ON SOME INFINITELY PRESENTED ASSOCIATIVE ALGEBRAS

Dedicated to the memory of Hanna Neumann

JACQUES LEWIN

(Received 5 June 1972)

Communicated by M. F. Newman

We prove here that if F is a finitely generated free associative algebra over the field \mathfrak{k} and R is an ideal of F, then F/R^2 is finitely presented if and only if F/R has finite \mathfrak{k} dimension. Amitsur, [1, p. 136] asked whether a finitely generated \mathfrak{k} algebra which is embeddable in matrices over a commutative \mathfrak{k} algebra is necessarily finitely presented. Let R = F', the commutator ideal of F, then [4, theorem 6], F/F'^2 is embeddable and thus provides a negative answer to his question. Another such example can be found in Small [6]. We also show that there are uncountably many two generator \mathfrak{k} algebras which satisfy a polynomial identity yet are not embeddable in any algebra of $n \times n$ matrices over a commutative \mathfrak{k} algebra.

We begin by recalling the elements of the free differential calculus for associative algebras. Details can be found in [4].

Let F be the free \mathfrak{k} algebra, over the field \mathfrak{k} , freely generated by the set $\{p_{\alpha}; \alpha \in A\}$. Let U, V be two ideals of F and let T be a free F/V - F/U bimodule with basis $\{t_{\alpha}; \alpha \in A\}$. We define a \mathfrak{k} derivation $\delta: F \to T$ by declaring $1\delta = 0$ and $p_{\alpha}\delta = t_{\lambda}$. This is enough to define δ on all of F since δ is \mathfrak{k} linear and, for f_1, f_2 in F

(1)
$$(f_1 f_2)\delta = (f_1 \delta)(f_2 + U) + (f_1 + V)(f_2 \delta).$$

In fact it is easily verified inductively that if $m = p_{\alpha_1} p_{\alpha_2} \cdots p_{\alpha_k}$ is a monomial of F, then

(2)
$$m\delta = \sum_{i=1}^{k} (p_{\alpha_1} \cdots p_{\alpha_{i-1}} + V) t_{\alpha_i} (p_{\alpha_{i+1}} \cdots p_{\alpha_k} + U).$$

(With the convention that the empty monomial is the identity of F.)

One checks that the ideal VU is the kernel of δ and hence that δ induces a derivation $D: F/VU \rightarrow T$. Now, left and right multiplication by F define a

290

F/V - F/U bimodule structure on $(U \cap V)/VU$ and, using (1), it follows readily that D restricted to $(U \cap V)/VU$ is a bimodule homomorphism. Theorem 3 of [4] then states

(3)
$$D: \frac{U \cap V}{VU} \to T$$
 is a bimodule monomorphism.

THEOREM 1. Let F be a free \mathfrak{t} algebra generated by a finite set $\{p_{\alpha}; \alpha \in A\}$ and let R be a nonzero ideal of F. Then R^2/R^3 is a finitely generated F/Rbimodule if and only if F/R has finite \mathfrak{t} dimension.

If F/R has finite dimension, then [3, proposition 2, Corollary], R is a finitely generated right ideal so that R/R^2 is a finitely generated right F/R module. R/R^2 is then again finite dimensional and hence so is F/R^2 . Using [3, proposition 2, Corollary] again, R^2 is a finitely generated right ideal, and, a fortiori, R^2/R^3 is a finitely generated F/R bimodule.

Suppose now that F/R has infinite dimension. Then, [3, Theorem 3, Corollary] R is not a finitely generated right ideal and, since R is a free right F module [2, theorem 3.5], there exist elements $e_i \in F$ with $R = \bigoplus_{i=1}^{\infty} e_i F$. We now use the embedding (3) with $U = R^2$, V = R. We consider T as a $(F/R)^{onp} \otimes_t F/R^-$ module with $(F/R)^{opp}$ the opposite algebra of F/R. Thus we write bta as $t(b \otimes a)$ with b now considered as an element of $(F/R)^{opp}$.

If $r = r_1 r_2$, with r_1, r_2 in R then, by (1),

$$r\delta = (r_1\delta)(r_2 + R^2) + (r_1 + R)(r_2\delta) = (r_1\delta)(r_2 + R^2),$$

and thus every element of $R^2\delta$ has its coefficients in $(F/R)^{opp} \otimes_t R/R^2$. Let now $R_n = \bigoplus_{i=1}^n e_i F$, $S = (F/R)^{opp} \otimes_t R/R^2$ and $S_n = (F/R)^{opp} \otimes_t (R_n + R^2)/R^2$. S_n is a right ideal of $(F/R)^{opp} \otimes_t F/R^2$ and hence the set T_n of elements of T whose coefficients are in S_n is a submodule of T. Since $\bigcup_n S_n = S$ and $R^2\delta \subseteq TS$ it follows that $R^2\delta = \bigcup_n (R^2\delta \cap T_n)$.

Suppose now that every element of R has degree at least d. Then all the monomials of F of degree at most d-1 are \mathfrak{k} independent modulo R, and hence \mathfrak{k} independent modulo \mathbb{R}^2 . It follows that the vectors $t_{\alpha}(m_i + \mathbb{R} \otimes m_k + \mathbb{R}^2)$ with m_i, m_j monomials of degree at most d-1, may be taken as part of a basis for T.

Let $w = w(p_{\alpha_1}, \dots, p_{\alpha_k})$ of degree *d* be an element of least degree in *R*. If *m* is a monomial of *F* occurring in *w* with coefficient k_m and $m = m_1 p_2 m_2$, then from the above remark and equation (2), the basis element $t_x(m_1 + R \otimes m_2 + R^2)$ occurs in $w\delta$ with coefficient exactly k_m . In particular if *q* is a monomial of degree *d* occurring in *w* and $q = q'p_x$, then $t_o(q' + R \otimes 1)$ occurs in $w\delta$ with coefficient k_a . Further if another term $t_{\beta}(q' + R \otimes m + R^2)$ occurs in $w\delta$ with nonzero coefficient then $\beta \neq \alpha$. It now follows that if, with $f \in F$, $(wf)\delta = (w\delta)(f + R^2)$

Jacques Lewin

is in T_n then $t_{\alpha}(q' + R \otimes f + R^2) \in T_n$, and hence that $f \in R_n + R^2$. Thus if $R^2 \delta \subseteq T_n$ then $R = R_n + R^2$. This however cannot happen since $R/R^2 \cong R \otimes_F F/R$ = $\bigoplus_{i=1}^{\infty} (e_i + R^2) F/R$. Thus $\{R^2 \delta \cap T_n\}$ is infinite and $R^2 \delta$ is not finitely generated as a $F/R - F/R^2$ module. By (3), neither is R^2/R^3 . Since R annihilates R^2/R^3 from the right, R^2/R^3 is an F/R bimodule and is clearly still not finitely generated when considered as such. This proves the theorem.

The assertion in our opening sentence now follows easily: if F/R has finite f dimension then, as in the first part of the proof of the theorem, R^2 is finitely generated even as a right ideal and hence F/R^2 is finitely presented. Conversely if F/R^2 is finitely presented, then R^2 is a finitely generated F bimodule. It follows that R^2/R^3 is a finitely generated F/R bimodule and hence, by the theorem, F/R has finite f dimension.

Theorem 1 was motivated by the following observations; Let \mathfrak{k} be a countable field and let F be the free \mathfrak{k} algebra on $\{x, y\}$. Let R = F' the commutator ideal of F. Then R is generated, qua F bimoule by xy - yx and, using (3) with U = V = R, we see that R/R^2 is a one generator subbimodule of a free F/Rbimodule. Since $(F/R)^{opp} \otimes F/R \simeq F/R \otimes F/R$ is isomorphic to a (commutative) polynomial algebra on four variables, it has no zero divisors hence R/R^2 is itself a free F/R bimodule. So $R/R^2 \simeq F/R \otimes_{\mathfrak{k}} F/R$. In particular R/R^2 is both right and left F/R free (this is true for any R) and multiplication in F induces an F/Rbimodule isomorphism $R/R^2 \otimes_{F/R} R/R^2 \simeq R^2/R^3$. Thus

$$R^2/R^3 \simeq (F/R \otimes_{\mathfrak{t}} F/R) \otimes_{F/R} (F/R \otimes_{\mathfrak{t}} F/R) \simeq F/R \otimes_{\mathfrak{t}} F/R \otimes \mathfrak{t} F/R.$$

Clearly, then, R^2/R^3 is a free F/R bimodule of infinite rank. It follows readily that R^2/R^3 contains uncountably many submodules and hence that F/R^3 contains uncountably many ideals. Since F/R^3 is finitely generated, F/R^3 has uncountably many non-isomorphic epimorphic images. Further [4, theorem 8] each of these images satisfies all the polynomial identities of the algebra of 3×3 matrices over f.

Recall now that a \mathfrak{k} algebra B is said to be embeddable in matrices if, for some n, it is a subalgebra of the algebra of $n \times n$ matrices over some commutative \mathfrak{k} algebra A. If B is embeddable and finitely generated then we may choose A to also be finitely generated [5]. By the Hilbert basis theorem there are only countably many finitely generated commutative \mathfrak{k} algebras. Hence only countably many finitely generated \mathfrak{k} algebras are embeddable in matrices. Thus we have

THEOREM 2. Let \mathfrak{k} be a countable field. There are uncountably many nonisomorphic two generator \mathfrak{k} algebras B with $B'^3 = 0$ which are not embeddable in matrices. Each B satisfies all the identities of 3×3 matrices over \mathfrak{k} .

An example of this type was first discovered by Small [5].

292

References

- [1] S. A. Amitsur, 'A noncommutative Hilbert basis theorem and subrings of matrices', Trans. Amer. Math. Soc. 149 (1970), 133-142.
- [2] P. M. Cohn, 'On a generalization of the Euclidean algorithm', Proc. Cambridge Phil. Soc. 57 (1961), 18-30.
- [3] J. Lewin, 'Free modules over free algebras and free group algebras: The Schreier technique', Trans. Amer. Math. Soc. 145, (1969) 455-465.
- [4] J. Lewin, 'A matrix representation for associative algebras I.' (to appear in Trans. Amer. Math. Soc.).
- [5] L. Small, 'An example in P. I. rings', J. Algebra 17, (1971) 434-436.
- [6] L. Small, 'Ideals in finitely generated PI-Algebras', Ring theory (Academic Press) 1972, 347-352.

Syracuse University Syracuse, NY, 13210, USA