size stacking Hyperparameters Actions
Baseline No No [64, 64] No Default Discrete
Test Case 3 Yes Yes [256, 256] No Default Discrete
Test Case 5 Yes Yes [256, 256] Yes Tuned Discrete
Test Case 6 Yes Yes [256, 256] Yes Tuned Continuous
Test Case 7 No Yes [64, 64] No Default Discrete
Test Case 8 No Yes [64, 64] Yes Tuned Discrete
Test Case 9 No Yes [256, 256] Yes Tuned Discrete
Test Case 10 Yes Yes [64, 64] Yes Tuned Discrete

Figure 7. Training history for test cases detailed in Table 4.

of the experiments conducted. Table 4 describes each of the test cases, with the baseline included for
comparison. Figure 7 shows the learning curves for these test cases. Similar to Fig. 5, the baseline
models show the highest reward during training, due to a simpler training environment. With additional
domain randomisation applied to the other test cases, there is a general decrease in reward per time
step of training. Test Case 7 adds additional domain randomisation during training, yet without any of
the learning improvements, resulting in the worst learning performance. The remaining test cases from
Table 4 have learning improvements such as frame stacking and tuned parameters for improved learning
performance. Some test cases are identical to the previous section, are given the same name, and are
included for a complete comparison.

In Table 5, the baseline case obtains the lowest overall mean reward of 0.099, as well as the lowest
reward at each evaluation headwind. With the lack of domain randomisation and with default training
parameters and architecture, these models are least able to generalise to the evaluation environment
detailed in Section 7. Using a larger neural network led to a decrease in mean evaluation reward in
the previous set of results. However, in Table 5, Test Case 5 obtains a slightly higher mean reward of
0.178 compared to 0.176 for Test Case 10. Similarly, Test Case 9 obtains a reward of 0.175, whilst
Test Case 8 receives a mean reward of 0.170. Test Cases 5 and 10 are identical except for network
size. This relationship is also true for Test Cases 9 and 8. This suggests that having a larger neural
network is advantageous to training performance for these more complex models. Table 5 shows that
Test Case 5 still receives the highest overall reward of 0.178. Similar to Fig. 6, the inclusion of airspeed
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Table 5. Simulated mean reward for several test cases

Wind speed (m/s)

Test Case 8 6 4 2 0 Mean
Baseline 0.000 0.009 0.077 0.202 0.205 0.099
Test Case 3 0.002 0.069 0.186 0.190 0.210 0.131
Test Case 5 0.003 0.094 0.243 0.307 0.244 0.178
Test Case 6 0.004 0.090 0.227 0.281 0.234 0.167
Test Case 7 0.001 0.053 0.135 0.162 0.212 0.113
Test Case 8 0.004 0.091 0.219 0.311 0.224 0.170
Test Case 9 0.003 0.090 0.222 0.316 0.244 0.175
Test Case 10 0.004 0.096 0.231 0.322 0.227 0.176

Figure 8. Rewards for each test case, normalised against the baseline reward.

in the observation results in a slightly higher mean reward. The difference in mean reward between Test
Cases 3 and 5 emphasises the importance of the learning improvements, such as frame stacking and
hyperparameter tuning.

7.2 Impact of individual improvements
The results presented so far suggest that the implemented improvements are of varying levels of impor-
tance. In the previous set of results, there is a small increase in reward when airspeed is added to the
observation, and a more significant increase in reward is seen with the use of frame stacking and change
of hyperparameters. Figure 8 shows the effect of adding each improvement individually to the baseline
model. Five models are trained for each test case using the same methodology as previously and then
evaluated against the enhanced evaluation scenario described previously. The plots show the percent-
age difference in mean reward for each test case compared to the baseline model. The data show that
the most significant increase in mean reward comes from changing the hyperparameters. Even though
only two hyperparameters have been adjusted, a significant increase in reward above the baseline is
observed. It is likely that with a complete hyperparameter optimisation, an even greater increase in
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Figure 9. Simulation time history results for a baseline model at different headwinds.

Figure 10. Simulation time history results for a Test Case 5 model at different headwinds.

training performance will be seen. The impact of adding acceleration noise in training is also signifi-
cant, as models trained with only the acceleration noise modification show a considerable increase in
reward when compared to the baseline. Using a larger neural network and using continuous actions both
result in a decrease in reward. The model of latency used in this work has negligible impact, with only
a slight increase in reward when included during training. It is likely that training with a more compre-
hensive characterisation of latency, including mechanical effects, would be required before significantly
impacting performance.

Figures 9 and 10 show example time history plots during simulated evaluation. They represent the
best performing model of the baseline and Test Case 5, respectively. Each model is evaluated against a
series of steady-state winds, with all noise sources enabled. The plots are from a single evaluation with
random seeds and so only provide example trajectories. There will be variance between evaluations with
domain randomisation, so the plots do not accurately represent performance. Present in the plots are the
key longitudinal states, such as pitch angle and body velocities, and the actions. The plots show the
variance present and the effect of wind speed on performance. For example, when facing a headwind
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Table 6. Reward achieved by 2 different test cases during the first session of experimental
flight testing

Baseline Test Case 7

Attempt Flight 1 Flight 2 Flight 3 Flight 1 Flight 2 Flight 3
1 0.000 0.000 0.001 0.248 Fail Fail
2 0.000 0.000 0.000 0.007 0.000 0.000
3 0.005 0.001 0.000 0.000 0.000 0.000
4 0.003 0.001 0.023 0.000 0.000 0.000
5 0.000 0.041 0.012 Fail Fail 0.001
6 0.017 0.006 0.000 0.010 0.000 0.000
7 0.001 0.002 0.001 0.000 – –
8 – 0.015 – 0.000 – –

Baseline Test Case 7
Mean 0.006 0.011
SD 0.010 0.054

of 8m/s, both models fall well short of the target position. As the headwind decreases, the aircraft lands
closer to its target position.

8.0 Experimental flight testing
Over two separate sessions, experimental flight testing was conducted to validate the simulation results.
These flight tests use an automated testing process, as used and described in previous experimentation
by the authors [7]. The autopilot flies pre-generated waypoints based on the prevailing wind direction.
The waypoints are generated using a script to create a racetrack pattern, with parameters to adjust the
size and location of the pattern. A heading parameter is used to specify a wind direction, with the pattern
rotated such that the straight legs of the circuit are parallel to the wind direction.

At a designated waypoint, the autopilot hands over control of the elevator and wing sweep to the
RL model running on the onboard computer. The ArduPilot firmware was modified to include a new
waypoint type to specify the point at which the perching manoeuvre begins and the aircraft switches
to RL control. An interface script transforms the state reported by the autopilot, such that the initial
position and direction match those used for training; in this case, xe, ze = ( − 40, −5).

When the aircraft passes through ground level in this transformed state, i.e. 5m below the RL start
altitude, the RL controller disengages, and the autopilot attempts to recover the aircraft, fly to the next
waypoint and repeat the pattern. The test pilot only has to launch and land the aircraft during optimal
operation, with the autopilot performing the rest. However, the pilot retains manual override to take over
control of the aircraft if necessary. The autopilot aims for an airspeed of 13m/s for the manoeuvre entry
waypoint.

For each test case being evaluated during flight testing, the model that obtained the highest reward
in simulation was deployed on the vehicle. The first set of tests compared the baseline models with Test
Case 7 from Table 4, a model trained with domain randomisation, as described in Section 7. These tests
were conducted on a day with inconsistent winds from variable directions, gusting up to approximately
5m/s. Table 6 shows the results from these first tests. During a flight, the aircraft is launched, performs
several attempts at the manoeuvre, and then lands when the battery level is low. Due to inconsistent
power usage, there is variance in the number of manoeuvre attempts per flight.

In Table 6, the Test Case 7 model obtains the higher overall mean reward of 0.011. compared to
0.006 for the baseline. However, the individual rewards and greater standard deviation suggest that this
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Table 7. Mean final states for a baseline model and a Test Case 7 model during the first flight testing
session

Test Case x Position error (m) Pitch error (deg) Velocity error (m/s)

Mean SD Mean SD Mean SD
Baseline 15.71 5.55 5.49 11.32 8.37 2.29
Test Case 7 18.95 5.40 35.80 33.23 6.27 3.47

Figure 11. Plot of states and actions for several attempts for the baseline model from the first
experimental flight testing session.

overall mean is skewed by a single attempt, with a reward of 0.248 obtained on the first attempt of
flight 1. If this result is ignored, the mean for Test Case 7 drops to 0.001. This suggests that the baseline
model performed better than Test Case 7 during these tests when this outlying result is ignored. This is
supported by Table 7, which shows the mean final states across all attempts for both models. Table 7
shows that the baseline model has lower final state error for both position and pitch angle. However, the
Test Case 7 model attains a lower final mean velocity.

Figures 11 and 12 show time history plots from the experiments, with each line corresponding to a
manoeuvre attempt. The plots show how the key longitudinal states of the aircraft, as well as the surface
deflections. Of particular interest is the difference between the chosen actions for the two models and
the effect on the corresponding trajectories. Figure 11 shows that the policy for the baseline model opts
to initially sweep the wings rearwards as it pitches the aircraft downwards into a dive, and then shifts
them forward as it pitches up into a flare. For the remainder of each manoeuvre, both actuators are then
used to attempt to maintain pitch close to zero degrees. Figure 12 demonstrates a different policy. The
wing sweeps forward early in the manoeuvre, and the vehicle pitches up. For many of the attempts, the
aircraft maintains maximum forward sweep for the manoeuvre duration. Many of the attempts fall short
of the target position, falling vertically after losing lift, suggesting the aircraft has stalled. Therefore, it is
likely that the underperformance of the Test Case 7 model in the real world is due to the reality gap. The
early stalling behaviour and subsequent lower reward is not seen during simulation, suggesting there is
underlying real-world aerodynamics not present in the numerical model. The behaviour shown by the
baseline model may be more stable. This discrepancy is likely exacerbated by the aircraft’s velocity,
with the Test Case 7 model achieving a lower mean final velocity than the baseline.
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Table 8. Reward achieved by 3 different test cases during the second session of experimental flight
testing

Baseline Test Case 5 Test Case 9

Attempt Flight 1 Flight 2 Flight 3 Flight 1 Flight 1 Flight 2 Flight 3
1 0.001 0.000 0.000 0.000 0.221 0.000 0.000
2 0.000 0.000 0.006 0.000 0.023 0.001 0.000
3 0.000 0.000 Fail 0.000 0.000 0.000 0.000
4 0.000 0.005 0.000 0.000 0.000 0.000 0.013
5 0.000 0.000 0.000 0.017 0.197 0.002 0.269
6 0.174 0.000 0.000 0.036 0.005 0.199 0.000
7 0.000 0.006 0.000 0.234 0.017 0.000 0.001
8 0.000 0.005 0.000 0.000 0.082 – 0.001

– 0.001 – – – –

Baseline Test Case 5 Test Case 9
Mean 0.008 0.036 0.044
SD 0.034 0.076 0.084

Figure 12. Plot of states and actions for several attempts for the Test Case 7 model from the first
experimental flight testing session.

The second session of flight tests compared the performance of the baseline model against Test Cases
5 and 9. On this day, there were steady winds of approximately 5m/s gusting up to 8m/s, with consistent
wind direction. Both Test Cases were trained with domain randomisation, increased network size, frame
stacking and tuned hyperparameters. Both also used discrete actions, while only Test Case 5 has airspeed
as part of its observation. These experiments used the same baseline model as the first testing session.
Table 8 provides a summary of the rewards obtained for each manoeuvre attempt for each test case across
a number of flights. Due to time constraints, only one set of flights for Test Case 5 could be obtained.
The baseline model shows a slight increase from the first flight tests, with an increase in reward from
0.006 to 0.008. The Test Case 9 model achieves a greater mean reward of 0.044. Test Case 5 achieves a
mean reward of 0.036; however, this is across only eight attempts.

Table 9 shows the average final states of the aircraft. Compared with Table 7, the baseline attempts
show a greater position error of 20.78m, compared to 15.71m in the first flight tests. However, there is a
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Table 9. Mean final states for a baseline model, a Test Case 5 model and a Test Case 9 model during
the second flight testing session

x Position error (m) Pitch error (deg) Velocity error (m/s)

Model Mean SD Mean SD Mean SD
Baseline 20.78 8.58 1.82 14.62 7.17 2.83
Test Case 5 20.84 10.76 7.74 11.63 9.05 2.88
Test Case 9 14.61 6.09 5.72 22.78 6.02 2.53

Figure 13. Plot of states and actions for several attempts for the baseline model from the second
experimental flight testing session.

decrease in final pitch and velocity error, leading to the overall higher reward. Test Case 9 has reduced
mean position and velocity errors of 14.61m and 6.02m/s respectively, yet does have a greater pitch
error of 5.72 degrees. Test Case 5 generally showed the greatest mean error level across the three states,
however this was with only eight attempts.

Figure 13 shows the state history for the baseline model. The plots show similar characteristics to
Fig. 11, with the policy of the model selecting similar sequences of actions with similar resultant trajec-
tories. Compared with Fig. 13, Fig. 14, showing the state histories for Test Case 9, shows that general
trend of landing closer to the target position of 0m, as well as reduced body velocities. Like the baseline
model, this policy opts to pitch downwards at the start of the manoeuvre and then flare later on for a
perched landing. Figures 11 through 14 demonstrate the level of variance between attempts from the
same model. Even for the best performing Test Case 9, shown in Fig. 14, there is significant variance in
the selected actions and the resultant trajectories. This is likely due to the nature of the perched landing
manoeuvre – the aircraft is highly sensitive to gusts once it has committed to a flare trajectory, especially
when lacking throttle.

9.0 Conclusions
Using the PPO algorithm, reinforcement learning was used to generate a series of models to perform
a perched landing manoeuvre. A series of training enhancements were identified to improve real-world
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Figure 14. Plot of states and actions for several attempts for the Test Case 9 model from the second
experimental flight testing session.

performance, measured primarily through the final reward achieved. These enhancements include pass-
ing additional information into the input observation, introducing further noise into the training through
domain randomisation, and modifying the network architecture and underlying RL algorithm. A series
of investigations were conducted, assessing the impact of each enhancement on the final reward, both
individually and in combination. Simulations demonstrated that the most significant individual increase
in reward came from tuning two of the key hyperparameters of the PPO algorithm. Other modifications,
such as using a continuous action space instead of discrete, decreased the final reward. After testing
several combinations, test cases with higher performance than the baseline model were identified for
flight testing.

These trained models were deployed on the flight test aircraft. The results from several repeat attempts
at the manoeuvre for each model were collected using an automated flight testing process. The first flight
testing session compared a baseline model to a model trained with domain randomisation, Test Case 7.
These flights demonstrated the limitations of the current approach, as the test case which performed
better in simulation, performed worse in reality. This is likely due to the reality gap. The Test Case 7
model chooses a policy that works in simulation and receives a high reward yet leads to premature stall
in reality. This suggests that either improvement of the numerical model through further data collection
is required, or further domain randomisation of the aerodynamic parameters could be attempted.

The second session of flight testing compared a baseline model with models from Test Cases 5 and
9. These test cases were two of the best performing test cases from simulation, with their properties
detailed in Table 4. Test Case 5 adds airspeed to the observation, whereas Test Case 9 uses the standard
observation. Test Case 9 achieves higher mean rewards than the baseline model and generally achieves
a lower final state error. Due to time constraints, only a limited number of Test Case 5 manoeuvre
attempts could be collected. From the limited data set, Test Case 5 achieves a mean reward greater than
the baseline yet lower than Test Case 9. However, the average final state errors are higher than the other
two test cases. This suggests that further reward shaping may be required to achieve the desired perching
behaviour across a range of real-world conditions.

Overall, enhanced models demonstrate improved performance compared to the baseline in both sim-
ulation and the real world. However, even the best performing model still lands somewhat short of the
target position. It is likely that any further improvement in performance cannot come from changes to
the RL process alone. One potential future pathway is to integrate throttle control into the RL controller.
This would allow the aircraft the perform the manoeuvre when facing stronger headwinds instead of
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having insufficient energy and falling short, as is currently the case. Refinement and expansion of the
underlying numerical model is another area of potential future work. The results suggest that, even
with the domain randomisation performed in this work, there is still a significant reality gap. Further
wind tunnel testing, real-world system identification methods, and model-based RL methods are future
research paths that could improve simulation to reality transfer.
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